练习题 信安数学
- 格式:ppt
- 大小:90.00 KB
- 文档页数:20
信息安全数学基础----习题集一一、填空题1、设a=18、b=12,c=27,求a、b、c的最小公倍数[a,b,c]= .2、求欧拉函数= .3、设,则模的最小非负简化剩余系{ }.4、设,则模的所有平方剩余= .5、设,则模的所有原根个数= .6. 设m,n是互素的两个正整数,则φ(mn)=________________。
7. 设m是正整数,a是满足的整数,则一次同余式:ax≡b (mod m)有解的充分必要条件是_________________ 。
8. 设m 是一个正整数,a是满足____________的整数,则存在整数a’,1≤a’<m ,使得aa’≡1 (mod m)。
9. 设, 如果同余方程__________, 则叫做模的平方剩余.10. 设, 则使得成立的最小正整数叫做对模的__________.二、判断题(在题目后面的括号中,对的画“”,错的画“”)1、若是任意正整数, 则. ()2、设是个不全为零的整数,则与, ||, ||,…, ||的公因数相同()3、设是正整数, 若, 则或. ()4、设为正整数, 为整数, , 且, 则. ()5、{1,-3,8,4,-10}是模5的一个完全剩余系. ()6、设是素数, 模的最小非负完全剩余系和最小非负简化剩余系中元素个数相等. ()7、设为奇素数, 模的平方剩余和平方非剩余的数量各为8. ()8、一次同余方程有解. ()9、设是素数, 是模的原根, 若, 则是的整数倍.()10、设, 则, …, 构成模的简化剩余系.()11. , 则. ()12. 设是两个互素正整数, 那么, 则. ()13. 设m是一个正整数, a,b,d都不为0,若ad≡bd(modm)。
则a≡b(mod m)。
()14. 设为正整数, a是满足的整数,b为整数. 若为模的一个简化剩余系, 则也为模的一个简化剩余系. ()15. p为素数,n为整数且与p互素,则n2为模p的平方剩余. ()16. 设为正整数, 设, 则是模的平方剩余的充要条件是: . ()17. 3是模7的原根。
信息安全数学基础(b)卷答案.docSa+tb=d ⼜显然有dm | 三、求出下列⼀次同余数的所有解.(共10分) 6x = 3(mod9)贵州⼤学2007-2008学年第⼆学期考试试卷(标准答案)B信息安全数学基础注意事项:1. 请考⽣按要求在试卷装订线内填写姓名、学号和年级专业。
2. 请仔细阅读各种题⽬的回答要求,在规定的位置填写答案,3. 不要在试卷上乱写乱画,不要在装订线内填写⽆关的内容。
4. 满分100分,考试时间为120分钟。
解:⼀、设&,b 是任意两个不全为零的整数,证明:若m 是任⼀正整数,则 (am, bm) = (a, b) m,(共 10 分)设d= (a, b), d i = (am, bm),由定理5,存在整数s, t 使得两端同时乘m,得到s(am)+t(bm) =dm 因此di | dm. (5分) am, dm| bm,所以 dm| d i ?故 d i = (am, dm) (5 分)⼆、设p 是素数.证明:如果a 2 s/;2(mod p)则p| a-b 或p| a + b(共10分)证明:因为「三为“mod p),所以p|(a-b )( a + b ),如果P 不整除(a+b),因为P 为素数,所以(P,a+b)=l,有定理可知p a-b (5分);同理,如果P 不整除(a-b),因为P 为素数,所以(P,a-b)=l,有定理可知p a+h(5分)解: 原同余式等价同余式组 y(x) = 0(mod5) /(x) = 0(mod7)直接验算,五、求满⾜⽅程£:)⼫ =x 3 +2x + l(mod7)的所有点.(共 10 分)解:(1)求同余式6⼯三3(mod9)的解,运⽤⼴义欧⼏⾥得除法得:x= 5( mod 3) (5 分)(2) 求同余式6x 三3(mod9)的⼀个特解:x= 5( mod 3) (4 分)(3) 写出同余式6、三3(mod9)的全部解:X = 5 + 3t( mod 9) (t=0, 1, 2) (1 分)四、求解同余式组:(共15分)JO)三/+2⼫+8尤 + 9 = 0x = /?! (mod 5) x = b 2 (mod 6)x = /?3(mod7)x = /?4(mod 11)/(X)三 0(mod5)的解为 X = l,4(mod5)f (x)三 0(mod 7)的解为 JI ?三 3,5,6(mod7)K 三 /?](mod5)由中国剩余定理,可求得同余式组{ 1 的解为[x 三打(mod 7)X 三3 7仇+35 奶(mod35),故原同余式的解为x = 31,26,6,24,19,34(mod35),共6个。
信息安全数学基础期末考试试卷及答案(A 卷)一、 填空题(本大题共8小题,每空2分,共24分)1. 两个整数a ,b ,其最大公因数和最小公倍数的关系为 ________________。
2. 给定一个正整数m ,两个整数a ,b 叫做模m 同余,如果______________,记作(mod )a b m ≡;否则,叫做模m 不同余,记作_____________。
3. 设m ,n 是互素的两个正整数,则()mn ϕ=________________。
4. 设1m >是整数,a 是与m 互素的正整数。
则使得1(mod )ea m ≡成立的最小正整数e 叫做a 对模m 的指数,记做__________。
如果a 对模m 的指数是()m ϕ,则a 叫做模m 的____________。
5. 设n 是一个奇合数,设整数b 与n 互素,如果整数n 和b 满足条件________________,则n 叫做对于基b 的拟素数。
6. 设,G G '是两个群,f 是G 到G '的一个映射。
如果对任意的,a b G ∈,都有_______________,那么f 叫做G 到G '的一个同态。
7. 加群Z 的每个子群H 都是________群,并且有0H =<>或H =______________。
8. 我们称交换环R 为一个域,如果R 对于加法构成一个______群,*\{0}R R =对于乘法构成一个_______群。
二、计算题(本大题共 3小题,每小题8分,共24分)1. 令1613,a = 3589b =。
用广义欧几里德算法求整数,s t ,使得(,)sa tb a b +=。
2. 求同余方程22(mod 67)x ≡-的解数。
3. 计算3模19的指数19ord (3)。
三、解同余方程(本大题共2小题,每小题10分,共20分)1. 求解一次同余方程1714(mod 21)x ≡。
第一章参考答案(1) 5,4,1,5.(2) 100=22*52, 3288=23*3*137.(4) a,b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,又因为(a,b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––pr)n, b n=(q1q2––qs)n明显a n, b n也没有公共(相同)素因子.(5)同样将a, b可以表示成多个素因子的乘积a=p1p2––pr, b=q1q2––qs,a n=(p1p2––pr)n, b n=(q1q2––qs)n,因为a n| b n所以对任意的i有, pi的n次方| b n,所以b n中必然含有a的所有素因子, 所以b中必然含有a的所有素因子, 所以a|b.(6)因为非零a, b, c互素,所以(a, b)=(a, c)=1,又因为a=p1p2––pr,b=q1q2––qs, ab=p1p2––prq1q2––qs, 又因为a, b, c互素, 所以a, b, c中没有公共(相同)素因子, 明显ab和c也没有公共(相同)素因子.所以(ab, c)= (a, b)(a, c).(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,9 7,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)(70!)/(61!)= 62*63*––*70=(-9)*(-8)*––*(-1)=-9!=-362880=1(mod 71). 明显61!与71互素, 所以两边同乘以61!, 所以70!=61!(mod 71).(13)当n为奇数时2n=(-1)n=-1=2(mod 3), 两边同时加上1有2n+1=0(mod 3), 所以结论成立.当n为偶数时2n=(-1)n=1(mod 3), 两边同时加上1有2n+1=2(mod 3), 所以结论成立.(14)第一个问:因为(c,m)=d, m/d为整数.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=ki *mi,a-b是任意mi的倍数,所以a-b是mi 公倍数,所以[mi]|a-b.(利用式子:最小公倍数=每个数的乘积/最大公约数, 是错误的, 该式子在两个数时才成立)(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能第二章答案(5)证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.(6)证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b 有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.(7)证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b有abab=aabb, 有(ab)2=a2b2.(8)证明:因为xaaba=xbc,所以x-1xaxbaa-1b-1=x-1xbca-1b-1,所以存在唯一解x=a-1bca-1b-1使得方程成立。
2023希望数学——8年级培训80题答案1.计算111 ________.答案:– 22.的值是________.答案:23..答案:2022 4.( )A.B.12C.21E.2 答案:D5. 化简,得( ).A. B.C.D.答案:C6. 若x 2 – 13x + 1 = 0,则44x x ________.答案:278874322(2)2(2)n n n 8121n 12 n 87477. 设,则代数式的值为( ).A. –6B.24C.D.答案:A8. 用[x ]表示不超过x 的最大整数,用x – [x ]表示x 的小数部分.已知a 是t 的小数部分,b 是 – t 的小数部分,则________. 答案:9. 已知x + y+ z = 13,xy + yz + zx =102,xyz = 333,那么222222(1)(1)(1)(1)(1)(1)x y z y z x z x y ________. 答案:3365210. 已知实数a ,b ,c 满足613675a b c ,99260a b c ,则3232b ca b=_______.答案:111. 若2(23)|23|0x y x y z ,则y z x =________.答案:2512. 如果221,4x y x y ,则33x y _________.答案:11213. 实数x ,y 满足,,x y ,则的值为________. 答案:11a 2212a a 1012t112b a1224x 24y x yy x14. 已知1113a b c d,1115b a c d ,1117c a b d ,1119d a b c ,则3579a b c d=________. 答案:315. 若a ,c ,d 是整数,b 是正整数,且满足a +b =c ,b +c =d ,c +d =a ,那么a +b +c +d的最大值是________. 答案:– 516. 已知12m x x ,222n y y 则m – n 的最小值为_______.答案:4 17. 记12()12nf n n n n n(其中n 为大于1的整数),则f (n )的最小值是_________.答案:5618. 在实数范围内定义一种运算☆,其规则为a ☆b =12a b,则x ☆(x +1)=0的解为x =________. 答案:119. 设1232016,,,,a a a a 是不为零的实数,那么20152016121220152016||||||||a a a a a a a a 的值有_______种情况. 答案:2017 20. 方程34xx x x有________个实数根. 答案:121. 满足 2211x x x 的整数x 有________个.答案:322. 对于实数a ,[a ]表示不大于a 的最大整数.则关于x 的方程51830337x x的整数解是x=________. 答案:– 1523. 方程33225x y x y xy 的正整数解(x ,y )的个数是________.答案:124. 求方程x 3+x 2y +xy 2+y 3=8(x 2+xy +y 2+1)的全部整数解x 、y .答案:8228x x y y 或25. 不定方程的整数解(x ,y )共有________组.答案:626.2 ,得x =________.答案:±36 27. 不等式1248163264x x x x x x x的解集是_________. 答案:x <6428.满足不等式32 的最大质数x =_________.答案:3972222x y xy x y29. 在实数范围内定义运算 :(1)x y y x ,若不等式()()1a x x a 对任意实数x 都成立,则正整数a =_________. 答案:130. 已知关于x 的一元二次方程ax 2+bx +c =0没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了一次项系数的符号,误求得两根为 – 1和4,那么23b ca=_________. 答案:– 631. △ABC 的三边长a 、b 、c 均为实数且满足b +c =8,bc =a 2 –12a +52,则△ABC的周长等于_________. 答案:1432. 关于x 的四次方程x 4 – 18x 3 + kx 2 + 200x – 1984 = 0的四个根中有两个根乘积为 –32,则k 的值是________. 答案:8633. 直角坐标系中有两个点A (– 1,– 1),B (2,3),若M 为x 轴上一点,且使MB – M A 最大,则M 的横坐标是________. 答案:– 2.534. 如图,在平面直角坐标系中,一次函数443y x 的图象分别交x 轴、y 轴于点A 、B ,把直线AB 绕点O 逆时针旋转90°,交y 轴于点A ',交直线AB 于点C ,则△A'BC 的面积为_________.答案:62535. 一次函数11y k x b 的图像经过(1,6)和(– 3,– 2)两点,它与x 轴、与轴的交点分别为B 、A ,一次函数22y k x b 的图像经过点(2,–2),在y 轴上的截距为 – 3,它与x 轴、与y 轴的交点分别为D 、C .若直线AB 、CD 交于E ,则△BCE 和△ADE 的面积比是_________. 答案:1∶436. 已知,并且,那么直线一定通过第( )象限. A.一、二 B.二、三 C.三、四 D.一、四答案:B37. 从– 2,– 1,1,2,3中取出两个作为一次函数y = kx + b 中的k 和b ,得到的一次函数不经过第二象限的概率是_________. 答案:31038. 对于每个x ,函数y 是12332,2,122y x y x y x 这三个函数中的最小值.则函数y 的最大值是________. 答案:60 abc p bac a c b c b ap px y39. 点(2,)P a 在反比例函数ky x的图象上,它关于原点的对称点在一次函数23y x 的图象上,则k 的值为_______.答案:240. 由方程111x y 确定的曲线所围成图形的面积是________.答案:241. 如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且AB =1,OB ABOC 绕点O 按顺时针方向旋转60°后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c 过点A 、E 、D . 在x 轴的上方有点P 、点Q ,使以点O 、B 、P 、Q 为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,求出点P 坐标.答案: 120,22P P,42. 对任意的实数x ,函数f (x )有性质f (x )+f (x – 1)= x 2.如果f (19)= 94,那么f (94)除以1000的余数是________. 答案:56143.密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片.李老师设计了四种正多边形瓷砖图案,在这四种瓷砖中,用一种瓷砖可以密铺平面的是().A.(1)(2)(3)B.(2)(3)(4)C.(1)(3)(4)D.(1)(2)(4)答案:D44.一个凸n边形,它的每个内角的度数都是整数,且任意两个内角的度数都不相同,则n的最大值是_______.答案:2645.已知等腰三角形的三边长分别是2x–2,3x–6,4x–10,则x的值是________.答案:1646.正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为________.答案:47.如图所示,在平面直角坐标系xOy中,∠MON的两边分别是射线y=x(x≥0)与x轴正半轴.点A(6,5),B(10,2)是∠MON内的两个定点,点P、Q分别是∠MON 两边上的动点,则四边形ABPQ周长的最小值是________.答案:548.在平面直角坐标系内,已知4个定点A(– 3,0),B(1,– 1),C(0,3),D(– 1,的最小值为________.3)及一个动点P,则PA PB PC PD答案:49.已知点P的坐标为(0,1),O为原点,Q为第一象限内一点,若∠QPO = 150°,且P到Q的距离为2,则Q的坐标为(____,____).答案:11, 50.如图,正方形OPQR内接于△ABC,已知△AOR、△BOP、△CRQ的面积分别是S1=1,S2=3,S3=1,那么正方形OPQR的边长是________.答案:251.在△ABC中,若AC ,BC ,AB ,则△ABC的面积为_______.答案:5.552.如图,D是△ABC三条中线的交点,若AD=3,BD=4,CD=5,△ABC的面积是________.答案:1853.如图,等腰△ABC中,∠ACB = 90°,M,N为斜边AB上两点,且∠MCN =45°,已知AM = 3BN = 5,则MN =________.54.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为________.(结果保留π)答案:π55. 如图,Rt △ABC 中,90ACB ,30CAB ,BC =1,D ,E 分别为AB ,AC 的中点,将△ABC 绕点B 顺时针旋转120°,得到△A'BC',旋转过程中,线段DE 扫过的面积为_________.(结果保留π)答案:456. 在Rt △ABC 中,∠C = 90°,CD ⊥AB 于D ,∠A 的平分线交CD 于E ,交BC于F ,过E 作EG ∥AB 交BC 于G ,若CE = 5,则BG =________. 答案:557. 如图,P 是△ABC 内的一点,连结AP 、BP 、CP 并延长,分别与BC 、AC 、AB 交于D 、E 、F ,已知AP = 6,BP = 9,PD = 6,PE = 3,CF = 20.那么△ABC 的面积是________.答案:10858. 如图,等边△AFG 被线段BC ,DE 分割成周长相等的三部分:等边△ACB 、梯形BCED 、梯形DEGF ,其面积分别为S 1,S 2,S 3,若263S ,则13S S =________.答案:5659. 如下图,在正方形的两个顶点之间依次连接了五条相互垂直的线段,长度分别为2,2,2,1,3,则阴影部分的面积为________.答案:960.已知正方形ABCD的边长为1,P1,P2,P3,P4是正方形内部的4个点,使得△ABP1,△BCP2,△CDP3和△DAP4都是正三角形,则四边形P1P2P3P4的面积等于________.答案:261.在等腰梯形ABCD中,上底AB = 500,下底CD = 650,两腰AD = BC = 333,∠A和∠D的平分线交于P点,∠B和∠C的平分线交于Q.则PQ的长为________.答案:24262.如图,点O是正六边形ABCDEF的中心,OM⊥DE于点M,N为OM的中点.若S△F AN=10,则正六边形ABCDEF的面积为________.答案:4863.三边长均为整数且周长不超过30的直角三角形有_________个.(平移或旋转后可以重合的三角形视为同一个)答案:364.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同的整数最小是________.答案:1765.从1,2,…,2010这2010个正整数中,最多可以取出________个数,使得所取出的数中任意三个数之和都能被33整除.答案:6166.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数是________.答案:867.一个三位数被11整除后的商等于这个三位数各位数字的平方和,那么这个三位数可能是_________.(求出所有结果)答案:550,80368.若三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是一定是某个整数n的倍数.那么n的最大值是________.答案:969.一个不透明的袋子中装有红、黄、蓝三种颜色的玻璃球若干个,这些玻璃球除颜色外其余都相同.其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为25,那么,随机摸出一个为红色玻璃球的概率为________.答案:6 2570.一项“过关游戏”规定:在第n关,要抛一颗骰子n次,如果这n次抛掷骰子上底面所出现的点数之和大于2n,就算过关.则连过前3关的概率是_________.答案:100 24371.为了防止信息泄露,保证信息的安全传输,在传输过程中都需要对文件加密,有一种密码加密系统,其加密、解密原理为:发送方由明文x → 密文y(加密),接收方由密文y → 明文x(解密).现在密匙为y=kx3,若明文“4”通过加密后得到的密文是“2”,则密文“1256”,解密后得到的明文是________.答案:1 272.将1~20这20个正整数分成A、B两组,使得A组所有数的和等于N,而B组所有数的乘积也等于N,则N的所有可能取值有________.答案:180,182,19273.如图,矩形ABCD中,AB=3,BC=5,边长为1的小正方形MNPQ从如图的位置开始沿A→B→C→D→A的方向,在矩形内翻滚,翻滚1次后点P来到P1的位置,那么翻滚________次后,小正方形第一次回到初始位置,这个过程中点P经过的路径长为________.(结果保留π)答案:12, 374.如图所示,两个全等菱形的边长均为1厘米,一只蚂蚁由点A开始按ABCDEFCGA的顺序沿菱形的边循环运动,行走2016厘米后停下,则这只蚂蚁停在_________点.答案:A75. 观察如下一列数对:(1,1),(1,2), (2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…… 则第2023个数对是( ).A. (6,58)B. (6,59)C. (7,58)D. (58,7)E. (59,6) 答案:C76. B 船在A 船的北偏西45°处,两船相距km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是________km .答案:77. 已知实数a > 0,且2和 –1至少有一个不满足关于x 的不等式250ax x a,则a 的最小值是________. 答案:178. 设a 1,a 2,a 3,…,a 13是13个两两不同的正整数,a 1+a 2+a 3+…+a 13=488.设a 是其中任意3个数相加之和的最小值,则a 最大可以是________. 答案:9679.a,b,c,d,e,f,g,h,i是1~9中的不同数字,则a b c d e fg h i的最小值是________.答案:1 28880.一玩具工厂用于生产一批小熊、小猫的全部劳动力为273个工时,原料为243个单位.生产一个小熊要使用9个工时、12个单位原料,利润为144元;生产一个小猫要使用6个工时、3个单位原料,利润为81元.在劳动力和原料的限制下,要使生产小熊和小猫的总利润最高,应该生产小熊________个、小猫________个.答案:13,26。
第5章习题答案一、判断题1. 设p是素数,g是模p的原根,若g x≡1(mod p),则x是p的整数倍. (×)2. 设m是正整数, (a,m)=1,若x d≡1(mod m),则d|φ(m). (×)3. 只有m是素数时,模m的原根才存在. (×)4. 根据费马小定理, 26≡1(mod7),故ord7(2)=6. (×)5. 若y≡g x(mod p), 则x≡ind g y(mod y).(×)二、综合题1. 已知6是模41的原根, 9=630,求ord41(9).解:6是模41的原根因此可知φ(41)=40, 640≡1 (mod 41)9≡630(mod 41)1≡(640)3≡(630)4(mod 41),因此ord41(9)=42. 写出模5的全部原根.解:5是素数,肯定有原根,原根个数φ(φ(5))=φ(4)=2. 5是比较小素数,因此可以用穷举方法进行求解原根5的简化剩余系为{1,2,3,4,},且计算可得11≡1;21≡2, 22≡4, 23≡3, 24≡1;31≡3, 32≡4, 33≡2, 34≡1;41≡4, 42≡1;因此根据原根定义,可知2和3是模5的原根。
3. 已知模22的原根存在,求出模22的所有原根.解:22=2*11,满足2pα形式,原根肯定存在。
原根个数为φ(φ(22))=φ(10)=4=22的素因数只有q=2,φ(m)=φ(22)=5根据定理5.8.1,故只需计算g5模p=22是否同余1.先判断g=2是否为模22的原根,因25(mod22)≢1. 所以2模22的原根. 因此模22的所有原根2d,其中d为模10的简化剩余系{1,3,7,9}。
模22的所有原根为:21≡2, 23≡8, 27≡18, 29≡6 (mod 22).即模22的所有4个原根为:2,8,18,64. 已知5对模17的阶为16, 列出所有模17阶为8的整数a(0<a <17).解:φ(17)=16, 516≡1(mod 17)。
“信息安全数学基础”习题答案第一章1、证明: (1)|()|()()|a b b ma m Z c d d nc n Z bd acmn mn Z ac bd ⇒=∈⇒=∈∴=∈∵,,,即。
(2)12111112|,|,,|11(3)|(),,k k k k a b a b a b a b c b c b c c c c ∴−+++∵ ,根据整除的性质及递归法,可证得:,其中为任意整数。
2、证明:1-2(2)(3,5)13|5|15|,(15,7)17|105|a a a a a =∴=∴∵∵∵根据例题的证明结论知:,又且,又,且,。
3、证明:1n p n p n >>因为,且是的最小素因数,若假设n/p 不是素数,则有121223131312,2,,,,2,,k k n p p p p k p p p p k n p p p p n p p n n p n n p =×××≥≥==×≥∴≥≤>> (其中为素数且均)若,则即,与题设矛盾,所以假设不成立,即为素数得证。
7、证明:首先证明形如6k -1的正整数n 必含有6k -1形式的素因子,这显然是成立的。
因为如果其所有素因数均为6k +1形式,则12,(61,1,2,,)j i i n p p p p k i j =×××=+= ,从而得到n 是形如6k +1形式的正整数,这与题设矛盾。
其次,假设形如6k -1的素数为有限个,依次为1212,,6s s q q q n q q q = ,考虑整数-1, 则n 是形如6k -1的正整数,所以n 必有相同形式的素因数q ,使得使得q = q j (1≤j ≤s )。
由整数的基本性质(3)有:12|(6)1s q q q q n −= ,这是不可能的。
故假设错误,即存在无穷多个形如4k -1的素数得证。
2n3n最小非负余数最小正余数绝对值最小余数最小非负余数最小正余数绝对值最小余数3 0、1 1、3 0、1 0、1、2 1、2、3 -1、0、14 0、1 1、4 0、1 0、1、3 1、3、4 -1、0、1 8 0、1、4 1、4、8 1,0 0、1、3、5、7 1、3、5、7、8 3、1、-3、-1、0 10 0、1、4、5、6、9 1、4、5、6、9、10 -4、-1、0、1、4、5 0,1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,10-5,-4,-3,-2,-1,0,1,2,3,413、解: (1)259222137222376(222,259)37372592221,1,1s t =×+=×⇒==−×∴==−(2)139571316827136821316823122(1395,713)31317136821713(13957131)2713(1)1395,1,2s t =×+=×+=×⇒==−×=−−×=×+−×∴=−=16、解: (1)(112,56)5611256[112,56]112(112,56)=×== (2)(67,335)6767335[67,335]335(67,335)=×== (3)(1124,1368)411241368[1124,1368]384408(1124,1368)=×==(7,4)1,0,7(1)4211,24410,1,2,771||1000142||100040,1,1427c s t k x k k k y k x k y x kk y k ==∴×−+×=∴=−=⎧=−=−⎪⎪=±±⎨⎪==⎪⎩≤⎧∴≤⎨≤⎩=−⎧∴=±±⎨=⎩∵ 而不定方程的一切解为: 其中,又方程的全部解为 ,其中 ,第二章1、解:(1) 错误。