人教版2016-2017学年第一学期七年级数学上册期中考试试题含答案
- 格式:doc
- 大小:178.50 KB
- 文档页数:5
2016~2017学年度第一学期期中考试七年级数学答案一.选择题二.填空题11. -3 12. 1.89 13. -5或1 14. 3n+2 15. 5 16. 4n三.解答题17.(1)解:原式=75320-++- (2)解:原式=()()()⎪⎭⎫ ⎝⎛-⨯-+⨯-+⨯-211241123112=827+- =()634+-+-=19- =1- (3)解:原式=()()7584--⨯-+ (4)解:原式=()⎥⎦⎤⎢⎣⎡-⨯+-÷-849924 =7404+- =()2724-÷- =29- =98(第17题每小题3分,共12分)18.(第18题每个数1分,共6分)19.解:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x =22523453331y x y x x +-+- ……2分 =24y x +- ……3分当273-=x ,53=y 时,则3-=x ,53=y 时, ……4分 原式=()()259122591253342=+=⎪⎭⎫⎝⎛+-⨯-. ……6分 20.(1)解:4.51.18.12.13.13.12.115.111=++--++-++. ……3分答:这10袋小麦总计超过5.4kg . ……4分 (2)()226355.2100104.590=⨯⨯÷+ ……7分答:估计这100袋小麦总销售额是22635元. ……8分21.解:小纸盒的表面积是:()ca bc ab 222++ ……2分大纸盒的表面积是:()ca bc ab 686++ ……4分做这两个纸盒共用料:()()ca bc ab ca bc ab ca bc ab 8108686222++=+++++. ……6分 做大纸盒比做小纸盒多用料:()()ca bc ab ca bc ab ca bc ab 464222686++=++-++.……8分 22.(1) 115 , 308 , 460 ; ……3分(2)解:当购买200本时,需200×2.2=440(元) ……4分 当购买201本时,需201×2=402(元) ……5分答:买201本最省钱. ……6分 (3)500-82=418418÷2.2=190(本) ……8分 418÷2=209(本) ……10分 答:小明购买了190或209本 23.(1) 3x +3 , 3y +14 ……2分(2)解:设最小数为x ,则76871=++++++x x x x ……3分 15=x答:这四个数中最小数是15. ……5分 (3)解:依题意有2161-=m a ,2132+=m a ……7分①当321=-a a ② 当321-=-a a()()3213216=+--m m ()()3213216-=+--m m15=m ……9分 13=m (不符合题意,舍去)……10分答:最中心的数是15.24.(1)21;1; 43; ……3分 (2)①解:设t 的十位数字为a ,个位数字为b ,则b a t +=10,a b t +='10,()181010=+-+b a a b , ……4分2+=a b ……5分则t 的值有:13,24,35,46,57,68,79. ……7分②对应的()t F 的值为131,32,75,232,193,174,791;则()t F 的最大值为75.……8分(3)设t 的十位数字为x ,则个位数字为2+x ,p 的十位数字为y ,则个位数字为2+y ,四位数()22101001000+++++=x y y x W , ……10分 四位数()()x y y x N +++++=10210021000`……11分W -N =()()()[]21781021002100022101001000-=+++++-+++++x y y x x y y x . ……12分。
七年级数学第一学期期中考试试题(时间:90分钟,分值:120分) 一、选择题(每小题3分,共30分)1. 表示东台某天早晨、中午和午夜的温度(单位:℃),则下列说法正确的是 ( )午夜-7-44A. 午夜与早晨的温差是11℃B. 中午与午夜的温差是0℃C. 中午与早晨的温差是11℃D. 中午与早晨的温差是3℃ 2. 如果一个数的倒数是-2,那么这个数的相反数是( )A.12 B .12- C .2 D .-2 3.有下列各数,0.01,10,-6.67,31-,0,-(-3),2--,()24--,其中属于非负整数的共有( )A .1个B .2个C .3个D .4个4.已知数a ,b 在数轴上对应的点在原点两侧,并且到原点的距离相等,数x ,y 互为倒数,那么2a b + -2xy 的值等于( )A.2B.﹣2C.1D.﹣1 5.实数a b ,在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .b a <6. 下列说法错误..的是( ) A .2x 2-3xy -1是二次三项式 B.-x +1不是单项式C.223xy π-的系数是23π- D.-22xab 2的次数是67.下列说法中,正确的是( )A.近似数117.08精确到十分位 B .按科学记数法表示的数55.0410⨯,其原数是50400 C.将数60340精确到千位是46.010⨯ D .用四舍五入法得到的近似数8.1750精确到千分位 8. 若2b +与2(3)a -互为相反数,则a b 的值为( ) A.-b B.18-C. -8D.89.已知整数a 1,,a 2,a 3,a 4,…满足下列条件:a 1=0,a 2=-11a +,a 3=-22a +,a 4=-33a +,… 依次类推,则a 2014的值为( )A.-1005B.-1006C. -1007D. -201410.计算:1211-=,2213-=,3217-=,42115-=,52131-=,…,归纳各计算结果中的个位数字规律,猜测201421-的个位数字是( )A .1B .3C .7D .5 二、填空题(每小题3分,共30分) 11. 绝对值和相反数相等的数 .12.绝对值不小于3而小于6的所有整数有 个 13. 绝对值小于4的负整数的积是 .14.某公交车原坐有22人,经过3个站点时上下车情况如下(上车为正,下车为负):(+4,−8),(−5,6),(−3,2),则车上还有________人.15.有理数m ,n 在数轴上的位置如图所示,则-m 与-n 的大小关系是_________.16.据威海市旅游局统计,今年“五·一”小长假期间,我市各旅游景点门票收入约2300万元,数据“2300万”用科学记数法表示为______________.17. 规定符号⊗的意义为:21a b ab a b ⊗=-+-+,那么34-⊗=________ 18.若m =7,n 2=36,则m +n = .19. 请写出两个有理数,并把它们相加,使它们的和的比两个加数都小______________. 20. 猜数字游戏中,小明写出如下一组数:25,47,811,1619,3235……,小亮猜想出第六个数字是6467,根据此规律,第n 个数是__________. 三、解答题(共60分)21.(12分)将下列各数填在相应的集合里。
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
2016—2017学年度第一学期初一年级期中练习2016.11一、(本题共20分,每小题2分.)1. 数轴上与原点距离是5个单位的点,所表示的数是() A.5B. -5C. ±5D.512. 在3,2,-1,-4这四个数中,比-2小的数是()A .-4B .-1C .2D .33. 已知:在数轴上的位置如图所示,则下列结论正确的是()A.0abc B. ||||c a C.c a D.cab 4. 下列各式:①)2(;②2;③22;④2)2(,计算结果为负数的个数有()A. 4个B. 3个C. 2个D. 1个考生须知1.考生要认真填写密封线内的班级、姓名、学号。
2.本练习包括八道大题,共3页。
考试时间100分钟。
3.答题前要认真审题,看清题目要求,按要求认真作答。
4.答题必须用黑色字迹的签字笔。
ca o b5. 如果a+b >0, ab <0那么( )A. a, b 异号, 且︱a ︱>︱b ︱B.a, b 异号, 且a >bC. a,b 异号, 其中正数的绝对值大D. a >0>b 或a <0<b6. 若︱a ︱= -a ,则a 是()A. 负数B. 非负数C. 零D. 非正数7. 下列去括号正确的是()A. -(a+b-c)=-a+b-cB. -2(a+b-3c)=-2a-2b+6cC. -(-a-b-c)=-a+b+cD. -(a-b-c)=-a+b-c8. 下列说法中正确的是()A. x ,0不是单项式B.3abc 的系数是3 C. y x 2的系数是D.a 不一定是负数9. 下列各式计算正确的是()A.ab b a 532 B.82012x x C. abab ab56 D.aa5510. 下面四个整式中,不能..表示图中阴影部分面积的是()A. x x x2)2)(3( B. 6)3(x x C. 2)2(3x x D. xx 52二、(本题共28分,每题2分) 11. 水位升高3m 时水位变化记作+3m ,那么-5m 表示.12.31的相反数是.13. 已知1a b ,则代数式223a b 的值是__________.14. 太阳半径大约是696000千米,用科学记数法表示为____________千米,精确到万位的近似数为____________千米.xx3210题图aboc15. 若01)3(2b a ,则32ba.16 . 比较大小:325217. 3)23(的底数是________,指数是________.18. 单项式32b a 的系数是,次数是.19. 多项式232642y x x yx 是次项式,其中最高次项的是.20. 已知3b23x 2y y x a与是同类项,则代数式ab =.21. 请写出一个只含字母x 的整式,满足当2x时,它的值等于3. 你写的整式是____________.22. 如图,a 、b 、c 在数轴上的位置如图所示,则||||||b c c a b a .23. 一个长方形的一边长是b a 32,另一边的边长是b a ,则这个长方形的周长是.24. “!”是一种数学运算符号,1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,5!= _______ , 则!98!100=________.三、用心算一算:(本题共24分,每小题4分) 25.12—(—18)+(—7)—1526.583()()1215227.)12()4332125(28.)3()4()2(810229.2220132120.1254()(1)3230. 以下是一位同学所做的有理数运算解题过程的一部分:(1)请你在上面的解题过程中仿照给出的方式,圈画出他的错误之处,并将正确结果写在相应的圈内;(2)请就此题反映出的该同学有理数运算掌握的情况进行具体..评价,并对相应的有效避错方法给出你的建议.(2)解:四、化简:(本题共8分,每小题4分)31.)5(3)3(52222b a abab ba 32.222(2)4(3)xx xx 五、先化简,再求值: (本题共5分)33.已知2,3ab ,求22221(93)(72)2(1)23aba baba b 的值.六.解方程(本题共10分,每小题5分)34.5x-2=7x+635.xxx7)52(34七、(本题5分)36. 已知数轴上三点A,O,B对应的数分别为-3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=______________;(2)当x= 时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是______________;(4)在数轴上,点M,N表示的数分别为1x,2x,我们把1x,2x之差的绝对值叫做点M,N之间的距离,即12MN x x.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.八、附加题(本题共10分,每小题5分)37.从2016年1月1日开始,北京市居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按 2.28元/m3收费,超过350立方米的部分按 2.5元/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.(1)如果他家2016年全年使用300立方米天然气,那么需要交多少元天然气费?(2)如果他家2016年全年使用500立方米天然气,那么需要交多少元天然气费?(3)如果他家2016年需要交1563元天然气费,他家2016年用了多少立方米天然气?解:(1)(2)(3)38。
人教版七年级第一学期期中数学试卷及答案一、单选题(共10题,每小题4分,合计40分)1.(4分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.2.(4分)如果和﹣x2y n是同类项,则m+n=()A.3B.2C.1D.﹣1【解答】解:∵和﹣x2y n是同类项,∴m=2,n=1,∴m+n=2+1=3.故选:A.3.(4分)如果m=n,那么下列等式不一定成立的是()A.m﹣3=n﹣3B.2m+3=3n+2C.5+m=5+n D.【解答】解:A.∵m=n,∴m﹣3=n﹣3,故本选项不符合题意;B.∵m=n,∴2m=2n,∴2m+3=2n+3,不能推出2m+3=3n+2,故本选项符合题意;C.∵m=n,∴5+m=5+n,故本选项不符合题意;D.∵m=n,∴=,故本选项不符合题意;故选:B.4.(4分)用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3B.2a+3C.2(a﹣3)D.2(a+3)【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.5.(4分)已知x=2是方程3x﹣5=2x+m的解,则m的值是()A.1B.﹣1C.3D.﹣3【解答】解:∵x=2是方程3x﹣5=2x+m的解,∴把x=2代入方程可得6﹣5=4+m,解得m=﹣3,故选:D.6.(4分)解一元一次方程(x+1)=1﹣x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.7.(4分)多项式a2+a与多项式﹣a+1的差为()A.a2+1B.a2+2a+1C.a2﹣1D.a2+2a﹣1【解答】解:(a2+a)﹣(﹣a+1)=a2+a+a﹣1=a2+2a﹣1,故选:D.8.(4分)多项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,则k的值是()A.0B.1C.2D.﹣2【解答】解:∵项式x2﹣kxy﹣5y2+xy﹣6合并同类项后不含xy项,∴﹣k+1=0,∴k=2.故选:C.9.(4分)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为()A.﹣3B.﹣2C.﹣1D.1【解答】解:∵点C在原点的左侧,且CO=BO,∴点C表示的数为﹣2,∴a=﹣2﹣1=﹣3.故选:A.10.(4分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.二.填空题(共6题,每小题4分,合计24分)11.(4分)我市2020年常住人口约9080000人,该人口数用科学记数法可表示为9.08×106人.【解答】解:9080000人用科学记数法可表示为9.08×106人.故答案为:9.08×106.12.(4分)若a﹣b=1,则代数式2a﹣(2b﹣1)的值是3.【解答】解:整理代数式得,2a﹣2b+1=2(a﹣b)+1,∵a﹣b=1,∴原式=2+1=3.13.(4分)当x=1时,代数式x+2与代数式的值相等.【解答】解:∵代数式x+2与代数式的值相等,∴x+2=,2x+4=7﹣x,2x+x=7﹣4,3x=3,x=1,故答案为:1.14.(4分)若|x|=3,|y|=4,且xy>0,则x+y的值为7或﹣7.【解答】解:∵|x|=3,|y|=4,∴x=±3,y=±4,∵xy>0,∴x=3时,y=4,x+y=7,x=﹣3时,y=﹣4,x+y=﹣3+(﹣4)=﹣7,综上所述,x+y的值是7或﹣7.故答案为:7或﹣7.15.(4分)一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是7x+1.【解答】解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.16.(4分)有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣c|+|b﹣c|的结果是﹣2a.【解答】解:根据图形,c<b<0<a,且|a|<|b|<|c|,∴a+b<0,a﹣c>0,b﹣c>0,∴原式=(﹣a﹣b)﹣(a﹣c)+(b﹣c),=﹣a﹣b﹣a+c+b﹣c,=﹣2a.故答案为:﹣2a.三.解答题(共9题,合计86分)17.(8分)计算:(1);(2).【解答】解:(1)=()×(﹣60)=﹣×60+×60﹣×60+×60=﹣20+15﹣12+10=﹣7;(2)=﹣1﹣×(﹣20)+4=﹣1+8+4=11.18.(8分)先化简再求值:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab,其中a=﹣3,b=﹣2.【解答】解:3a2b﹣[2a2b﹣(2ab﹣a2b)﹣4a2]﹣ab=3a2b﹣2a2b+(2ab﹣a2b)+4a2﹣ab=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab=ab+4a2当a=﹣3,b=﹣2时,原式=(﹣3)×(﹣2)+4×(﹣3)2=6+36=42.19.(8分)解方程:(1)y﹣3(20﹣2y)=10(2)(x﹣2)=1﹣(4﹣3x)【解答】解:(1)去括号得:y﹣60+6y=10,移项得:y+6y=10+60,合并同类项得:7y=70,系数化为1得:y=10,(2)方程两边同时乘以12得:3(x﹣2)=12﹣2(4﹣3x),去括号得:3x﹣6=12﹣8+6x,移项得:3x﹣6x=12﹣8+6,合并同类项得:﹣3x=10,系数化为1得:x=﹣.20.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值(单位:g)﹣5﹣20136袋数143453这批样品的平均质量比标准质量多还是少?多或少几克,若标准质量为450克,则抽样检测的总质量是多少?【解答】解:与标准质量的差值的和为﹣5×1+(﹣2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).21.(8分)若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.22.(10分)已知:M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2.(1)求M;(2)若|x﹣2|+(y+1)2=0,计算M的值.(2)直接利用非负数的性质得出x,y的值,进而代入计算得出答案.【解答】解:(1)∵M+N=4x3+16xy2+8y3,N=3x3﹣4y3+16xy2,∴M=4x3+16xy2+8y3﹣(3x3﹣4y3+16xy2)=4x3+16xy2+8y3﹣3x3+4y3﹣16xy2=x3+12y3;(2)∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得:x=2,y=﹣1,∴M=23+12×(﹣1)=8﹣12=﹣4.23.(10分)阅读下面解题过程.利用运算律有时能进行简便计算.例1:98×12=(100﹣2)×12=1200﹣24=1176;例2:﹣16×233+17×233=(﹣16+17)×233=233;请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15);(2)999×118+999×(﹣)﹣999×18.【解答】解:(1)999×(﹣15)=(1000﹣1)×(﹣15)=1000×(﹣15)﹣1×(﹣15)=﹣15000+15=﹣14985;(2)999×118+999×(﹣)﹣999×18=999×[118+(﹣)+(﹣18)]=999×100=99900.24.(12分)有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8;继续依次操作下去.问(1)第一次操作后,增加的所有新数之和是多少?(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和是多少?(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和是多少?【解答】解:(1)第一次操作后增加的新数是6,﹣1,则6+(﹣1)=5.(2)第二次操作后所得的新数串比第一次操作后所得的数串增加的所有新数之和为3+3+(﹣10)+9=5.(3)猜想:第一百次操作后得到的新数串比第九十九次操作后所得的数串增加的所有新数之和为5.25.(14分)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.。
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣5的倒数是()A.5 B.C.﹣D.﹣52.如果a2=9,那么a等于()A.3 B.﹣3 C.9 D.±33.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和04.我国最长的河流长江全长约为6300千米,用科学记数法表示为()A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米5.下列计算正确的是()A.(+6)+(﹣13)=+7 B.(+6)+(﹣13)=﹣19 C.(+6)+(﹣13)=﹣7 D.(﹣5)+(﹣3)=86.下列各题正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3 D.9a2b﹣9a2b=07.若﹣3x m y2与2x3y2是同类项,则m等于()A.1 B.2 C.3 D.48.若,则x2+y2的值是()A.0 B.C.D.19.在式子:﹣ ab,,,﹣a2bc,1,x2﹣2x+3中,单项式个数为()A.2 B.3 C.4 D.510.有理数a,b在数轴上对应的位置如图,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0二、填空题11.﹣2.5的相反数是.12.已知|a|=4,那么a= .13.(6分)单项式﹣的系数是,次数是.14.化简:﹣|﹣(+)|= .15.比较大小:﹣0.33 ﹣(填“<”或“>”)16.计算:﹣3x6+2x6的结果是.17.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2= .18.(6分)近似数2.30万精确到位,用科学记数法表为.三.解答题(共60分)19.计算(1)﹣1﹣(﹣10)÷+(﹣4)(2)1+(﹣2)+|﹣2﹣3|﹣5(3)(﹣1)10×2+(﹣2)3÷4(4)(3a﹣2)﹣3(a﹣5)(5)﹣4xy+3(xy﹣2x)20.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)21.若(a+1)2+|b﹣2|=0,求a2000•b3的值.22.先化简,再求值:a﹣2b﹣a+2b﹣5a+2b,其中a=1,b=﹣.四、解答题二23.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?24.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如表:与标准质量的差值(单位:g)﹣5 ﹣2 0 1 3 6袋数 1 4 3 4 5 3(1)样品的平均质量比标准质量多还是少?多或少几克?(2)标准质量为420克,则抽样检测的总质量是多少克.2016-2017学年内蒙古巴彦淖尔市磴口县诚仁中学七年级(上)期中数学试卷参考答案与试题解析一、选择题1.﹣5的倒数是()A.5 B.C.﹣D.﹣5 【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣5的倒数是﹣.故选:C.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.如果a2=9,那么a等于()A.3 B.﹣3 C.9 D.±3 【考点】平方根.【分析】直接利用平方根的定义得出a的值.【解答】解:∵a2=9,∴a=±3.故选:D.【点评】此题主要考查了平方根,正确把握定义是解题关键.3.一个数和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0 【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵1×1=1,(﹣1)×(﹣1)=1,∴一个数和它的倒数相等的数是±1.故选C.【点评】本题考查的是倒数的定义,解答此题时要熟知0没有倒数这一关键知识.4.我国最长的河流长江全长约为6300千米,用科学记数法表示为()A.63×102千米B.6.3×102千米C.6.3×103千米D.6.3×104千米【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的一般形式为:a×10n,在本题中a应为6.3,10的指数为4﹣1=3.【解答】解:6 300千米=6.3×103千米.故选:C.【点评】将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.5.下列计算正确的是()A.(+6)+(﹣13)=+7 B.(+6)+(﹣13)=﹣19 C.(+6)+(﹣13)=﹣7 D.(﹣5)+(﹣3)=8【考点】有理数的加法.【分析】依据有理数的加法法则判断即可.【解答】解:(+6)+(﹣13)=﹣(13﹣6)=﹣7,故A、B错误,C正确;﹣5+(﹣3)=﹣(5+3)=﹣8,故D错误.故选:C.【点评】本题主要考查的是有理数的加法,掌握有理数的加法法则是解题的关键.6.下列各题正确的是()A.3x+3y=6xy B.x+x=x2C.﹣9y2+6y2=﹣3 D.9a2b﹣9a2b=0【考点】合并同类项.【分析】根据合并同类项的法则结合选项进行判断.【解答】解:A、3x和3y不是同类项,不能合并,故本选项错误;B、x+x=2x,计算错误,故本选项错误;C、﹣9y2+6y2=﹣3y2,计算错误,故本选项错误;D、9a2b﹣9a2b=0,计算正确,故本选项正确.故选D.【点评】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.7.若﹣3x m y2与2x3y2是同类项,则m等于()A.1 B.2 C.3 D.4【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得:m=3.注意同类项与字母的顺序无关,与系数无关.【解答】解:因为﹣3x m y2与2x3y2是同类项,所以m=3.故选C.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.若,则x2+y2的值是()A.0 B.C.D.1【考点】非负数的性质:绝对值;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可求解.【解答】解:根据题意得,x﹣=0,2y+1=0,解得x=,y=﹣,∴x2+y2=()2+(﹣)2=+=.故选B.【点评】本题考查了绝对值非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.9.在式子:﹣ ab,,,﹣a2bc,1,x2﹣2x+3中,单项式个数为()A.2 B.3 C.4 D.5【考点】单项式.【分析】根据单项式的定义回答即可.【解答】解:﹣ ab是单项式;是单项式;是多项式;﹣a2bc是单项式;1是单项式;x2﹣2x+3是多项式.单项式共有4个.故选:C.【点评】本题主要考查的是单项式的定义,掌握单项式的定义是解题的关键.10.有理数a,b在数轴上对应的位置如图,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【考点】数轴.【分析】由图可知a<0,b>0,且|a|<|b|,再根据有理数的加减法法则判断即可.【解答】解:由图可知a<0,b>0,且|a|<|b|,所以,a+b>0,a﹣b<0,故选B.【点评】本题主要考查了数轴,解题的关键是利用数轴得出a,b的取值范围.二、填空题11.﹣2.5的相反数是 2.5 .【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣2.5的相反数是2.5;故答案是:2.5.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.12.已知|a|=4,那么a= ±4 .【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.单项式﹣的系数是﹣,次数是 3 .【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式﹣的数字因数是﹣,所有字母指数的和=2+1=3,∴此单项式的系数是﹣,次数是3.故答案为:﹣,3.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.14.化简:﹣|﹣(+)|= ﹣.【考点】绝对值;相反数.【分析】直接根据绝对值的意义求解.【解答】解:﹣|﹣(+)|=﹣.故答案为:﹣.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.15.比较大小:﹣0.33 >﹣(填“<”或“>”)【考点】有理数大小比较.【专题】推理填空题;实数.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:|﹣0.33|=0.33,|﹣|=≈0.333,∵0.33<0.333,∴0.33<,∴﹣0.33>﹣.故答案为:>.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.16.计算:﹣3x6+2x6的结果是﹣x6.【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:原式=(﹣3+2)6=﹣x6,故答案为:﹣x6.【点评】本题考查了合并同类项,系数相加字母及指数不变是解题关键.17.如果a、b互为倒数,c、d互为相反数,且m=﹣1,则代数式2ab﹣(c+d)+m2= 3 .【考点】有理数的混合运算;相反数;倒数.【分析】如果a、b互为倒数,则ab=1,c、d互为相反数,则c+d=0,且m=﹣1,直接代入即可求出所求的结果.【解答】解:∵ab=1,c+d=0,m=﹣1,∴2ab﹣(c+d)+m2=2﹣0+1=3.【点评】主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.18.近似数2.30万精确到百位,用科学记数法表为 2.3×104.【考点】科学记数法与有效数字.【分析】根据近似数的精确度和有限数字的定义求解,然后利用科学记数法表示得2.3×104.【解答】解:近似数2.30万精确到百位,用科学记数法表示为2.3×104.故答案为:百,2.3×104.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.也考查了科学记数法.三.解答题(共60分)19.(25分)(2016秋•磴口县校级期中)计算(1)﹣1﹣(﹣10)÷+(﹣4)(2)1+(﹣2)+|﹣2﹣3|﹣5(3)(﹣1)10×2+(﹣2)3÷4(4)(3a﹣2)﹣3(a﹣5)(5)﹣4xy+3(xy﹣2x)【考点】整式的加减;有理数的混合运算.【分析】(1)先计算除法,减法统一成功加法,后计算即可.(2)先化简绝对值,减法统一成功加法,后计算即可.(3)先计算乘方,后计算加减法即可.(4)先去括号,后合并同类项即可.(5)先去括号,后合并同类项即可.【解答】解:(1)原式=﹣1+20﹣4=15.(2)原式=1﹣2+5﹣5=﹣1.(3)原式=2﹣2=0.(4)原式=3a﹣2﹣3a+15=13.(5)原式=﹣4xy+xy﹣6x=﹣3xy﹣6x.【点评】本题考查整式的加减、有理数的混合运算等整式,解题的关键是熟练掌握这些知识解决问题,属于基础题,中考常考题型.20.在数轴上把下列各数表示出来,并用从小到大排列出来2.5,﹣2,|﹣4|,﹣(﹣1),0,﹣(+3)【考点】有理数大小比较;数轴.【分析】根据数轴的特点在数轴上标出各数,然后根据数轴上的数右边的总比左边的大排列即可.【解答】解:|﹣4|=4,﹣(﹣1)=1,﹣(+3)=﹣3,﹣(+3)<﹣2<0<﹣(﹣1)<2.5<|﹣4|.【点评】本题考查了数轴,有理数的大小比较,比较简单,熟记数轴上的数右边的总比左边的大是解题的关键.21.若(a+1)2+|b﹣2|=0,求a2000•b3的值.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:由题意得,a+1=0,b﹣2=0,解得,a=﹣1,b=2,a2000•b3=1×8=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.先化简,再求值:a﹣2b﹣a+2b﹣5a+2b,其中a=1,b=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a﹣2b﹣a+2b﹣5a+2b=﹣5a+2b,将a=1,b=﹣代入得:原式=﹣5a+2b=﹣5×1+2×(﹣)=﹣5﹣1=﹣6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.四、解答题二23.某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下:+10,﹣2,+3,﹣1,+9,﹣3,﹣2,+11,+3,﹣4,+6.(1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?【考点】正数和负数.【分析】(1)求得记录的数的和,根据结果即可确定所处的位置;(2)求得记录的数的绝对值的和,乘以2.8即可求解.【解答】解:(1)10﹣2+3﹣1+9﹣3﹣2+11+3﹣4+6=+30,则距出发地东侧30米.(2)(10+2+3+1+9+3+2+11+3+4+6)×2.8=151.2(升).则共耗油151.2升.【点评】本题考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如表:与标准质量的差值(单位:g)﹣5 ﹣2 0 1 3 6袋数 1 4 3 4 5 3(1)样品的平均质量比标准质量多还是少?多或少几克?(2)标准质量为420克,则抽样检测的总质量是多少克.【考点】正数和负数.【分析】(1)根据有理数的加法,可得和,根据和的大小,可得平均质量;(2)根据有理数的加法,可得抽样检测的总质量.【解答】解:(1)[(﹣5)×1+(﹣2)×4+0×3+1×4+3×5+6×3)]÷20=1.2g,答:样品的平均质量比标准质量多,多1.2克;(2)20×420+[(﹣5)×1+(﹣2)×4+0×3+1×4+3×5+6×3)]=8424g,答:标准质量为420克,则抽样检测的总质量是8424克.【点评】本题考查了正数和负数,掌握有理数的加法法则是解题关键.。
第1页 共10页第2页 共 10页m B 这两个点之间的距离是( ) 的次数是1 D10、观察图中正方形四个顶点所标的数字规律,可知数2016应标在( )A .第503个正方形的左下角B .第503个正方形的右下角C .第504个正方形的左下角D .第504个正方形的右上角二、填空题(本大题6小题,每小题4分,共24分)11、股票上涨100点记作+100点,那么如果下跌50点则记作: . 12、代数式系-3223y x π的系数是13、在数轴上,与表示—3的点的距离是4数为_____________; 14、用四舍五入法取近似数, 1.804≈__________(精确到百分位)15、如图是一个程序运算,若输入的x 为5-,则输出y 的结果为____________。
16、18、将一些半径相同的小圆按如图所示的规律摆放,第 10个图形有 . 个小圆.三、解答题(一)(本大题3小题,每小题6分,共18分)17计算 3222[(4)(13)3]-+---⨯第1个图形第 2 个图形第3个图形 第 4 个图形第4页 共 10页第3页 共 10页18化简:2243(32)2y y y y ⎡⎤---+⎣⎦19、先化简,后求值-)3123()(221y x y x x +----,其中x =-1,y =2 ;四、解答题(二)(本大题3小题,每小题7分,共21分)20、某检修小组乘一辆检修车沿铁路检修,规定向东走为正,向西走为负,•小组的出发地记为0,某天检修完毕时,行走记录(单位:千米)如下: +10,-2,+3,-1,+9,-3,-2,+11,+3,-4,+6. (1)问收工时,检修小组距出发地有多远?在东侧还是西侧?(2)若检修车每千米耗油2.8升,求从出发到收工共耗油多少升?20、已知单项式a 2b n与-21a m b 3是同类项。
(1)填空m= ;n= (2)试求多项式(m-n )+2mn 的值?22、已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于2的数, (1)根据题意,m=(2)求:cd m cb a ba -++++2的值。
人 教 版 数 学 七 年 级 上 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共12小题,每小题3分)请将唯一正确答案的代号填涂在答题卡...上 1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温零上10℃记作+10℃,则℃表示气温为 A. 零上7℃B. 零下7℃C. 零上3℃D. 零下3℃2.下列各式中,不是整式的是 A. 3aB.C.2xD. x y +3.若有理数a,b 互为倒数,则下列等式中成立的是( ) A. ab=1B. ab=﹣1C. a+b=0D. a ﹣b=04.下列说法中,正确的是( ) A. 0是最小的整数 B. 最大的负整数是﹣1C. 有理数包括正有理数和负有理数D. 一个有理数的平方总是正数5.如果a+b <0,那么下列结论正确的是( ) A. a <0,b <0B. a >0,b >0C. a,b 中至少有一个为负数D. a,b 中至少有一个为正数6.下列四种说法,正确的是 A.是一次单项式 B. 单项式的系数是1、次数是0 C.2212x y 是二次单项式 D. 23ab -的系数是23- 7.下列各组单项式中,不是同类项的一组是( ) A. 2x y 和22xyB. 3xy 和2xy-C. 25x y 和22yx -D. 23-和38.下列各式中,去括号正确的是( ) A 2(1)21x y x y +-=+- B. 2(1)22x y x y --=++ C. 2(1)22x y x y --=-+D. 2(1)22x y x y --=--9.下列说法正确的是( ) A. 如果a 是有理数,那么|a|>0 B. 如果|a|=|b|,那么a=b C. 如果a <0,那么|a|=﹣aD. 如果|a|>|b|,那么a >b10.按某种标准把多项式分类,3x 3﹣4与a 2b+2ab 2﹣1属于同一类,则下列多项式中也属于这一类的是( ) A. abc ﹣1B. ﹣x 5+y 3C. 2x 2+xD. a 2﹣2ab ﹣b 211.点A,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:甲:b ﹣a <0;乙:a+b >0;丙:|a|<|b|;丁:ab >0,其中正确的是( )A. 甲、乙B. 丙、丁C. 甲、丙D. 乙、丁12.已知(1)1nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =,…;则1232017......a a a a ++++的值为A 1008B. 2016C. 2017D. 1010二、填空题(本大题共7小题,每小题3分,共21分)把答案填在题中横线上.13.﹣235的倒数是_____. 14.若213mx y -与62n x y 是同类项,则m n += .15.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,判断墨迹盖住的整数共有 个.16.南海资源丰富,其面积约为350万平方千米,相当于我国渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 .17.数轴上一点A ,一只蚂蚁从A 点出发爬了5个单位长度到达了原点,则点A 所表示的数是________. 18.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.19.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度xkm的几组对应值如表:向上攀登高度x/km 0.5 1.0 1.5 2.0气温y/℃ 2.0 ﹣1.0 ﹣40 ﹣7.0若每向上攀登1km,所在位置的气温下降幅度基本一致,则向上攀登的海拔高度为2.3km时,登山队所在位置的气温约为_____℃.三、解答题(本大题共7小题,共63分)20.把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),﹣13,|﹣2|正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.21.计算:(1)11(0.5)06(7)( 4.75)42-+-----;(2)94(81)(8)49-÷⨯÷-;(3)322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦. 22.化简(1)3x 2+2xy –4y 2–3xy+4y 2–3x 2. (2)2(x –3x 2+1)–3(2x 2–x+2).23.先化简再求值:12(2a 3﹣a 2b)﹣(a 3﹣ab 2)﹣12 a 2b ,其中a =12,b =﹣2.24.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克? (2)若该种食品的合格标准为450±5g ,求该食品的抽样检测的合格率.25.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.26.(1)比较下列各式的大小:①23-+与23-+;②22222{ (34)84120143y kx mk x kmx m x y =+⇒+++-=+=与23--;③20-+与20-+;(2)请你由(1)归纳总结出a b +与a b +(a ,b 为有理数)的大小关系,并用文字语言叙述此关系; (3)根据(2)中的结论,求当20172017x x +=-时,x 的取值范围.答案与解析一、选择题(本大题共12小题,每小题3分)请将唯一正确答案的代号填涂在答题卡...上1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温零上10℃记作+10℃,则℃表示气温为A. 零上7℃B. 零下7℃C. 零上3℃D. 零下3℃【答案】B【解析】解:-7℃表示零下7℃.故选B.2.下列各式中,不是整式的是A. 3aB.C. 2xD. x y【答案】C 【解析】解:C.2x,分母含有字母,是分式,不是整式,故选C.3.若有理数a,b互为倒数,则下列等式中成立的是( )A. ab=1B. ab=﹣1C. a+b=0D. a﹣b=0【答案】A【解析】解:有理数a,b互为倒数,则ab=1,故选A.4.下列说法中,正确的是( )A. 0是最小的整数B. 最大的负整数是﹣1C. 有理数包括正有理数和负有理数D. 一个有理数的平方总是正数【答案】B【解析】分析:根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是-1.正确理解有理数的定义.解答:解:A、0不是最小的整数,故本选项错误;B 、最大的负整数-1,故本选项正确;C 、有理数分为整数和分数,故本选项错误;D 、0的平方还是0,不是正数,故本选项错误. 故选B .5.如果a+b <0,那么下列结论正确的是( ) A. a <0,b <0B. a >0,b >0C. a,b 中至少有一个为负数D. a,b 中至少有一个为正数【答案】C 【解析】解:∵a +b <0,∴,中至少有一个为负数.故选C . 6.下列四种说法,正确的是 A.是一次单项式 B. 单项式的系数是1、次数是0 C.2212x y 是二次单项式 D. 23ab -的系数是23- 【答案】D 【解析】解:A .是常数,故A 错误;B . 单项式的系数是1、次数是1,故B 错误;C . 2212x y 是四单项式,故C 错误; D . 23ab -的系数是23-,正确.故选D .7.下列各组单项式中,不是同类项的一组是( ) A. 2x y 和22xy B. 3xy 和2xy-C. 25x y 和22yx -D. 23-和3【答案】A 【解析】 【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项. 【详解】根据题意可知:x 2y 和2xy 2不是同类项. 故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.8.下列各式中,去括号正确是( ) A. 2(1)21x y x y +-=+- B. 2(1)22x y x y --=++ C. 2(1)22x y x y --=-+ D. 2(1)22x y x y --=--【答案】C 【解析】 【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键. 9.下列说法正确的是( ) A. 如果a 是有理数,那么|a|>0 B. 如果|a|=|b|,那么a=b C. 如果a <0,那么|a|=﹣a D. 如果|a|>|b|,那么a >b【答案】C 【解析】A. 如果a 是有理数,那么|a|≥0,故错误;B. 如果|a|=|b|,那么a=±b,故错误;C. 如果a <0,那么|a|=﹣a,正确;D. 如果|a|>|b|,那么a >b,错误,如|-5|>|0|,此时a=-5,b=0,a<b, 故选C.10.按某种标准把多项式分类,3x 3﹣4与a 2b+2ab 2﹣1属于同一类,则下列多项式中也属于这一类的是( ) A. abc ﹣1 B. ﹣x 5+y 3C. 2x 2+xD. a 2﹣2ab ﹣b 2【答案】A 【解析】3x 3﹣4与a 2b+2ab 2﹣1都是3次多项式,观察可知A 选项符合此标准, 故选A.11.点A,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:甲:b ﹣a <0;乙:a+b >0;丙:|a|<|b|;丁:ab >0,其中正确的是( )A. 甲、乙B. 丙、丁C. 甲、丙D. 乙、丁试题解析:,b a < 0.b a ∴-<甲正确.3,03,b a <-<<0.a b ∴+<乙错误. 3,03,b a <-<<.a b ∴<丙正确. 0,03,b a <<<0.ab ∴<丁错误.故选C.12.已知(1)1nn a =-+,当1n =时,10a =;当2n =时,22a =;当3n =时,30a =,…;则1232017......a a a a ++++的值为A. 1008B. 2016C. 2017D. 1010【答案】B 【解析】解:当n 为奇数时,a n =0,当n 为偶数时,a n =2,故1232017...a a a a ++++...=0+2+0+2+…+2+0=1008×2=2016.故选B .点睛:本题考查了找规律.通过观察得知:当n 为奇数时,a n =0,当n 为偶数时,a n =2是解答此题的关键.二、填空题(本大题共7小题,每小题3分,共21分)把答案填在题中横线上.13.﹣235的倒数是_____. 【答案】513-【解析】 【分析】根据倒数的定义进行解答. 乘积为1的两个数互为倒数.【详解】解:∵-235=135- ∴-235 的倒数是513- ,故答案为513-.【点睛】本题考查倒数的定义及求一个数的倒数的方法. 14.若213mx y -与62n x y 是同类项,则m n += .解:由题意可知:n =2,m =6,∴m +n =8.故答案为8.15.小明在写作业时不慎将一滴墨水滴在数轴上,根据图所示的数轴,判断墨迹盖住的整数共有 个.【答案】9. 【解析】解:结合数轴,得墨迹盖住的整数共有-6,-5,-4,-3,-2,1,2,3,4共9个.16.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为 . 【答案】63.510⨯ 【解析】350万=3500000=3.5×106.【点睛】对于一个绝对值较大的数,用科学计数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.17.数轴上一点A ,一只蚂蚁从A 点出发爬了5个单位长度到达了原点,则点A 所表示的数是________. 【答案】±5. 【解析】解:A 到原点的距离是5个单位长度.则A 所表示的数是:±5.故选C . 点睛:此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.18.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.【答案】3【解析】试题分析:根据有理数的加法,可得图②中表示(+2)+(﹣5)=﹣3,故答案为﹣3.考点:正数和负数19.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y℃与向上攀登的高度xkm的几组对应值如表:向上攀登的高度x/km 0.5 1.0 1.5 2.0气温y/℃ 2.0 ﹣1.0 ﹣4.0 ﹣7.0若每向上攀登1km,所在位置气温下降幅度基本一致,则向上攀登的海拔高度为2.3km时,登山队所在位置的气温约为_____℃.【答案】8.8【解析】【详解】解:由表格中的数据可知,每上升0.5km,温度大约下降3℃,∴向上攀登的海拔高度为2.3km时,登山队所在位置的气温约为﹣8.8℃,故答案为﹣8.8.三、解答题(本大题共7小题,共63分)20.把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),﹣13,|﹣2|正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.【答案】见解析【解析】试题分析:根据有理数的分类标准进行分类即可.试题解析:正数集合{ 0.275,227,()3--,2- …}; 负整数集合{8-…}; 分数集合{ 0.275,227, 1.04-,13- …}; 负数集合{8-, 1.04-,13- …}. 21.计算: (1)11(0.5)06(7)( 4.75)42-+-----; (2)94(81)(8)49-÷⨯÷-;(3)322(2)(3)(4)2(3)(2)⎡⎤-+-⨯-+--÷-⎣⎦.【答案】(1)原式=18;(2)原式=2;(3)原式=-57.5.【解析】试题分析:根据有理数四则运算法则,计算即可得到结果.试题解析:解:(1)原式=1130.5674424-+++=7+11=18; (2)原式=44181998⨯⨯⨯=2; (3)原式=8(3)(162)9(2)-+-⨯+-÷-=8(3)18 4.5-+-⨯+=854 4.5--+=-57.5.22.化简(1)3x 2+2xy –4y 2–3xy+4y 2–3x 2.(2)2(x –3x 2+1)–3(2x 2–x+2).【答案】(1)-xy ;(2)-12x 2+5x +8.【解析】试题分析:(1)将同类项进行合并即可;(2)先去括号,然后再合并同类项即可.试题解析:(1)3x 2+2xy4y 23xy+4y 23x 2=3x 23x 24y 2+4y 2+2xy3xy=xy ;(2)2(x3x 2+1) 3(2x 2x2)=2x6x 2+26x 2+3x+6=12x 2+5x+8.23.先化简再求值:12(2a 3﹣a 2b)﹣(a 3﹣ab 2)﹣12 a 2b ,其中a =12,b =﹣2. 【答案】原式=22a b ab -+,当12a =,b =-2时,原式=52. 【解析】 试题分析:原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.试题解析:解;原式= 323221122a a b a ab a b --+-=22a b ab -+ 当12a =,2b =-时, 原式=2211()(2)(2)22-⨯-+⨯-=122+=5224.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450克,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5g ,求该食品的抽样检测的合格率.【答案】(1)9017克;(2)95%;【解析】【分析】(1)总质量=标准质量×抽取的袋数+超过(或短缺的)质量,把相关数值代入计算即可;(2)找到所给数值中,绝对值小于或等于5的食品的袋数占总袋数的多少即可.【详解】解:(1)总质量为=450×20+(﹣6)+(﹣2)×4+1×4+3×5+4×3=9000﹣6﹣8+4+15+12=9017(克);(2)合格的有19袋,∴食品的合格率为1920=95%.【点睛】考查有理数的相关计算;掌握正数与负数相对于基数的意义是解决本题的关键;根据绝对值的意义得到合格产品的数量是解决本题的易错点.25.奇奇同学发现按下面的步骤进行运算,所得结果一定能被9整除.请你用我们学过的整式的知识解释这一现象.【答案】见解析.【解析】【分析】设原来的两位数十位数字为a,个位数字为b,表示出原来两位数与新的两位数,相减得到结果,即可得出结果.【详解】解:设原来的两位数十位数字为a ,个位数字为b ,则原来两位数为10a+b ,交换后的新两位数为10b+a ,(10a+b )-(10b+a )=10a+b-10b-a=9a-9b=9(a-b ),则这个结果一定是被9整除.【点睛】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.26.(1)比较下列各式的大小: ①23-+与23-+;②22222{ (34)84120143y kx mk x kmx m x y =+⇒+++-=+=与23--;③20-+与20-+;(2)请你由(1)归纳总结出a b +与a b +(a ,b 为有理数)的大小关系,并用文字语言叙述此关系; (3)根据(2)中的结论,求当20172017x x +=-时,x 的取值范围.【答案】(1)①|-2|+|3|>|-2+3|;②|-2|+|-3|=|-2-3;|③|-2|+|0|=|-2+0|;(2)|a |+|b |≥|a +b |,文字表述:两数绝对值的和大于或等于这两个数和的绝对值;(3)x ≤0.【解析】试题分析:(1)化简绝对值即可;(2)各式计算得到结果,比较大小即可;(3)根据得出的规律确定出答案.试题解析:解:(1)①∵|2|+|3|=5,| 2+3|=1,∴|2|+|3|>|2+3|,②∵|2|+|3|=5,|( 2)+( 3)|=5,∴|2|+|3|=|23|,③∵|0|+|2|=2,| 2+0|=2,∴|2|+|0|=|2+0|;(2)根据(1)中规律可得出:|a|+|b|≥|a+b|(当a,b同号或有一个等于零时取等号),文字表述:两数绝对值的和大于或等于这两个数和的绝对值;(3)∵|2017|=2017,∴|x|+2017=|x|+|2017|=|x+(2017)|=|x2017|,∴x≤0.点睛:本题考查绝对值、有理数的混合运算、有理数的大小比较等知识,解题的关键是学会寻找规律解决问题,属于中考常考题型.。
2016-2017学年七年级上学期期中考试
数学试题卷
(同学们,展示自己的时候到了,你要认真思考,沉着答卷啊!祝你成功!)
一、精心选一选(每题3分,共30分)
1、16的平方根是( )
A 、4
B 、±4
C 、2
D 、±2
2、下列各式中正确的是( )
A 、33-=-
B 、)1(1--=-
C 、12-<-
D 、22-+=+-
3、在下列选项中,具有相反意义的量是( )
A 、收入20元与支出30元
B 、6个老师和7个学生
C 、走了100米的跑了100米
D 、向东行30米和向北行30米
4、近似数-0.08010的有效数字个数有( )
A 、3个
B 、4个
C 、5个
D 、6个
5、实数a, b, c 在数轴上大致位置如图,则a 的大小关系是( ) A 、a<b<c B. a<c<b C. b<c<a D. 无法确定
6、一只海豚从水面先潜入水下40米,然后又上升了23米,此时海豚离水面( )
A 、63米
B 、17米
C 、23米
D 、40米
7、在计算器上按键
1 6 - 7 = 显示的结果是( ) A 、3 B 、-3 C 、-1 D 、1
8、下列说法错误的是( )
c
b a
A 、0的绝对值是0
B 、0的相反数是0
C 、0的平方根是0
D 、0的倒数为0 9、下列各式:2251
b a -,121-x ,-25,x 1,
2y x -,222b ab a +-中单项式的个数有( )
A 、4个
B 、3个
C 、2个
D 、1个
10、在下列各组单项式中,是同类项的是( )
A 、b 3与a 3 B. a 2b 与-ba 2 C.x 2y 与x 2yz D. 2m 2n 与2mn 2 二、耐心填一填(每题3分,共30分)
11、3211--=_____________
12、-2006的倒数是_______,81-的立方根是________,-2的绝对值是________
13、绝对值等于3的数是_______ 14、小于π的自然数有______个
15、如果01=-+b a ,则a+b=_____________
16、已知代数式a-2b 的值为5,则4b-2a 的值是_____________
17、如果 32y x a -与b y x 34
1是同类项,则a b =__________
18、用科学记数法表示6850000=____________
19、实数-32,18,6--,364中最大的数为____________
20、试举一列,说明“两个无理数的和仍是无理数”是错误的:______
三、答一答
21、把下列各数填在相应的表示集合的大括号内(4分)
-2,π,31
-,3--,722,-0.3,1.7,5,0,1.1010010001……
整 数{ ……} 负分数{ ……} 无理数{ ……}
22、在数轴上表示下列各数,π,4-,0,-25.2,并把这些数按从小到大的顺序进行排列。
(5分)
四、细心算一算(4×5=20分)
23、(1)200622)1(]2)32
(3[43-÷--⨯-⨯-
(2)3615-(结果精确到0.1)
(3)81)1(252⨯---
(4)22253mn n m n
m -+- (
5)2(x-1)-3(2-3x)
24、先化简再求值(5分)
)](3[)(2222y x xy y x ---++-,其中x= -1,y=2.
五、决心做一做(6分)
25、问题:你能比较20052006和20062005的大小吗?
为了解决这个问题,我们先把它抽象成数学问题,写出它的一般形式,即比较n n+1和(n+1)n的大小(n为正整数),我们从n=1,n=2,n=3……这些简单的情况入手,从中发现规律,经过归纳,猜出结论。
(1)通过计算,比较下列各组数字大小
①12______22 ②23______32 ③34________43
④45______54⑤54______65⑥67_________76
…………
(2)把第(1)题的结果经过归纳,你能得出什么结论?
这题也难不
倒我啊!
(3)根据上面的归纳猜想得到的结论,试比较两个数的大小(1分)20052006________20062005(填”>”,”<”, “=”)
2016-2017学年七年级上学期期中考试
数学参考答案
一、1、D 2、B 3、A 4、B 5、A 6、B 7、B 8、D 9、
C 10、B
二、11、-2 12、20061- ,2
1-,2 13、±3 14、4 15、1 16、-10 17、27 18、6.85×106 19、18
20、022=+-等
三、21、整数{ -2,3--,0……}
负分数{31-,-0.3……}
无理数{π,0.1010010001,5……}
四、22、①
29 ② 2.1 ③5 ④ 2252mn n m - ⑤ 11x-8 23、 ∴4025.2-<<<-π
24、-2x 2-3xy, 4
25.(1)< (2) < (3) > (4) > (5) > (6) >
(2) 当n ≤2时(n 为正整数), n n+1 < (n+1)n 当 n >2时(n 为正整数), n n+1> (n+1)n
(3)20052006> 20062005
25.2- 4-
π
3210-1-2。