北京市西城区2018-2017届高考二模数学试题(文)含答案
- 格式:doc
- 大小:2.10 MB
- 文档页数:10
2017年北京市西城区高考数学二模试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)在复平面内,复数z对应的点是Z(1,﹣2),则复数z的共轭复数=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)下列函数中,值域为[0,1]的是()A.y=x2 B.y=sinx C.D.3.(5分)在极坐标系中,圆ρ=sinθ的圆心的极坐标是()A.B.(1,0) C.D.4.(5分)在平面直角坐标系中,不等式组表示的平面区域的面积是()A.1 B.C.2 D.5.(5分)设双曲线=1(a>0,b>0)的离心率是3,则其渐近线的方程为()A.B.C.x±8y=0 D.8x±y=06.(5分)设,是平面上的两个单位向量,•=.若m∈R,则|+m|的最小值是()A.B.C.D.7.(5分)函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是()A.(2,+∞)B.(1,+∞)C.(,+∞)D.(,+∞)8.(5分)有三支股票A,B,C,28位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A股票的人中,持有B股票的人数是持有C股票的人数的2倍.在持有A股票的人中,只持有A股票的人数比除了持有A股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A股票.则只持有B股票的股民人数是()A.7 B.6 C.5 D.4二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,输出的S值为.10.(5分)已知等差数列{a n}的公差为2,且a1,a2,a4成等比数列,则a1=;数列{a n}的前n项和S n=.11.(5分)在△ABC中,角A、B、C的对边边长分别是a、b、c,若,,b=1,则c的值为.12.(5分)函数f(x)=则=;方程f(﹣x)=的解是.13.(5分)大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有种.(用数字作答)14.(5分)在空间直角坐标系O﹣xyz中,四面体A﹣BCD在xOy,yOz,zOx坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)设β∈(0,π),且,求β的值.16.(14分)如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,AD⊥FC.点M在棱FC上,平面ADM与棱FB交于点N.(Ⅰ)求证:AD∥MN;(Ⅱ)求证:平面ADMN⊥平面CDEF;(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B 的大小.17.(13分)某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:定义学生对餐厅评价的“满意度指数”如下:(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.18.(14分)在平面直角坐标系xOy中,抛物线C的顶点是原点,以x轴为对称轴,且经过点P(1,2).(Ⅰ)求抛物线C的方程;(Ⅱ)设点A,B在抛物线C上,直线PA,PB分别与y轴交于点M,N,|PM|=|PN|.求直线AB的斜率.19.(13分)已知函数f(x)=(x2+ax﹣a)•e1﹣x,其中a∈R.(Ⅰ)求函数f'(x)的零点个数;(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.20.(13分)设集合A2n={1,2,3,…,2n}(n∈N*,n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A 2n的一个“相关数”.(Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;(Ⅱ)若m为集合A2n的“相关数”,证明:m﹣n﹣3≥0;(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.2017年北京市西城区高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)在复平面内,复数z对应的点是Z(1,﹣2),则复数z的共轭复数=()A.1+2i B.1﹣2i C.2+i D.2﹣i【解答】解:由复数z对应的点是Z(1,﹣2),得z=1﹣2i.则复数z的共轭复数=1+2i.故选:A.2.(5分)下列函数中,值域为[0,1]的是()A.y=x2 B.y=sinx C.D.【解答】解:y=x2的值域为[0,+∞),y=sinx的值域为[﹣1,1],y=值域为[(0,1],y=的值域为[0,1],故选:D.3.(5分)在极坐标系中,圆ρ=sinθ的圆心的极坐标是()A.B.(1,0) C.D.【解答】解:圆ρ=sinθ即ρ2=ρsinθ,化为直角坐标方程:x2+y2=y,配方为:x2+=.可得圆心C,可得圆心的极坐标是.故选:C.4.(5分)在平面直角坐标系中,不等式组表示的平面区域的面积是()A.1 B.C.2 D.【解答】解:由约束条件作出可行域如图,联立,解得B(2,3),∴平面区域的面积S=.故选:B.5.(5分)设双曲线=1(a>0,b>0)的离心率是3,则其渐近线的方程为()A.B.C.x±8y=0 D.8x±y=0【解答】解:双曲线=1(a>0,b>0)的离心率是3,可得,则=.双曲线=1(a>0,b>0)的离心率是3,则其渐近线的方程为:x.故选:A.6.(5分)设,是平面上的两个单位向量,•=.若m∈R,则|+m|的最小值是()A.B.C.D.【解答】解:设,是平面上的两个单位向量,则||=1,||=1,∵•=,∴|+m|2=||2+m2||2+2m•=1+m2+m=(m+)2+,当m=﹣时,|+m|2有最小值,∴|+m|的最小值是,故选:C.7.(5分)函数f(x)=x|x|.若存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,则k的取值范围是()A.(2,+∞)B.(1,+∞)C.(,+∞)D.(,+∞)【解答】解:根据题意,x∈[1,+∞)时,x﹣2k∈[1﹣2k,+∞);①当1﹣2k≤0时,解得k≥;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,即只要f(1﹣2k)﹣k<0即可;∵1﹣2k≤0,∴f(1﹣2k)=﹣(1﹣2k)2,∴﹣(1﹣2k)2﹣k<0,整理得﹣1+4k﹣4k2﹣k<0,即4k2﹣3k+1>0;∵△=(﹣3)2﹣16=﹣7<0,∴不等式对一切实数都成立,∴k≥;②当1﹣2k>0时,解得k<;存在x∈[1,+∞),使得f(x﹣2k)﹣k<0,即只要f(1﹣2k)﹣k<0即可;∵1﹣2k>0,∴f(1﹣2k)=(1﹣2k)2,∴(1﹣2k)2﹣k<0,整理得4k2﹣5k+1<0,解得<k<1;又∵k<,∴<k<;综上,k∈(,)∪[,+∞)=(+∞);∴k的取值范围是k∈(,+∞).故选:D.8.(5分)有三支股票A,B,C,28位股民的持有情况如下:每位股民至少持有其中一支股票.在不持有A股票的人中,持有B股票的人数是持有C股票的人数的2倍.在持有A股票的人中,只持有A股票的人数比除了持有A股票外,同时还持有其它股票的人数多1.在只持有一支股票的人中,有一半持有A股票.则只持有B股票的股民人数是()A.7 B.6 C.5 D.4【解答】解:由题意作出文氏图,如下:其中m+n+p=7.∴只持有B股票的股民人数是7人.故选:A.二、填空题:本大题共6小题,每小题5分,共30分.9.(5分)执行如图所示的程序框图,输出的S值为10.【解答】解:由已知可得该程序的功能是计算并输出S=﹣12+22﹣32+42的值∵S=﹣12+22﹣32+42=10故答案为:1010.(5分)已知等差数列{a n}的公差为2,且a1,a2,a4成等比数列,则a1=2;数列{a n}的前n项和S n=n2+n.【解答】解:∵数列{a n}是公差为2的等差数列,且a1,a2,a4成等比数列,∴a1,a1+2,a1+6成等比数列,∴(a1+2)2=a1(a1+6),解得a1=2,数列{a n}的前n项和S n=2n+=n2+n.故答案为:2;n2+n.11.(5分)在△ABC中,角A、B、C的对边边长分别是a、b、c,若,,b=1,则c的值为2.【解答】解:∵,∴,∴,∵a>b,所以A>B.角A、B、C是△ABC中的内角.∴,∴,∴.故答案为:2.12.(5分)函数f(x)=则=﹣2;方程f(﹣x)=的解是﹣或1.【解答】解:f()=log2=﹣2,由方程f(﹣x)=,得或,解得:x=1或x=﹣,故答案为:﹣2;﹣或1.13.(5分)大厦一层有A,B,C,D四部电梯,3人在一层乘坐电梯上楼,其中2人恰好乘坐同一部电梯,则不同的乘坐方式有36种.(用数字作答)【解答】解:根据题意,分2步进行分析:先将3人分成2组,有C32=3种分组方法,再在A,B,C,D四部电梯中任选2部,安排2组人乘坐,有C42A22=12种情况,则3人不同的乘坐方式有3×12=36种;故答案为:36.14.(5分)在空间直角坐标系O﹣xyz中,四面体A﹣BCD在xOy,yOz,zOx坐标平面上的一组正投影图形如图所示(坐标轴用细虚线表示).该四面体的体积是.【解答】解:由三视图可知几何体为三棱锥,==2,高h=2,该三棱锥的底面积S底∴V==.故答案为:.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)求f(x)的定义域;(Ⅱ)设β∈(0,π),且,求β的值.【解答】解:(Ⅰ)由,得,k∈Z.[(3分)]所以函数f(x)的定义域是.[(4分)](Ⅱ)依题意,得.[(5分)]所以,[(7分)]整理得,[(8分)]所以,或.[(10分)]因为β∈(0,π),所以,[(11分)]由,得,;[(12分)]由,得,.所以,或.[(13分)]16.(14分)如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,AD⊥FC.点M在棱FC上,平面ADM与棱FB交于点N.(Ⅰ)求证:AD∥MN;(Ⅱ)求证:平面ADMN⊥平面CDEF;(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A﹣l﹣B 的大小.【解答】(本小题满分14分)(Ⅰ)证明:因为ABCD为矩形,所以AD∥BC,[(1分)]所以AD∥平面FBC.[(3分)]又因为平面ADMN∩平面FBC=MN,所以AD∥MN.[(4分)](Ⅱ)证明:因为ABCD为矩形,所以AD⊥CD.[(5分)]因为AD⊥FC,[(6分)]所以AD⊥平面CDEF.[(7分)]所以平面ADMN⊥平面CDEF.[(8分)](Ⅲ)解:因为EA⊥CD,AD⊥CD,所以CD⊥平面ADE,所以CD⊥DE.由(Ⅱ)得AD⊥平面CDEF,所以AD⊥DE.所以DA,DC,DE两两互相垂直.[(9分)]建立空间直角坐标系D﹣xyz.[(10分)]不妨设EF=ED=1,则CD=2,设AD=a(a>0).由题意得,A(a,0,0),B(a,2,0),C(0,2,0),D(0,0,0),E(0,0,1),F(0,1,1).所以=(a,0,0),=(0,﹣1,1).设平面FBC的法向量为=(x,y,z),则即令z=1,则y=1.所以=(0,1,1).[(12分)]又平面ADE的法向量为=(0,2,0),所以==.因为二面角A﹣l﹣B的平面角是锐角,所以二面角A﹣l﹣B的大小45°.[(14分)]17.(13分)某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:定义学生对餐厅评价的“满意度指数”如下:(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.【解答】(本小题满分13分)解:(Ⅰ)由对A餐厅评分的频率分布直方图,得对A餐厅“满意度指数”为0的频率为(0.003+0.005+0.012)×10=0.2,[(2分)]所以,对A餐厅评价“满意度指数”为0的人数为100×0.2=20.[(3分)](Ⅱ)设“对A餐厅评价‘满意度指数’比对B餐厅评价‘满意度指数’高”为事件C.记“对A餐厅评价‘满意度指数’为1”为事件A1;“对A餐厅评价‘满意度指数’为2”为事件A2;“对B餐厅评价‘满意度指数’为0”为事件B0;“对B餐厅评价‘满意度指数’为1”为事件B1.所以P(A1)=(0.02+0.02)×10=0.4,P(A2)=0.4,[(5分)]由用频率估计概率得:,.[(7分)]因为事件A i与B j相互独立,其中i=1,2,j=0,1.所以P(C)=P(A1B0+A2B0+A2B1)=0.4×0.1+0.4×0.1+0.4×0.55=0.3.[(10分)]所以该学生对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率为0.3.(Ⅲ)如果从学生对A,B两家餐厅评价的“满意度指数”的期望角度看:A餐厅“满意度指数”X的分布列为:B餐厅“满意度指数”Y的分布列为:因为EX=0×0.2+1×0.4+2×0.4=1.2;EY=0×0.1+1×0.55+2×0.35=1.25,所以EX<EY,会选择B餐厅用餐.[(13分)]注:本题答案不唯一.只要考生言之合理即可.18.(14分)在平面直角坐标系xOy中,抛物线C的顶点是原点,以x轴为对称轴,且经过点P(1,2).(Ⅰ)求抛物线C的方程;(Ⅱ)设点A,B在抛物线C上,直线PA,PB分别与y轴交于点M,N,|PM|=|PN|.求直线AB的斜率.【解答】解:(Ⅰ)依题意,设抛物线C的方程为y2=ax(a≠0).[(1分)]由抛物线C经过点P(1,2),得a=4,[(3分)]所以抛物线C的方程为y2=4x.[(4分)](Ⅱ)因为|PM|=|PN|,所以∠PMN=∠PNM,所以∠1=∠2,所以直线PA与PB的倾斜角互补,所以k PA+k PB=0.[(6分)]依题意,直线AP的斜率存在,设直线AP的方程为:y﹣2=k(x﹣1)(k≠0),将其代入抛物线C的方程,整理得k2x2﹣2(k2﹣2k+2)x+k2﹣4k+4=0.[(8分)]设A(x1,y1),则x1=,y1=﹣2,[(10分)]所以A(,﹣2).[(11分)]以﹣k替换点A坐标中的k,得B(,﹣﹣2.[(12分)]所以k AB==﹣1,所以直线AB的斜率为﹣1.[(14分)]19.(13分)已知函数f(x)=(x2+ax﹣a)•e1﹣x,其中a∈R.(Ⅰ)求函数f'(x)的零点个数;(Ⅱ)证明:a≥0是函数f(x)存在最小值的充分而不必要条件.【解答】解:(Ⅰ)由f(x)=(x2+ax﹣a)•e1﹣x,得f′(x)=(2x+a)e1﹣x﹣(x2+ax﹣a)•e1﹣x=﹣[x2+(a﹣2)x﹣2a]•e1﹣x=﹣(x+a)(x﹣2)•e1﹣x,令f′(x)=0,得x=2,或x=﹣a.所以当a=﹣2时,函数f′(x)有且只有一个零点:x=2;当a≠﹣2时,函数f′(x)有两个相异的零点:x=2,x=﹣a.(Ⅱ)证明:①当a=﹣2时,f′(x)≤0恒成立,此时函数f(x)在(﹣∞,+∞)上单调递减,所以,函数f(x)无极值.②当a>﹣2时,f′(x),f(x)的变化情况如下表:所以,a≥0时,f(x)的极小值为f(﹣a)=﹣ae1+a≤0.又x>2时,x2+ax﹣a>22+2a﹣a=a+4>0,所以,当x>2时,f(x)=)=(x2+ax﹣a)•e1﹣x>0恒成立.所以,f(﹣a)=﹣ae1+a为f(x)的最小值.故a≥0是函数f(x)存在最小值的充分条件.③当a=﹣5时,f′(x),f(x)的变化情况如下表:因为当x>5时,f(x)=(x2﹣5x+5)e1﹣x>0,又f(2)=﹣e﹣1<0,所以,当a=﹣5时,函数f(x)也存在最小值.所以,a≥0不是函数f(x)存在最小值的必要条件.综上,a≥0是函数f(x)存在最小值的充分而不必要条件.20.(13分)设集合A2n={1,2,3,…,2n}(n∈N*,n≥2).如果对于A2n的每一个含有m(m≥4)个元素的子集P,P中必有4个元素的和等于4n+1,称正整数m为集合A2n的一个“相关数”.(Ⅰ)当n=3时,判断5和6是否为集合A6的“相关数”,说明理由;(Ⅱ)若m为集合A2n的“相关数”,证明:m﹣n﹣3≥0;(Ⅲ)给定正整数n.求集合A2n的“相关数”m的最小值.【解答】解:(Ⅰ)当n=3时,A6={1,2,3,4,5,6},4n+1=13,①对于A6的含有5个元素的子集{2,3,4,5,6},因为2+3+4+5>13,所以5不是集合A6的“相关数”;②A6的含有6个元素的子集只有{1,2,3,4,5,6},因为1+3+4+5=13,所以6是集合A6的“相关数”.(Ⅱ)考察集合A2n的含有n+2个元素的子集B={n﹣1,n,n+1,…,2n},B中任意4个元素之和一定不小于(n﹣1)+n+(n+1)+(n+2)=4n+2.所以n+2一定不是集合A2n的“相关数”;所以当m≤n+2时,m一定不是集合A2n的“相关数”,因此若m为集合A2n的“相关数”,必有m≥n+3,即若m为集合A 2n的“相关数”,必有m﹣n﹣3≥0;(Ⅲ)由(Ⅱ)得m≥n+3,先将集合A2n的元素分成如下n组:C i=(i,2n+1﹣i),(1≤n),对A2n的任意一个含有n+3个元素的子集p,必有三组,,同属于集合P,再将集合A2n的元素剔除n和2n后,分成如下n﹣1组:D j=(j,2n﹣j),(1≤j≤n﹣1),对于A 2n的任意一个含有n+3个元素的子集P,必有一组属于集合P,这一组与上述三组,,中至少一组无相同元素,不妨设与无相同元素.此时这4个元素之和为[i1+(2n+1﹣i1)+(2n﹣j4)]=4n+1,所以集合A2n的“相关数”m的最小值为n+3.赠送初中数学几何模型【模型一】“一线三等角”模型:图形特征:运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
北京市西城区2017 — 2018学年度第一学期期末试卷高三数学(文科) 2018.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项. 1、若集合{|03}A x x =<<,{|12}B x x =-<<,则AB =(A ){|13}x x -<< (B ){|10}x x -<< (C ){|02}x x << (D ){|23}x x << 2、在复平面内,复数2i1i-对应的点的坐标为( ) (A )(1,1) (B )(1,1)- (C )(1,1)-- (D )(1,1)- 3、下列函数中,在区间(0,)+∞上单调递增的是( )(A )1y x =-+(B )2(1)y x =-(C )sin y x =(D )12y x = 4、执行如图所示的程序框图,输出的S 值为( ) (A )2 (B )6 (C )30 (D )2705、若122log log 2a b +=,则有( )(A )2a b = (B )2b a = (C )4a b = (D )4b a =6、一个棱长为2的正方体被一个平面截去一部分后,剩余几何体的三视图如图所示,则截去..的几何体是( ) (A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱7、函数()sin()f x x ϕ=+的图象记为曲线C .则“(0)(π)f f =”是“曲线C 关于直线π2x =对称”的( ) (A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件8、已知A ,B 是函数2xy =的图象上的相异两点.若点A ,B 到直线12y =的距离相等,则点A ,B 的横坐标之和的取值范围是(A )(,1)-∞- (B )(,2)-∞- (C )(,3)-∞- (D )(,4)-∞-第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9、若函数()()f x x x b =+是偶函数,则实数b =____.10、已知双曲线22221x y a b-=的一个焦点是(2,0)F ,其渐近线方程为y =,该双曲线的方程是____.11、向量,a b 在正方形格中的位置如图所示.如果小正方形格的边长为1,那么⋅=a b ____. 12、在△ABC 中,3a =,3C 2π∠=,△ABC,则b =____;c =____.13、已知点(,)M x y 的坐标满足条件10,10,10.x x y x y -⎧⎪+-⎨⎪-+⎩≤≥≥设O 为原点,则OM 的最小值是____.14、已知函数2,2,()1,3.x x x c f x c x x ⎧+-⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值域是1[,2]4-,则实数c的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15、(本小题满分13分)已知函数2π()2sin cos(2)3f x x x =-+.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求证:当π[0,]2x ∈时,1()2f x -≥.16、(本小题满分13分)已知数列{}n a 是公比为13的等比数列,且26a +是1a 和3a 的等差中项.(Ⅰ)求{}n a 的通项公式; (Ⅱ)设数列{}n a 的前n 项之积为n T ,求n T 的最大值.某市高中全体学生参加某项测评,按得分评为A ,B 两类(评定标准见表1).根据男女学生比例,使用分层抽样的方法随机抽取了10000名学生的得分数据,其中等级为1A 的学生中有40%是男生,等级为2A 的学生中有一半是女生.等级为1A 和2A 的学生统称为A 类学生,等级为1B 和2B 的学生统称为B 类学生.整理这10000名学生的得分数据,得到如图2所示的频率分布直方图.表1 图2(Ⅰ)已知该市高中学生共20万人,试估计在该项测评中被评为A 类学生的人数; (Ⅱ)某5人得分分别为45,50,55,75,85.从这5人中随机选取2人组成甲组,另外3人组成乙组,求“甲、乙两组各有1名B 类学生”的概率;(Ⅲ)在这10000名学生中,男生占总数的比例为51%,B 类女生占女生总数的比例为1k , B 类男生占男生总数的比例为2k .判断1k 与2k 的大小.(只需写出结论)如图,在三棱柱111ABC A B C -中,AB ⊥平面11AA C C ,1AA AC =.过1AA 的平面交11B C 于点E ,交BC 于点F . (Ⅰ)求证:1A C ⊥平面1ABC ; (Ⅱ)求证:1//A A EF ;(Ⅲ)记四棱锥11B AA EF -的体积为1V ,三棱柱111ABC A B C -的体积为V .若116V V =,求BFBC 的值.已知椭圆2222:1(0)x y C a b a b+=>>过(2,0)A ,(0,1)B 两点.(Ⅰ)求椭圆C 的方程及离心率;(Ⅱ)设点Q 在椭圆C 上.试问直线40x y +-=上是否存在点P ,使得四边形PAQB 是平行四边形?若存在,求出点P 的坐标;若不存在,说明理由.已知函数2()ln 2f x x x x =-.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)求证:存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -;(Ⅲ)比较(1.01)f 与 2.01-的大小,并加以证明.北京市西城区2017 — 2018学年度第一学期期末高三数学(文科)参考答案及评分标准2018.1一、选择题:本大题共8小题,每小题5分,共40分.1.A 2.B 3.D 4.C 5.C 6.B 7.C 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.0 10.2213y x -= 11.412.1 13 14.1[,)4-+∞;1[,1]2注:第12,14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)因为2π()2sin cos(2)3f x x x =-+ππ1cos2(cos2cossin 2sin )33x x x =--⋅-⋅ [ 4分]32cos 212x x =-+[ 5分]π)13x =-+, [ 7分]所以()f x 的最小正周期 2ππ2T ==. [ 8分](Ⅱ)因为 π2x ≤≤0,所以 ππ2π2333x --≤≤. [10分]所以 ππsin(2)sin()33x --=≥ [12分]所以 1()2f x -≥. [13分]16.(本小题满分13分)解:(Ⅰ)因为 26a +是1a 和3a 的等差中项,所以 2132(6)a a a +=+. [ 2分]因为数列{}n a 是公比为13的等比数列,所以 1112(6)39a aa +=+, [ 4分]解得 127a =. [ 6分]所以 1411()3n n n a a q --=⋅=. [ 8分](Ⅱ)令1n a ≥,即41()13n -≥,得4n ≤, [10分]故正项数列{}n a 的前3项大于1,第4项等于1,以后各项均小于1. [11分] 所以 当3n =,或4n =时,n T 取得最大值, [12分] n T 的最大值为 34123729T T a a a ==⋅⋅=. [13分]17.(本小题满分13分)解:(Ⅰ)依题意得,样本中B 类学生所占比例为(0.020.04)1060%+⨯=, [ 2分]所以A 类学生所占比例为40%. [ 3分] 因为全市高中学生共20万人,所以在该项测评中被评为A 类学生的人数约为8万人. [ 4分] (Ⅱ)由表1得,在5人(记为,,,,a b c d e )中,B 类学生有2人(不妨设为,b d ). 将他们按要求分成两组,分组的方法数为10种. [ 6分]依次为:(,),(,),(,),(,),(,),(,),(,),(,),ab cde ac bde ad bce ae bcd bc ade bd ace be acd cd abe(,),(,)ce abd de abc . [ 8分] 所以“甲、乙两组各有一名B 类学生”的概率为63105=. [10分] (Ⅲ)12k k <. [13分] 18.(本小题满分14分)解:(Ⅰ) 因为 AB ⊥平面11AA C C ,所以 1A C AB ⊥. [ 2分]在三棱柱111ABC A B C -中,因为 1AA AC =,所以 四边形11AA C C 为菱形, 所以 11A C AC ⊥. [ 3分]所以 1A C ⊥平面1ABC . [ 5分] (Ⅱ)在 三棱柱111ABC A B C -中,因为 11//A A B B ,1A A ⊄平面11BB C C , [ 6分] 所以 1//A A 平面11BB C C . [ 8分] 因为 平面1AA EF平面11BB C C EF =,所以 1//A A EF . [10分] (Ⅲ)记三棱锥1B ABF -的体积为2V ,三棱柱11ABF A B E -的体积为3V .因为三棱锥1B ABF -与三棱柱11ABF A B E -同底等高, 所以 2313V V =, [11分] 所以 1233213V V V V =-=. 因为116V V =, 所以 3131624V V =⨯=. [12分]因为 三棱柱11ABF A B E -与三棱柱111ABC A B C -等高,所以 △ABF 与△ABC 的面积之比为14, [13分]所以14BF BC =. [14分]19.(本小题满分14分)解:(Ⅰ)由题意得,2a =,1b =. [ 2分]所以椭圆C 的方程为2214x y +=. [ 3分]设椭圆C 的半焦距为c ,则 c = [ 4分]所以椭圆C 的离心率c e a ==. [ 5分](Ⅱ)由已知,设(,4)P t t -,00(,)Q x y . [ 6分]若PAQB 是平行四边形,则 PA PB PQ +=, [ 8分] 所以 00(2,4)(,3)(,4)t t t t x t y t --+--=--+,整理得 002, 3x t y t =-=-. [10分] 将上式代入 220044x y +=,得 22(2)4(3)4t t -+-=, [11分] 整理得 2528360t t -+=, 解得 185t =,或2t =. [13分] 此时 182(,)55P ,或(2,2)P .经检验,符合四边形PAQB 是平行四边形, 所以存在 182(,)55P ,或(2,2)P 满足题意. [14分]20.(本小题满分13分)解:(Ⅰ)函数2()ln 2f x x x x =-的定义域是(0,)+∞,导函数为()2ln 2f x x x x '=+-. [ 1分] 所以(1)1f '=-, 又(1)2f =-,所以曲线()y f x =在点(1,(1))f 处的切线方程为1y x =--. [ 3分] (Ⅱ)由已知(2)(1)4ln 22f f -=-. [ 4分]所以只需证明方程 2ln 24ln 22x x x +-=-在区间(1,2)有唯一解.即方程 2ln 4ln 20x x x +-=在区间(1,2)有唯一解. [ 5分]设函数 ()2ln 4ln 2g x x x x =+-, [ 6分]则 ()2ln 3g x x '=+.当 (1,2)x ∈时,()0g x '>,故()g x 在区间(1,2)单调递增. [ 7分] 又 (1)14ln 20g =-<,(2)20g =>,所以 存在唯一的0(1,2)x ∈,使得0()0g x =. [ 8分] 综上,存在唯一的0(1,2)x ∈,使得曲线()y f x =在点00(,())x f x 处的切线的斜率为(2)(1)f f -. [ 9分](Ⅲ)(1.01) 2.01f >-.证明如下: [10分]首先证明:当1x >时,()1f x x >--.设 2()()(1)ln 1h x f x x x x x =---=-+, [11分] 则 ()2ln 1h x x x x '=+-.当 1x >时,10x ->,2ln 0x x >,所以 ()0h x '>,故()h x 在(1,)+∞单调递增, [12分] 所以 1x >时,有()(1)0h x h >=, 即当 1x >时,有()1f x x >--.所以 (1.01) 1.011 2.01f >--=-. [13分]。
北京市西城区2018年高三二模试卷数学(理科) 2018.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{0,1}A =,{1,0,3}B a =-+,且A B ⊆,则a 等于 (A )1(B )0(C )2-(D )3-2.已知i 是虚数单位,则复数23z i+2i 3i =+所对应的点落在 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3.在ABC ∆中,“0AB BC ⋅>”是“ABC ∆为钝角三角形”的 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分又不必要条件4.已知六棱锥P ABCDEF -的底面是正六边形,PA ⊥平面ABC .则下列结论不正确...的是 (A )//CD 平面PAF (B )DF ⊥平面PAF (C )//CF 平面PAB (D )CF ⊥平面PAD5.双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则双曲线离心率为(A(B(C )2(D )3 6.函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=(A )10 (B )8(C )87(D )477.已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++=的整数k(A )有3个 (B )有2个 (C )有1个(D )不存在8.设点(1,0)A ,(2,1)B ,如果直线1ax by +=与线段AB 有一个公共点,那么22a b +(A )最小值为15 (B(C )最大值为15(D)最大值为5第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.在ABC ∆中,若2B A =,:a b =A =_____. 10.在521()x x+的展开式中,2x 的系数是_____. 11.如图,AB 是圆O 的直径,P 在AB 的延长线上,PD切圆O 于点C .已知圆O2OP =,则PC =______;ACD ∠的大小为______.12.在极坐标系中,点(2,)2A π关于直线:cos 1l ρθ=的对称点的一个极坐标为_____.13.定义某种运算⊗,a b ⊗的运算原理如右图所示.设()(0)(2)f x x x x =⊗-⊗.则(2)f =______;()f x 在区间[2,2]-上的最小值为______.14.数列{}n a 满足11a =,11n n n a a n λ+-=+,其中λ∈R , ⋅⋅⋅=,2,1n .①当0λ=时,20a =_____;②若存在正整数m ,当n m >时总有0n a <,则λ的取值范围是_____.三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数cos 2()sin()4x f x x π=+.(Ⅰ)求函数()f x 的定义域; (Ⅱ)若4()3f x =,求s i n 2x 的值.16.(本小题满分13分)如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使BD =B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ; (Ⅱ)求二面角A B D O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N点的位置,使得CN =.17.(本小题满分13分)甲班有2名男乒乓球选手和3名女乒乓球选手,乙班有3名男乒乓球选手和1名女乒乓球选手,学校计划从甲乙两班各选2名选手参加体育交流活动.(Ⅰ)求选出的4名选手均为男选手的概率.(Ⅱ)记X 为选出的4名选手中女选手的人数,求X 的分布列和期望.M18.(本小题满分14分)已知函数()(1)e (0)xa f x x x=->,其中e 为自然对数的底数.(Ⅰ)当2a =时,求曲线()y f x =在(1,(1))f 处的切线与坐标轴围成的面积;(Ⅱ)若函数()f x 存在一个极大值点和一个极小值点,且极大值与极小值的积为5e ,求a 的值.19.(本小题满分14分)已知椭圆2222:1x y M a b +=(0)a b >>角形周长为246+.(Ⅰ)求椭圆M 的方程;(Ⅱ)设直线l 与椭圆M 交于,A B 两点,且以AB 为直径的圆过椭圆的右顶点C , 求ABC ∆面积的最大值.20.(本小题满分13分)若,,21A A …m A 为集合,2,1{=A …,n}(n ≥2且)n ∈*N 的子集,且满足两个条件:②U U 21A A …A A m =U ;②对任意的A y x ⊆},{,至少存在一个,3,2,1{∈i …,m},使}{},{x y x A i =⋂或}{y . 则称集合组,,21A A …m A 具有性质P . 如图,作n 行m 列数表,定义数表中的第k 行第l 列的数为⎩⎨⎧∉∈=)(0)(1l l kl A k A k a .(Ⅰ)当4n =时,判断下列两个集合组是否具有性质P ,如果是请画出所对应的表格,如果不是请说明理由;集合组1:123{1,3},{2,3},{4}A A A ===; 集合组2:123{2,3,4},{2,3},{1,4}A A A ===.(Ⅱ)当7n =时,若集合组123,,A A A 具有性质P ,请先画出所对应的7行3列的一个数表,再依此表格分别写出集合123,,A A A ;(Ⅲ)当100n =时,集合组12,,,t A A A 是具有性质P 且所含集合个数最小的集合组,求t 的值及++21A A …+i A 的最小值.(其中||i A 表示集合i A 所含元素的个数)。
北京市西城区2017-2018学年度第二学期期末试卷高二数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则( )A. B. C. D.【答案】B【解析】分析:由题意,求得,利用集合的交集的运算,即可得到答案.详解:由题意可得,,所以,故选B.点睛:本题主要考查了集合的运算,其中正确求解集合和准确把握集合的交集运算是解答的关键,着重考查了推理与运算能力.2. 下列函数中,定义域为的单调递减函数是( )A. B. C. D.【答案】C【解析】分析:根据基本初等函数的性质,逐一判定即可得到答案.详解:由题意,函数在上不是单调函数,所以A不正确;函数在是单调递减函数,在上不是单调函数,所以B不正确;函数在上是单调递减函数,所以C正确;函数的定义域为,所以D不正确,综合可知,只有函数在上是单调递减函数,故选C.点睛:本题主要考查了函数的单调性的判定,其中熟记基本初等函数的性质是解答的关键,着重考查了推理与论证能力,属于基础题.3. 在复平面内,复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】分析:利用复数的运算法则,求解,再根据复数的表示,即可得到答案.详解:由题意,复数,所以在复平面内对应点的坐标为,所以复数对应的点位于第三象限,故选C.点睛:本题主要考查了复数的运算与复数的表示,其中熟记复数的四则运算法则和复数的表示是解答的关键,着重考查了推理与运算能力.4. 如果,那么下列不等式一定成立的是( )A. B. C. D.【答案】B【解析】分析:根据幂函数的单调性,即可判定得到答案.详解:当时,此时,但,且,所以A、C不正确;由函数为单调递增函数,当时,,所以D不正确,由函数是上的单调递增函数,所以当时,成立,所以B是正确的,故选B.点睛:本题主要考查了不等式的比较大小问题,其中熟记幂函数的单调及其应用是解答的关键,着重考查了推理与论证能力.5. 执行如图所示的程序框图,若输入的,则输出的属于( )A. B. C. D.【答案】D【解析】分析:根据题意,执行循环结构的程序框图,根据二次函数的性质,求解函数的值域,即可得到结果.详解:由题意,根据给定的程序框图可知:输入,不满足判断条件,计算,满足条件,计算的值域,输出,故选D.点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.6. 已知函数的定义域为,则“为奇函数”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】试题分析:因函数的定义域是,故,是充分条件;反之,若,则函数不一定是奇函数,不是必要条件,如函数,应选A.考点:充分必要条件.7. 若,则( )A. B. C. D.【答案】C【解析】分析:根据对数及其对数的运算的性质,利用作差比较法,即可得到的大小关系.详解:由题意,,则,所以,又由,所以,所以,故选C.点睛:本题主要考查了对数式的比较大小问题,其中熟记对数的运算及对数函数的图象与性质,合理采用作差比较法是解答的关键,着重考查了推理与运算能力,以及转化思想方法的应用.8. 某电影院共有个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、下午在这个座位上坐的是同一所学校的学生,那么的可能取值有( )A. 12个B. 11个C. 10个D. 前三个答案都不对【答案】A【解析】分析:由题意要保证三所学校的学生都看一场电影,则,依次验证即可得到答案.详解:由题意要保证三所学校的学生都看一场电影,则,当时,则丙中学的学生2019人中分上、下场至少有12人在同一座位上;当时,则丙中学的学生2019人中分上、下场至少有11人在同一座位上;当时,则丙中学的学生2019人中分上、下场至少有1人在同一座位上;当时,则甲乙丙中学的学生可以没有人在同一座位上;所以当有取法,即有12个取值,故选A.点睛:本题主要考查了适应应用问题,其中解答中正确理解题意,合理选择方法是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力,试题属于中档试题.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9. 已知命题,则__________.【答案】.【解析】分析:根据全称命题和存在性命题的关系,即可作出命题的否定.详解:由题意,根据全称命题与存在性命题的关系可知:命题:“”的否定:“”.点睛:本题主要考查了命题的否定,其中熟记全称命题存在性命题的关系是正确作出改写的关键,着重考查了推理与论证能力.10. 曲线在处切线的斜率为__________.【答案】.【解析】因为,且,即函数在处的切线的斜率为.11. 当时,函数的最小值为__________.【答案】3.【解析】分析:由题意,函数化为,利用基本不等式的求解,即可得到答案.详解:由题意,函数,当且仅当,即取得等号,所以函数的最小值为.点睛:本题主要考查了利用基本不等式求最小值,其中解答中熟记基本不等式的使用条件和合理对函数作出化简,构成基本不等式的使用条件是解答的关键,利用着重考查了转化思想方法,以及推理与运算能力.12. 已知实数满足,则__________.【答案】4.【解析】分析:由题意得出,再利用对数的运算公式化简,即可得到结果.详解:由题意满足,则,则.点睛:本题主要考查了实数指数幂的运算和对数的运算的综合应用,其中熟记实数指数幂的运算公式和对数的运算公式的合理运用是解答的关键,着重考查了推理与运算能力.13. 若函数则__________;使得方程有且仅有两解的实数的取值范围为__________.【答案】(1). 0.(2). .【解析】分析:要使得方程有且仅有两解,则只需使得和的图象有两个不同的交点,作出函数的图象,结合图象,即可求解.详解:由题意,函数,则,要使得方程有且仅有两解,则只需使得和的图象有两个不同的交点,作出函数的图象,如图所示,结合图象可知,要使的方程有且仅有两解,只需,即实数的取值范围是.点睛:本题考查了分段的求值和分段函数的图象的应用,其中解答中把使得方程有且仅有两解,则只需使得和的图象有两个不同的交点,作出函数的图象,是解答的关键,着重考查了数形结合思想和转化思想方法的应用.14. 某个产品有若千零部件构成,加工时需要经过6道工序,分别记为.其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序必须要在工序完成后才能开工,则称为的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下:现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).【答案】8.【解析】分析:由题意,根据题意两台性能相同的生产机器同时加工该产品,确定好加工顺序,即可得到答案.详解:由题意,可确定如图所示的加工顺序,如图所示,可得用两台性能相同的生产机器同时加工该产品,要完成该产品的最短加工时间为8小时.点睛:本题主要考查了实际应用问题,其中解答中正确理解题意,分析工艺的流程,确定好加工的顺序,得出加工顺序的图形是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数,且.(Ⅰ)求的值.(Ⅱ)写出能够说明“任给,”是假命题的一组的值.【答案】(1)-1.(2) 答案不唯一,如.【解析】分析:(Ⅰ)解:由题意,解得,确定函数的解析式,即可求解;(Ⅱ)根据对数函数的图象与性质和一次函数的图象与性质,即可得出其中一组解.详解:(Ⅰ)解:由题意,所以,即.则.(Ⅱ)解:答案不唯一,如.点睛:本题主要考查了对数函数的图象与性质以及对数的基本运算,其中熟记对数的运算公式和对数函数的图象与性质是解答的关键,着重考查了推理与运算能力.16. 已知函数,其中.(Ⅰ)若,解不等式;(Ⅱ)记不等式的解集为,若,求的取值范围.【答案】(1) ,或.(2) .【解析】分析:(Ⅰ)解:由题意,当时,得不等式,根据一元二次不等式的解法,即可求得不等式的解集;(Ⅱ) 由不等式的解集为,且,得,即,分类讨论,即可求解实数的取值范围.详解:(Ⅰ)解:由题意,得不等式,解得,或.所以不等式的解集为,或.(Ⅱ)解:因为不等式的解集为,且,所以,即当时,不等式不成立;当时,不等式等价于,解得.综上,的取值范围是.点睛:本题主要考查了一元二次不等式的解法以及一元二次函数的应用,其中熟记一元二次不等式的解法和一元二次函数的图像与性质是解答的关键,着重考查了推理与运算能力和转化思想方法的应用.17. 设,函数在区间上单调递增,在区间上单调递减.(Ⅰ)求满足的关系;(Ⅱ)求证:.【答案】(1) .(2)证明见解析.【解析】分析:(Ⅰ)求导,得,由题意可得,即可得到答案;(Ⅱ)解:由(Ⅰ),可得函数,求得,分类讨论得出函数的单调性,即可证得结论.详解:(Ⅰ)解:求导,得.因为函数在区间上单调递增,在区间上单调递减,所以.即(Ⅱ)解:由(Ⅰ),得,即.所以,.当时,得当时,,此时,函数在上单调递增,这与题意不符.当时,随着的变化,与的变化情况如下表:所以函数在,上单调递增,在上单调递减.因为函数在区间上点掉递增,在区间上单调递减,所以时符合题意.综上,.点睛:本题主要考查了导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,其中熟记导函数与原函数的关系,准确运算是解答此类问题的关键,同时注意转化思想方法和数形结合思想的应用.18. 现行的个税法修正案规定:个税免征额由原来的2000元提高到3500元,并给出了新的个人所得税税率表:例如某人的月工资收入为5000元,那么他应纳个人所得税为:(元).(Ⅰ)若甲的月工资收入为6000元,求甲应纳的个人收的税;(Ⅱ)设乙的月工资收入为元,应纳个人所得税为元,求关于的函数;(Ⅲ)若丙某月应纳的个人所得税为1000元,给出丙的月工资收入.(结论不要求证明)【答案】(1) (元).(2) .(3) 丙的月工资收入为11275元.【解析】分析:(Ⅰ)根据题意,利用表格中的要求,即可计算甲的月工资收入为6000元,其应纳的个人所得税;(Ⅱ)根据题意,借助表格总的要求,分别计算收入在不同的范围内的应用的函数解析式,最后利用分段函数表示应纳个人所得税与的函数关系式;(Ⅲ)由(2)中的函数的解析式,即可得到丙的月工资收入.详解:(Ⅰ)解:甲的月工资收入为6000元,其应纳的个人所得税为(元).(Ⅱ)解:当时,乙应纳个人所得税元.当时,乙应纳个人所得税元.当时,乙应纳个人所得税元.当时,乙应纳个人所得税元.所以(Ⅲ)丙的月工资收入为11275元.点睛:本题主要考查了函数的实际应用问题,其中解答中认真审题,正确理解题意,根据题设的要求,找出合适的等量关系,建立函数解析式是解答的挂念,着重考查了分析问题和解答问题的能力.19. 设函数,其中.(Ⅰ)当时,求函数的极值;(Ⅱ)当时,证明:函数不可能存在两个零点.【答案】(1) 存在极小值,不存在极大值.(2)证明见解析.【解析】分析:(Ⅰ)由题意得,因为,所以,进而得出函数的单调性,求解函数的极值;(Ⅱ)由方程,得,由,得,得出函数的单调性与极值,即可判定函数至多在区间存在一个零点,得出结论.详解:(Ⅰ)解:求导,得,因为,所以,所以当时,,函数为减函数;当时,,函数为增函数.故当时,存在极小值,不存在极大值.(Ⅱ)证明:解方程,得.由,得.随着的变化,与的变化情况如下表:所以函数在,上单调递增,在上单调递减.又因为,所以函数至多在区间存在一个零点;所以,当时函数不可能存在两个零点.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.20. 已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若函数在区间上单调递增,求实数的取值范围;(Ⅲ)设函数,其中.证明:的图象在图象的下方.【答案】(1) .(2) .(3)证明见解析.【解析】分析:(Ⅰ)求出函数的导数,计算和的值,点斜式求出切线方程即可.(Ⅱ)设,并求导.将问题转化为在区间上,恒成立,或者恒成立,通过特殊值,且,确定恒成立,通过参数分离,求得实数的取值范围;(Ⅲ)设,将问题转化为证明,利用函数的导数确定函数最小值在区间,并证明. 即的图象在图象的下方.详解:解:(Ⅰ)求导,得,又因为所以曲线在点处的切线方程为(Ⅱ)设函数,求导,得,因为函数在区间上为单调函数,所以在区间上,恒成立,或者恒成立,又因为,且,所以在区间,只能是恒成立,即恒成立.又因为函数在在区间上单调递减,,所以.(Ⅲ)证明:设.求导,得.设,则(其中).所以当时,(即)为增函数.又因为,所以,存在唯一的,使得且与在区间上的情况如下:所以,函数在上单调递减,在上单调递增,所以.又因为,,所以,所以,即的图象在图象的下方.点睛:本题考查了利用导数研究曲线在某点处的切线方程,函数的单调性与导数的关系,考查了恒成立问题的参数分离方法. 将的图象在图象的下方,通过构造新函数,转化恒成立是解题关键.。
北京市西城区2017届高三二模数学试题(文)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|11}A x x =∈-<<R ,{|(2)0}B x x x =∈⋅-<R ,那么A B =( ) (A ){|01}x x ∈<<R (B ){|02}x x ∈<<R (C ){|10}x x ∈-<<R(D ){|12}x x ∈-<<R2.设向量(2,1)=a ,(0,2)=-b .则与2+a b 垂直的向量可以是( ) (A )(3,2)(B )(3,2)-(C )(4,6)(D )(4,6)-3.下列函数中,值域为[0,1]的是( ) (A )2y x = (B )sin y x = (C )211y x =+ (D)y 4.若抛物线2y ax =的焦点到其准线的距离是2,则a =( ) (A )1±(B )2±(C )4±(D )8±5.设a ,0b ≠,则“a b >”是“11a b<”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件6.在平面直角坐标系中,不等式组,020,0y x y -+⎨⎪⎪⎩≤≥≥表示的平面区域的面积是( )(A)(B(C )2 (D)7.某四面体的三视图如图所示,该四面体的体积为( )(A )43 (B )2 (C )83(D )48.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是( )(A )(2,)+∞(B )(1,)+∞(C )1(,)2+∞(D )1(,)4+∞二、填空题:本大题共6小题,每小题5分,共30分.9.在复平面内,复数z 对应的点是(1,2)Z -,则复数z 的共轭复数z =____. 10.执行如图所示的程序框图,输出的S 值为____.11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a =1b =,则c = . 12.已知圆22:1O x y +=.圆O '与圆O 关于直线20x y +-=对称,则圆O '的方程是____.13.函数22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =____;方程1()2f x -=的解是____.14.某班开展一次智力竞赛活动,共a ,b ,c 三个问题,其中题a 满分是20分,题b ,c 满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a 与题b 的人数之和为29,答对题a 与题c 的人数之和为25,答对题b 与题c 的人数之和为20.则该班同学中只答对一道题的人数是____;该班的平均成绩是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数π()tan()4f x x =+.(Ⅰ)求()f x 的定义域;(Ⅱ)设β是锐角,且π()2sin()4f ββ=+,求β的值.某大学为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:(Ⅰ)在抽样的100人中,求对A 餐厅评分低于30的人数;(Ⅱ)从对B 餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.B 餐厅分数频数分布表设{}n a 是首项为1,公差为2的等差数列,{}n b 是首项为1,公比为q 的等比数列.记n n n c a b =+,1,2,3,n =.(Ⅰ)若{}n c 是等差数列,求q 的值;(Ⅱ)求数列{}n c 的前n 项和n S .18.(本小题满分14分)如图,在几何体ABCDEF 中,底面ABCD 为矩形,//EF CD ,CD EA ⊥,22CD EF ==,ED =M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(Ⅰ)求证:ED CD ⊥;(Ⅱ)求证://AD MN ;(Ⅲ)若AD ED ⊥,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC的值;若不能,说明理由.已知函数()ln 2af x x x =+-,其中a ∈R . (Ⅰ)给出a 的一个取值,使得曲线()y f x =存在斜率为0的切线,并说明理由; (Ⅱ)若()f x 存在极小值和极大值,证明:()f x 的极小值大于极大值.20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点. (Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.参考答案一、选择题 1.A2.A 3.D4.C5.D6.B7.A8.D二、填空题 9.12i +10.711.2 12.22(2)(2)1x y -+-=13.2-;114.4;42三、解答题15.解:(Ⅰ)由πππ42x k +≠+,得ππ4x k ≠+,k ∈Z . 所以 函数()f x 的定义域是π{|π,}4x x k k ≠+∈Z .(Ⅱ)依题意,得ππtan()2sin()44ββ+=+.所以πsin()π42sin()π4cos()4βββ+=++.① 因为β是锐角,所以ππ3π444β<+<,所以πsin()04β+>, ①式化简为π1cos()42β+=. 所以 ππ43β+=,所以π12β=.16.解:(Ⅰ)由A 餐厅分数的频率分布直方图,得对A 餐厅评分低于30的频率为(0.0030.0050.012)100.2++⨯=, 所以,对A 餐厅评分低于30的人数为1000.220⨯=. (Ⅱ)对B 餐厅评分在[0,10)范围内的有2人,设为12,M M ; 对B 餐厅评分在[10,20)范围内的有3人,设为123,,N N N . 从这5人中随机选出2人的选法为:12(,)M M ,11(,)M N ,12(,)M N ,13(,)M N ,21(,)M N ,22(,)M N ,23(,)M N ,12(,)N N ,13(,)N N ,23(,)N N ,共10种.其中,恰有1人评分在[0,10)范围内的选法为:11(,)M N ,12(,)M N ,13(,)M N ,21(,)M N ,22(,)M N ,23(,)M N ,共6种.故2人中恰有1人评分在[0,10)范围内的概率为63105P ==. (Ⅲ)从两个餐厅得分低于30分的人数所占的比例来看: 由(Ⅰ)得,抽样的100人中,A 餐厅评分低于30的人数为20,所以,A 餐厅得分低于30分的人数所占的比例为20%.B 餐厅评分低于30的人数为23510++=,所以,B 餐厅得分低于30分的人数所占的比例为10%. 所以会选择B 餐厅用餐.17.解:(Ⅰ)因为{}n a 是首项为1,公差为2的等差数列, 所以 21n a n =-.因为 {}n b 是首项为1,公比为q 的等比数列, 所以1n n b q-=.所以121n n n n c a b n q -=+=-+.因为 {}n c 是等差数列, 所以2132c c c =+,即 22(3)25q q +=++,解得 1q =.经检验,1q =时,2n c n =,所以{}n c 是等差数列. (Ⅱ)由(Ⅰ)知121(1,2,)n n c n qn -=-+=.所以121111111(21)nnnnnnk k n k k k k k k k k k S c a b k qn q --========+=-+=+∑∑∑∑∑∑.当1q =时,2n S n n =+.当1q ≠时,211n n q S n q -=+-.18.解:(Ⅰ)因为ABCD 为矩形,所以CD AD ⊥ 又因为CD EA ⊥,所以CD ⊥平面EAD .所以ED CD ⊥. (Ⅱ)因为ABCD 为矩形,所以//AD BC ,所以//AD 平面FBC . 又因为平面ADMN平面FBC MN =,所以//AD MN .(Ⅲ)平面ADMN 与平面BCF 可以垂直.证明如下: 连接DF .因为AD ED ⊥,AD CD ⊥, 所以AD ⊥平面CDEF .所以AD DM ⊥. 因为//AD MN ,所以DM MN ⊥.因为平面ADMN平面BCF MN =,若使平面ADMN ⊥平面BCF ,则DM ⊥平面BCF ,所以DM FC ⊥. 在梯形CDEF 中,因为//EF CD ,ED CD ⊥,22CD EF ==,ED = 所以2DF DC ==.所以若使DM FC ⊥能成立,则M 为FC 的中点.所以12FM FC =.19.解:(Ⅰ)函数()f x 的定义域是{|0D x x =>,且2}x ≠,且21()(2)a f x xx '=-+-.当1a =时,曲线()y f x =存在斜率为0的切线.证明如下: 曲线()y f x =存在斜率为0的切线⇔方程()0f x '=存在D 上的解. 令2110(2)xx -+=-,整理得2540x x -+=,解得1x =,或4x =. 所以当1a =时,曲线()y f x =存在斜率为0的切线. (Ⅱ)由(Ⅰ)得 21()(2)a f x x x '=-+-. ①当0a ≤时,()0f x '>恒成立,函数()f x 在区间(0,2)和(2,)+∞上单调递增,无极值,不合题意. ②当0a >时,令()0f x '=,整理得2(4)40x a x -++=. 由2[(4)]160a ∆=-+->,所以,上述方程必有两个不相等的实数解1x ,2x ,不妨设12x x <. 由121244,4,x x a x x +=+>⎧⎨=⎩得1202x x <<<.()f x ',()f x 的变化情况如下表:所以,()f x 存在极大值1()f x ,极小值2()f x . 2121212121()()(ln )(ln )()(ln ln )2222a a a af x f x x x x x x x x x -=+-+=-+-----.因为1202x x <<<,且0a >,所以21022a ax x ->--,21ln ln 0x x ->, 所以 21()()f x f x >.所以()f x 的极小值大于极大值.20.解:(Ⅰ)设椭圆2222:1(0)x y C a b a b +=>>的半焦距为c .因为椭圆C ,所以2222222112c a b b a a a -==-=, 即 222a b =. 由22222,211,a b ab ⎧=⎪⎨+=⎪⎩ 解得 224,2.a b ⎧=⎪⎨=⎪⎩ 所以椭圆C 的方程为22142xy +=. (Ⅱ)将y m =+代入22142x y+=, 消去y 整理得2220x m +-=. 令2224(2)0m m∆=-->,解得22m -<<.设1122(,),(,)A x yB x y.则12x x +=,2122x x m =-.所以AB=点P 到直线0x=的距离为d ==.所以PAB △的面积12S AB d =⋅||m == 当且仅当m =S 所以PAB △(Ⅲ)||||PM PN=.证明如下:设直线PA,PB的斜率分别是1k,2k,则12k k+=.由(Ⅱ)得1221(1)((1)(y x y x-+-12211)(1)(m x x m x=+-++--1212(2)()1)x m x x m+-+--22)(2)()1)m m m-+---0=,所以直线PA,PB的倾斜角互补.所以12∠=∠,所以PMN PNM∠=∠.所以||||PM PN=.。
2018北京市东城区高三综合练习(二)数 学(文)本试卷共 4 页,共 150 分。
考试时长 120 分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分{选择题共 40 分)一、选择题共 8小题,每小题5分,共 40 分。
在每小题列出的四个选项中,选出符合题目要 求的-项。
(1)若集合U=R,集合 A= {xl+1<x<0} ,B= {xlx-4≤0 } ,则C U (A∩B)= A.{xlx≤一1 或 x>4} B.{xlx≤-1 或 x<4} C.{xlX ≥-1} D.{xIx>4}(2) 某校高一年级有 400 名学生,高二年级有 360 名学生,现用分层抽样的方法在这 760 名学生中抽取一个样本.已知在高一年级中抽取了 60 名学生,则在高二年级中应抽取的学 生人数为 A.66 B.54 C.40 D.36(3)执行如图所示的程序框图,若输入的x 值为 9 ,则输出的y 值为 A.0 B.1 C.2 D.4(4)若 x 2<log 2(x 十1),则x 的取值范围是 A. (0,1 B. (1,+∞) C. (-1,0) D. (0 ,+∞〕(5) 已知圆 X 2+ y 2-4x +α=0 截直线X-√3y 所得弦的长度为2√3 ,则实数a 的值为 A. -2 B.0 C.2 D.6(6)设 a ,b ,c ∈R ,则"a+b>c" 是"a>c 且 b>c" 的 A.充分而不必要条件 B. 必要而不充分条件 C.充分必要条件D. 既不充分也不必要条件(7) 已知 m 是平面α的一条斜线,直线L 过平面α内一点A ,那么下列选项中能成立的是 A.L a ,且L ⊥m B.L ⊥α ,且L ⊥m C. L ⊥a ,且L ∥m D.L a ,且L ∥m (8)已知函数f ①当x ∈(-4 ,-3) 时 ,f(x)≥0; ② f(x) 在区间 (0 ,1)上单调递增; ③ f(x) 在区间(1, 3) 上有极大值; ④存在 M>O ,使得对任意 x ∈R ,都有I f(x) I ≤M. 其中真命题的序号是A.①②B.②③C.②④D. ①④ 第二部分(非选择题共 110 分)二、填空题共 6小题,每小题 5 分,共 30 分。
2020年北京市西城区高考数学二模试卷一、选择题(共10小题).1. 设全集U=R,集合A={x|x<2},B={x|x<1},则集合(U A)∪B=()A. (﹣∞,2)B. [2,+∞)C. (1,2)D. (﹣∞,1)∪[2,+∞)【参考答案】D【试题解析】先求出U A,再求(U A)∪B得解【试题解答】U=R,A={x|x<2},B={x|x<1},∴U A={x|x≥2},(U A)∪B=(﹣∞,1)∪[2,+∞).故选:D本题主要考查集合的补集和并集运算,意在考查学生对这些知识的理解掌握水平.2. 设复数z=1+i,则z2=()A. ﹣2iB. 2iC. 2﹣2iD. 2+2i 【参考答案】A【试题解析】由z求得z,再利用复数的乘方运算求解即可.【试题解答】∵z=1+i,∴2z=(1﹣i)22=+-12i i=﹣2i.故选:A.本题主要考查共轭复数的定义,考查了复数出乘方运算,属于基础题.3. 焦点在x轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是()A. x2=4yB. y2=4xC. x2=8yD. y2=8x【参考答案】D 【试题解析】根据题意,设抛物线的标准方程为22(0)y px p =>,结合抛物线的几何性质可得p 的值,代入抛物线的标准方程即可得答案.【试题解答】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.本题考查抛物线标准方程的求解,属于基础题 4. 在锐角ABC ∆中,若2a =,3b =,π6A =,则cosB =( ) A.34B.4C.4D.4【参考答案】C 【试题解析】由题意可用正弦定理先求出sin B ,再由三角函数中的平方关系及B 角的范围,求出cos B ,进而得到答案. 【试题解答】在锐角ABC ∆中,若2a =,3b =,6A π=,∴由正弦定理sin sin a b A B =,可得13sin 32sin 24b A B a ⨯⋅===,∴由B为锐角,可得cos B = 故选:C本题主要考查正弦定理及三角函数中平方关系的应用,考查理解辨析能力与运算求解能力,属于基础题.5. 函数f (x )=x 1x-是( ) A. 奇函数,且值域为(0,+∞) B. 奇函数,且值域为RC. 偶函数,且值域为(0,+∞)D. 偶函数,且值域为R 【参考答案】B 【试题解析】由奇偶性定义,求出函数f (x )为奇函数,再求出函数的导数,分析其单调性可得在区间(﹣∞,0)和(0,+∞)上都是增函数,且f (1)=f (﹣1)=0;作出函数的草图,分析其值域,即可得答案.【试题解答】根据题意,函数f (x )=x 1x-,其定义域为{x |x ≠0},有f (﹣x )=(﹣x )﹣(1x -)=﹣(x 1x-)=﹣f (x ),即函数f (x )为奇函数, 其导数f ′(x )=121x+,在区间(﹣∞,0)和(0,+∞)上都是增函数,且f (1)=f (﹣1)=0;其图象大致如图:其值域为R ; 故选:B.本题考查函数奇偶性的判断,值域的求解,属于基础题 6. 圆x 2+y 2+4x ﹣2y +1=0截x 轴所得弦的长度等于( )A 2B. C. D. 4【参考答案】B 【试题解析】首先令y =0,整理得两根和与两根积,进一步求出弦长. 【试题解答】令y =0,可得x 2+4x +1=0, 所以124x x +=-,121=x x ,所以12|AB x x =-==故选:B本题考查的是圆中弦长的求法,较简单. 7. 设,,a b c 为非零实数,且a b c >>,则( ) A. a b b c ->- B.111a b c<< C. 2a b c +> D. 以上三个选项都不对【参考答案】C 【试题解析】直接利用不等式的性质,结合特例,利用排除法,即可求解. 【试题解答】设,,a b c 为非零实数,且a b c >>,所以对于选项A :当3,2,1a b c ===时,1a b b c -=-=,故错误. 对于选项B :当0,1,2a bc 时,1a无意义,故错误. 对于选项C :由于,a c b c >>,所以2a b c +>,故正确. 对于选项D :由于C 正确,所以选项D 错误. 故选:C.本题主要考查了不等式的基本性质,其中解答中不等式的基本性质,以及合理利用特例,结合排除法求解是解答的关键,着重考查了推理与论证能力.8. 设向量,a b →→满足1a b →→==,12a b →→⋅=,则()a x b x R →→+∈的最小值为( )A.B.C. 1D.【参考答案】B 【试题解析】两边平方,得出2a xb →→+关于x 的二次函数,从而得出最小值.【试题解答】解:222222132124a x b a x a b x b x x x →→→→→→⎛⎫+=+⋅+=++=++ ⎪⎝⎭ ∴当12x =-时,a x b →→+2=. 故选:B.本题考查向量的模的求解方法,利用二次函数求最值,考查运算能力,是中档题.9. 设{}n a 为等比数列,则“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的( )A. 充分而不必要条件B. 必要而不充分条件 C 充分必要条件 D. 既不充分也不必要条件【参考答案】C 【试题解析】对于任意的*2,m m m N a a +∈> ,即()210m a q >﹣.可得:2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈,解出即可判断出结论.【试题解答】解:对于任意的*2,m m m N a a +∈>,即()210m a q >﹣. ∴2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈, ∴01m a q ⎧⎨⎩>>,或001m a q ⎧⎨⎩<<<. ∴“{}n a 为递增数列”,反之也成立.∴“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的充要条件.故选:C.本题考查等比数列的单调性,充分必要条件,是基础题.10. 佩香囊是端午节传统习俗之一,香囊内通常填充一些中草药,有清香、驱虫、开窍的功效.因地方习俗的差异,香囊常用丝布做成各种不同的形状,形形色色,玲珑夺目.图1的ABCD 由六个正三角形构成,将它沿虚线折起来,可得图2所示的六面体形状的香囊,那么在图2这个六面体中,棱AB 与CD 所在直线的位置关系为( )A. 平行B. 相交C. 异面且垂直D. 异面且不垂直【参考答案】B 【试题解析】可将平面展开图还原为直观图,可得两个三棱锥拼接的六面体,它们共一个底面,即可判断AB ,CD 的位置关系.【试题解答】将平面展开图还原为直观图,可得两个三棱锥拼接的六面体,它们共一个底面,且,B C 两点重合,所以AB 与CD 相交, 故选:B本题考查平面展开图与其直观图的关系,考查空间想象能力,属于基础题.二、填空题:本大题共5小题,每小题5分,共25分.11. 在(1+5x )6的展开式中,含x 的项系数为_____.【参考答案】30. 【试题解析】先写出二项式的展开式的通项,要求含x 的项系数,只要使得展开式中x 的指数是1,求得r ,代入数值即可求出含x 项的系数.【试题解答】展开式的通项公式为: ()6166155rr r r rr r T C x C x -+=⋅⋅=⋅⋅,令x 的指数为1,即r =1; ∴含x 的项系数为:16530C =; 故答案为:30.本题考查二项式中具体项的系数求解问题,属于基础题12. 在等差数列{a n }中,若a 1+a 2=16,a 5=1,则a 1=_____;使得数列{a n }前n 项的和S n 取到最大值的n =_____.【参考答案】 (1). 9 (2). 5. 【试题解析】设等差数列{a n }的公差为d ,由a 1+a 2=16,a 5=1,可得2a 1+d =16,a 1+4d =1,解得:a 1,d ,可得a n ,令a n ≥0,解得n 即可得出.【试题解答】解:设等差数列{a n }的公差为d , ∵a 1+a 2=16,a 5=1, ∴2a 1+d =16,a 1+4d =1, 解得:a 1=9,d =﹣2. ∴a n =9﹣2(n ﹣1)=11﹣2n . 令a n =11﹣2n ≥0, 解得n 112≤=512+. ∴使得数列{a n }前n 项的和S n 取到最大值的n =5. 故答案为:9;5.本题考查等差数列的通项公式,考查等差数列前n 项的和的最值,考查学生的计算能力,是中档题.13. 某几何体的三视图如图所示,则该几何体的表面积为_____.【参考答案】4+45. 【试题解析】首先把三视图转换为直观图,进一步求出几何体的表面积. 【试题解答】根据几何体的三视图转换为直观图为, 该几何体为底面为边长为2,高为2的正四棱锥体. 如图所示:所以212242212S =⨯+⨯⨯+=5故答案为:5本题考查了利用三视图求几何体的表面积,考查了空间想象能力和空间感,属于基础题.14. 能说明“若()20m n +≠,则方程2212x ym n +=+表示的曲线为椭圆或双曲线”是错误的一组,m n 的值是_____.【参考答案】4,2m n ==(答案不唯一). 【试题解析】由题意可得满足20m n =+>或者0,20m n <+<即可,取满足上述条件的,m n 的值即可(答案不唯一).【试题解答】若方程222x y m n +=+1表示的曲线为椭圆或双曲线是错误的,则20m n =+>,或者0,20m n <+<,则可取4,2m n ==(答案不唯一). 故答案为:4,2m n ==(答案不唯一).本题主要考查了椭圆与双曲线的标准方程,属于基础题.15. 已知函数f (x )的定义域为R ,满足f (x +2)=2f (x ),且当x ∈(0,2]时,f (x )=2x ﹣3.有以下三个结论: ①f (-1)12=-; ②当a ∈(14,12]时,方程f (x )=a 在区间[﹣4,4]上有三个不同的实根; ③函数f (x )有无穷多个零点,且存在一个零点b ∈Z . 其中,所有正确结论的序号是_____. 【参考答案】①②. 【试题解析】由题意可得函数f (x )的大致图象,根据图像逐个判断,即可判断出所给命题的真假.【试题解答】如图:对①,因为函数f (x )的定义域为R,满足f (x +2)=2f (x ),x ∈(0,2]时,f (x )=2x ﹣3,所以f (-1)12=f (-1+2) 12=f (1)12=•(21﹣3)12=-,所以①正确; 对②,f (x )的大致图象如图所示可得当a ∈(14,12]时,方程f (x )=a 在区间[﹣4,4]上有三个不同的实根,所以②正确 对③,因为x ∈(0,2]时,f (x )=2x ﹣3=0, x =log 23,又因为f (x +2)=2f (x ), 所以函数f (x )由无数个零点, 但没有整数零点,所以③不正确; 故答案为:①②.本题考查了类周期函数的图像与性质,考查了数形结合思想和函数方程思想,属于中当题.三、解答题:本大题共6小题,共85分.解答应写出必要的文字说明、证明过程或演算步骤.16. 如图,在三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥底面ABC ,AC ⊥BC ,D 是A 1C 1的中点,且AC =BC =AA 1=2.(1)求证:BC 1∥平面AB 1D ;(2)求直线BC 与平面AB 1D 所成角的正弦值. 【参考答案】(1)证明见解析;(2)66. 【试题解析】(1)连接A 1B ,设A 1B ∩AB 1=E ,连接DE ,可得BC 1∥DE ,再由直线与平面平行的判定得到BC 1∥平面AB 1D ;(2)由CC 1⊥底面ABC ,AC ⊥BC ,得CA ,CB ,CC 1两两互相垂直,分别以CA ,CB ,CC 1所在直线为x ,y ,z 轴建立空间直角坐标系,求出平面AB 1D 的一个法向量与1AB 的坐标,由两向量所成角的余弦值可得直线BC 与平面AB 1D 所成角的正弦值. 【试题解答】(1)证明:连接A 1B ,设A 1B ∩AB 1=E ,连接DE , 由ABC ﹣A 1B 1C 1为三棱柱,得A 1E =BE. 又∵D 是A 1C 1的中点,∴BC 1∥DE. ∵BC 1⊄平面AB 1D ,DE ⊂平面AB 1D , ∴BC 1∥平面AB 1D ;(2)解:∵CC 1⊥底面ABC ,AC ⊥BC ,∴CA ,CB ,CC 1两两互相垂直, 故分别以CA ,CB ,CC 1所在直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),B (0,2,0),A (2,0,0),B 1(0,2,2),D (1,0,2),∴()1222AB =-,,,()1120B D =-,,,()020BC =-,,. 设平面AB 1D 的法向量为()n x y z ,,=,由11222020n AB x y z n B D x y ⎧⋅=-++=⎪⎨⋅=-=⎪⎩,取y =1,得()211n =,,;设直线BC 与平面AB 1D 所成角为θ. 则sin θ=|cos n BC <,>|6n BC n BC⋅==⋅. ∴直线BC 与平面AB 1D本题考查线面平行的证明和求线面角的大小,考查了通过线线平行证明线面平行的方法,同时考查了空间直角坐标系,利用向量求线面角,是立体几何中较为常规的一类题型,有一定的计算量,属于中档题.17. 已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><<⎪⎝⎭同时满足下列四个条件中的三个:①最小正周期为π;②最大值为2;③()01f =-;④06f π⎛⎫-= ⎪⎝⎭(1)给出函数()f x 的解析式,并说明理由; (2)求函数()f x 的单调递增区间 【参考答案】(1)()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,理由见解析;(2)5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【试题解析】(1)根据题意,先判断()f x 不能满足条件③,再由条件①求出2ω=,由条件②,得2A =,由条件④求出3πϕ=,即可得出函数解析式;(2)根据正弦函数的单调区间,列出不等式,即可求出结果. 【试题解答】(1)若函数()f x 满足条件③,则(0)sin 1f A ϕ==-. 这与0A >,02πϕ<<矛盾,故()f x 不能满足条件③,所以函数()f x 只能满足条件①,②,④. 由条件①,得2||ππω=, 又因为0>ω,所以2ω=. 由条件②,得2A =. 由条件④,得2sin 063f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭, 又因为02πϕ<<,所以3πϕ=.所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. (2)由222232k x k πππππ-≤+≤+,k Z ∈,得51212k x k ππππ-≤≤+, 所以函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 本题主要考查由三角函数的性质求函数解析式,以及求正弦型函数的单调区间,熟记正弦函数的性质即可,属于常考题型.18. 随着科技的进步,视频会议系统的前景愈加广阔.其中,小型视频会议软件格外受人青睐.根据调查统计,小型视频会议软件下载量前6名的依次为A ,B ,C ,D ,E ,F .在实际中,存在很多软件下载后但并未使用的情况.为此,某调查公司对有视频会议需求的人群进行抽样调查,统计得到这6款软件的下载量W (单位:人次)与使用量U (单位:人次),数据用柱状图表示如图:定义软件的使用率tUW=,当t≥0.9时,称该款软件为“有效下载软件”.调查公司以调查得到的使用率t作为实际中该款软件的使用率.(1)在这6款软件中任取1款,求该款软件是“有效下载软件”的概率;(2)从这6款软件中随机抽取4款,记其中“有效下载软件”的数量为X,求X的分布列与数学期望;(3)将(1)中概率值记为x%.对于市场上所有小型视频会议软件,能否认为这些软件中大约有x%的软件为“有效下载软件”?说明理由.【参考答案】(1)23;(2)分布列见解析;期望为83;(3)不能;答案见解析.【试题解析】(1)计算各软件的使用率,得出有效下载软件的个数,从而可得出所求概率;(2)根据超几何分布的概率公式计算概率,得出分布列和数学期望;(3)根据样本是否具有普遍性进行判断.【试题解答】解:(1)t A9196=>0.9,t B8491=>0.9,t C6985=<0.9,t D5474=<0.9,t E6469=>0.9,t F6365=>0.9.∴6款软件中有4款有效下载软件,∴这6款软件中任取1款,该款软件是“有效下载软件”的概率为42 63 =.(2)X的可能取值有2,3,4,且P(X=2)22424625C CC==,P(X=3)314246815C CC==,P(X=4)4446115CC==,∴X的分布列为:E (X )=25⨯+315⨯+4153⨯=. (3)不能认为这些软件中大约有x %的软件为“有效下载软件”. 理由:用样本估计总体时应保证总体中的每个个体被等可能抽取,此次调查是对有视频会议需求的人群进行抽样调查,且只选取下载量排名前6名的软件,不是对所有软件进行的随机抽取6件的样本.本题考查随机事件的概率,超几何分布,考查数学建模能力与数学应用能力,是中档题. 19. 设函数()ln f x ax x =,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线经过点()3,2. (1)求a 的值;(2)求函数()f x 的极值; (3)证明:()2xx f x e e->. 【参考答案】(1)1a =;(2)极小值11e ef ⎛⎫=- ⎪⎝⎭,没有极大值;(3)证明见解析. 【试题解析】(1)由题意,结合导数的几何意义可求切线的斜率,进而可求切线方程,代入已知点的坐标可求a ;(2)先对函数求导,结合导数与极值的关系即可求解; (3)由于()2x x f x e e ->等价于2ln 0x x x x e e -+>,结合(2)可得()1ln f x x x e=≥-,故只要证明10x xe e-≥即可,(需验证等号不同时成立)结合导数可证. 【试题解答】解:(1)()ln f x a x a '+=, 则()()10,1f f a '==,故()y f x =在()()1,1f 处的切线方程()1y a x =-, 把点()3,2代入切线方程可得,1a =,(2)由(1)可得()ln 1,0f x x x '=+>, 易得,当10x e<<时,()0f x '<,函数单调递减,当1x e >时,()0f x '>,函数单调递增,故当1=x e时,函数取得极小值11e e f ⎛⎫=- ⎪⎝⎭,没有极大值,证明:(3)()2x x f x e e ->等价于2ln 0x x x x e e-+>, 由(2)可得()1ln f x x x e =≥-(当且仅当1=x e时等号成立)①,所以21ln x x x xx x e e e e -+≥-,故只要证明10x xe e-≥即可,(需验证等号不同时成立)设()1x xg x e e =-,0x >则()1x x g x e-'=, 当01x <<时,()0g x '<,函数单调递减,当1x >时,()0g x '>,函数单调递增, 所以()()10g x g ≥=,当且仅当1x =时等号成立,② 因为①②等号不同时成立, 所以当0x >时,()2xx f x e e->. 本题主要考查了导数的几何意义及导数与极值的关系,还考查了利用导数证明不等式,体现了转化思想的应用.20. 已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C O 为坐标原点.(1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线.【参考答案】(1)2214x y +=;(2)证明见解析. 【试题解析】(1)将点C 的坐标代入椭圆E 的方程,可求得b 的值,再由椭圆E 的离心率可求得a 、c 的值,由此可得出椭圆E的方程;(2)设点()()0000,0D x y x y≠,可得出220044x y-=,求出直线CD的方程,可求得点P的坐标,由4OP OQ=⋅,可求得点Q的横坐标,代入直线AD的方程可求得点Q的坐标,验证BQ BCk k=,即可证得结论成立.【试题解答】(1)将点C的坐标代入椭圆E的坐标可得1b=,由题意可得2231ceaa cc⎧==⎪⎪⎪-=⎨⎪>⎪⎪⎩,解得23ac=⎧⎪⎨=⎪⎩,因此,椭圆E的标准方程为2214xy+=;(2)椭圆E的左、右顶点分别为()2,0A-、()2,0B,设点()()0000,0D x y x y≠,则2214xy+=,则220044x y-=,直线CD斜率为01CDykx-=,则直线CD的方程为011yy xx-=+,令0y=,可得01xxy=-,即点,01xPy⎛⎫⎪-⎝⎭,设点()11,Q x y,由104OP OQ x x⋅==,可得()141yxx-=,直线AD的斜率为02ADykx=+,则直线AD的方程为()22yy xx=++,将()0041y x x -=代入直线AD 的方程得()()000002222y x y y x x -+=+,所以点Q 的坐标为()()()000000041222,2y y x y x x x ⎛⎫--+ ⎪ ⎪+⎝⎭, 直线BC 的斜率为101022BC k -==-- 直线BQ 的斜率为()()()2000000020000001012222222222424BQy x y x y y y y k x x y x x x y y -+-+===-+-----20000200002214242BC x y y y k y x y y -+==-=--, 又BQ 、BC 有公共点B ,因此,C 、B 、Q 三点共线.本题考查椭圆标准方程的求解,同时也考查了椭圆中三点共线的证明,考查计算能力,属于难题.21. 如图,表1是一个由40×20个非负实数组成的40行20列的数表,其中a m ,n (m =1,2,…,40;n =1,2,…,20)表示位于第m 行第n 列的数.将表1中每一列的数都按从大到小的次序从上到下重新排列(不改变该数所在的列的位置),得到表2(即b i ,j ≥b i +1,j ,其中i =1,2,…,39;j =1,2,…,20). 表1表2(1)判断是否存在表1,使得表2中的b i ,j (i =1,2,…,40;j =1,2,…,20)等于100﹣i ﹣j ?等于i +2﹣j 呢?(结论不需要证明)(2)如果b 40,20=1,且对于任意的i =1,2,…,39;j =1,2,…,20,都有b i ,j ﹣b i +1,j ≥1成立,对于任意的m =1,2,…,40;n =1,2,…,19,都有b m ,n ﹣b m ,n +1≥2成立,证明:b 1,1≥78;(3)若a i ,1+a i ,2+…+a i ,20≤19(i =1,2,…,40),求最小的正整数k ,使得任给i ≥k ,都有b i ,1+b i ,2+…+b i ,20≤19成立.【参考答案】(1)存在表1,使得b i ,j =100﹣i ﹣j ,不存在表1,使得2ji j b i -=+,;(2)证明见解析;(3)k =39. 【试题解析】(1)由1000i j --≥,140i ≤≤,120j ≤≤可知存在表1,使得,100i j b i j =--;若,2i j j i b -+=,则1,12i j j i b +-++=,故,1,10i j i j b b +-=-<,故不存在;(2)对于任意的1,2,3,39,1,2,,20i j ==,都有,1,1i j i j b b -≥-成立,进而得()()()1,202,202,203,2039,2040,2039bb b b b b -+-++-≥,故1,2040,203940b b ≥+=,同理由对于任意的1,2,,40,1,2,3,,19m n ==,都有,12m n m n b b +-≥,得1,11,203878b b ≥+≥.(3)取特殊表1,得39k ≥,再证明39k ≤即可得39k =.【试题解答】解(1)存在表1,使得b i ,j =100﹣i ﹣j ,不存在表1,使得2ji j b i -=+,. 证明:(2)因为对于任意的1,2,3,39,1,2,,20i j ==,都有,1,1i j i j b b -≥-.所以1,202,20220320392040201,1,,1b b b b b b -≥--≥≥,,,,.所以()()()1202202203203920402039b b b b b b +++≥---,,,,,,,即12020403940b b ≥+=,,. 由于1,2,,40,1,2,3,,19m n ==,都有,12m n m n b b +-≥,.所以1,11,21,21,31,191,202,2,,2b b b b b b ≥--≥-≥所以()()()1112121311912038b b b b b b --++≥-+,,,,,,,即1178b ≥,.解:(3)当表1如下图时,其中,每行恰有1个0和19个1,每列恰有2个0和38个1.因此每行的和均为19,符合题意. 重新排序后,对应表2中,前38行中每行各数均为1,每行的和均为20,后两行各数均为0,因此k ≥39.以下先证:对于任意满足条件的表1,在表2中的前39行中,至少包含原表1中某一行(设为第r 行)的全部实数(即包含12.20,,,r r r a a a ,,),假设表2的前39行中,不能包含原表1中任一行的全部实数、 则表2的前39行中至多含有表1中的40×19=760个数. 这与表2中前39行中共有39×20=780个数相矛盾.所以:表2的前39行中,至少包含原表1中某一行(设为第r 行),的全部实数.- 21 - 其次,在表2中,根据重排规则得:当39i ≥时,,39,,i j j i j b b a ≤≤,(1,2,,20j =).所以1220122019i i i r r r b b b a a a ++⋯+≤++⋯+≤,,,,,,,所以39k ≤.综上所述39k =. 本题主要考查不等式,排列组合的综合应用,考查数学抽象,逻辑推理,数学运算等核心素养,是难题.。
北京市西城区2017届高三数学二模试题 文第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|11}A x x =∈-<<R ,{|(2)0}B x x x =∈⋅-<R ,那么A B = (A ){|01}x x ∈<<R (B ){|02}x x ∈<<R (C ){|10}x x ∈-<<R(D ){|12}x x ∈-<<R2.设向量(2,1)=a ,(0,2)=-b .则与2+a b 垂直的向量可以是 (A )(3,2)(B )(3,2)-(C )(4,6)(D )(4,6)-3.下列函数中,值域为[0,1]的是 (A )2y x = (B )sin y x = (C )211y x =+ (D)y 4.若抛物线2y ax =的焦点到其准线的距离是2,则a =(A )1± (B )2± (C )4± (D )8±5.设a ,0b ≠,则“a b >”是“11a b<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件6.在平面直角坐标系中,不等式组,020,0y x y -+⎨⎪⎪⎩≤≥≥表示的平面区域的面积是(A(B(C )2 (D)7.某四面体的三视图如图所示,该四面体的体积为(A )43 (B )2(C )83 (D )48.函数()||f x x x =.若存在[1,)x ∈+∞,使得(2)0f x k k --<,则k 的取值范围是 (A )(2,)+∞ (B )(1,)+∞(C )1(,)2+∞(D )1(,)4+∞第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.在复平面内,复数z 对应的点是(1,2)Z -,则复数z 的共轭复数z =____.10.执行如图所示的程序框图,输出的S 值为____.11.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c .若π3A =,a =1b =,则c =____.12.已知圆22:1O x y +=.圆O '与圆O 关于直线20x y +-=对称,则圆O '的方程是____.13.函数22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =____;方程1()2f x -=的解是____.14.某班开展一次智力竞赛活动,共a ,b ,c 三个问题,其中题a 满分是20分,题b ,c 满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a 与题b 的人数之和为29,答对题a 与题c 的人数之和为25,答对题b 与题c 的人数之和为20.则该班同学中只答对一道题的人数是____;该班的平均成绩是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数π()tan()4f x x =+.(Ⅰ)求()f x 的定义域;(Ⅱ)设β是锐角,且π()2sin()4f ββ=+,求β的值.16.(本小题满分13分)某大学为调研学生在A ,B 两家餐厅用餐的满意度,从在A ,B 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A 餐厅分数的频率分布直方图,和B 餐厅分数的频数分布表:(Ⅰ)在抽样的100人中,求对A 餐厅评分低于30的人数;(Ⅱ)从对B 餐厅评分在[0,20)范围内的人中随机选出2人,求2人中恰有1人评分在[0,10)范围内的概率;(Ⅲ)如果从A ,B 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.17.(本小题满分13分)设{}n a 是首项为1,公差为2的等差数列,{}n b 是首项为1,公比为q 的等比数列.记n n n c a b =+,1,2,3,n =.(Ⅰ)若{}n c 是等差数列,求q 的值; (Ⅱ)求数列{}n c 的前n 项和n S . B 餐厅分数频数分布表18.(本小题满分14分)如图,在几何体ABCDEF 中,底面ABCD 为矩形,//EF CD ,CD EA ⊥,22CD EF ==,ED =M 为棱FC 上一点,平面ADM 与棱FB 交于点N .(Ⅰ)求证:ED CD ⊥; (Ⅱ)求证://AD MN ;(Ⅲ)若AD ED ⊥,试问平面BCF 是否可能与平面ADMN 垂直?若能,求出FMFC的值;若不能,说明理由.19.(本小题满分13分)已知函数()ln 2af x x x =+-,其中a ∈R . (Ⅰ)给出a 的一个取值,使得曲线()y f x =存在斜率为0的切线,并说明理由; (Ⅱ)若()f x 存在极小值和极大值,证明:()f x 的极小值大于极大值.20.(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率是2,且过点P .直线2y x m =+与椭圆C 相交于,A B 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)求PAB △的面积的最大值;(Ⅲ)设直线,PA PB 分别与y 轴交于点,M N .判断||PM ,||PN 的大小关系,并加以证明.西城区高三模拟测试高三数学(文科)参考答案及评分标准 2017.5一、选择题:本大题共8小题,每小题5分,共40分. 1.A 2.A 3.D4.C 5.D6.B7.A8.D二、填空题:本大题共6小题,每小题5分,共30分. 9.12i +10.711.212.22(2)(2)1x y -+-=13.2-;114.4;42注:第13、14题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分) 解:(Ⅰ)由πππ42x k +≠+,得ππ4x k ≠+,k ∈Z . [ 3分] 所以 函数()f x 的定义域是π{|π,}4x x k k ≠+∈Z .[ 4分](Ⅱ)依题意,得ππtan()2sin()44ββ+=+. [ 5分]所以πsin()π42sin()π4cos()4βββ+=++.① [ 7分] 因为β是锐角,所以 ππ3π444β<+<,[ 8分]所以πsin()04β+>,[ 9分] ①式化简为π1cos()42β+=. [10分] 所以 ππ43β+=,[12分] 所以π12β=. [13分]16.(本小题满分13分)解:(Ⅰ)由A 餐厅分数的频率分布直方图,得对A 餐厅评分低于30的频率为(0.0030.0050.012)100.2++⨯=,[ 2分]所以,对A 餐厅评分低于30的人数为1000.220⨯=. [ 3分] (Ⅱ)对B 餐厅评分在[0,10)范围内的有2人,设为12M ,M ;对B 餐厅评分在[10,20)范围内的有3人,设为123N ,N ,N . 从这5人中随机选出2人的选法为:12(M ,M ),11(M ,N ),12(M ,N ),13(M ,N ),21(M ,N ),22(M ,N ),23(M ,N ),12(N ,N ),13(N ,N ),23(N ,N ),共10种.[ 7分]其中,恰有1人评分在[0,10)范围内的选法为:11(M ,N ),12(M ,N ),13(M ,N ),21(M ,N ),22(M ,N ),23(M ,N ),共6种.[ 9分]故2人中恰有1人评分在[0,10)范围内的概率为63105P ==.[10分] (Ⅲ)从两个餐厅得分低于30分的人数所占的比例来看:由(Ⅰ)得,抽样的100人中,A 餐厅评分低于30的人数为20, 所以,A 餐厅得分低于30分的人数所占的比例为20%. B 餐厅评分低于30的人数为23510++=,所以,B 餐厅得分低于30分的人数所占的比例为10%.所以会选择B 餐厅用餐. [13分] 注:本题答案不唯一.只要考生言之合理即可.17.(本小题满分13分)解:(Ⅰ)因为{}n a 是首项为1,公差为2的等差数列,所以 21n a n =-.[ 2分]因为 {}n b 是首项为1,公比为q 的等比数列,所以1n n b q -=.[ 4分]所以121n n n n c a b n q -=+=-+.[ 5分]因为 {}n c 是等差数列, 所以2132c c c =+,[ 6分]即 22(3)25q q +=++,解得 1q =.[ 7分]经检验,1q =时,2n c n =,所以{}n c 是等差数列.[ 8分](Ⅱ)由(Ⅰ)知121(1,2,)n n c n qn -=-+=.所以121111111(21)nnnnnnk k n k k k k k k k k k S c a b k qn q --========+=-+=+∑∑∑∑∑∑.[10分]当1q =时,2n S n n =+.[11分]当1q ≠时,211n n q S n q -=+-.[13分]18.(本小题满分14分)解:(Ⅰ)因为ABCD 为矩形,所以CD AD ⊥.[ 1分]又因为CD EA ⊥,[ 2分] 所以CD ⊥平面EAD .[ 3分] 所以ED CD ⊥.[ 4分](Ⅱ)因为ABCD 为矩形,所以//AD BC ,[ 5分]所以//AD 平面FBC .[ 7分] 又因为平面ADMN平面FBC MN =,所以//AD MN .[ 8分](Ⅲ)平面ADMN 与平面BCF 可以垂直.证明如下:[ 9分]连接DF .因为AD ED ⊥,AD CD ⊥, 所以AD ⊥平面CDEF .[10分] 所以AD DM ⊥.因为//AD MN ,所以DM MN ⊥.[11分] 因为平面ADMN平面BCF MN =,若使平面ADMN ⊥平面BCF ,则DM ⊥平面BCF ,所以DM FC ⊥.[12分]在梯形CDEF 中,因为//EF CD ,ED CD ⊥,22CD EF ==,ED = 所以2DF DC ==.所以若使DM FC ⊥能成立,则M 为FC 的中点.所以12FM FC =.[14分] 19.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域是{|0D x x =>,且2}x ≠,且21()(2)a f x x x '=-+-.[ 2分] 当1a =时,曲线()y f x =存在斜率为0的切线.证明如下:[ 3分] 曲线()y f x =存在斜率为0的切线⇔方程()0f x '=存在D 上的解. 令2110(2)x x -+=-,整理得2540x x -+=, 解得1x =,或4x =.所以当1a =时,曲线()y f x =存在斜率为0的切线.[ 5分] 注:本题答案不唯一,只要0a >均符合要求. (Ⅱ)由(Ⅰ)得 21()(2)a f x x x '=-+-. ①当0a ≤时,()0f x '>恒成立,函数()f x 在区间(0,2)和(2,)+∞上单调递增,无极值,不合题意.[ 6分] ②当0a >时,令()0f x '=,整理得2(4)40x a x -++=. 由2[(4)]160a ∆=-+->,所以,上述方程必有两个不相等的实数解1x ,2x ,不妨设12x x <.由121244,4,x x a x x +=+>⎧⎨=⎩得1202x x <<<.[ 8分]()f x ',()f x 的变化情况如下表:所以,()f x 存在极大值1()f x ,极小值2()f x .[10分]2121212121()()(ln )(ln )()(ln ln )2222a a a af x f x x x x x x x x x -=+-+=-+-----. [11分]因为1202x x <<<,且0a >, 所以21022a ax x ->--,21ln ln 0x x ->, 所以 21()()f x f x >.所以()f x 的极小值大于极大值.[13分]20.(本小题满分14分)解:(Ⅰ)设椭圆2222:1(0)x y C a b a b+=>>的半焦距为c .因为椭圆C,所以 2222222112c a b b a a a -==-=, 即 222a b =.[ 1分] 由22222,211,a b ab ⎧=⎪⎨+=⎪⎩ 解得 224,2.a b ⎧=⎪⎨=⎪⎩[ 3分] 所以椭圆C 的方程为22142x y +=.[ 4分](Ⅱ)将y x m =+代入22142x y +=, 消去y整理得2220x m +-=.[ 5分] 令2224(2)0m m ∆=-->,解得22m -<<. 设1122(,),(,)A x y B x y .则12x x +=,2122x x m =-.所以AB ===[ 6分]点P到直线0x +=的距离为d . [ 7分]所以PAB △的面积12S AB d =⋅|m ==,[ 8分]当且仅当m =时,S所以PAB △.[ 9分] (Ⅲ)||||PM PN =.证明如下:[10分]设直线PA ,PB 的斜率分别是1k ,2k ,则12k k +=+[11分]由(Ⅱ)得1221(1)((1)(y x y x --+--12211)(1)(m x m x =+-++-1212(2)()1)x m x x m =+-+--22)(2)()1)m m m =-+---0=,所以直线PA ,PB 的倾斜角互补.[13分] 所以12∠=∠, 所以PMN PNM ∠=∠. 所以||||PM PN =.[14分]。
第Ⅰ卷(选择题共40分)选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合,,那么A. B. C. D.【答案】A【解析】由题意可知:,,那么.本题选择A选项.2. 设向量,.则与垂直的向量可以是A. B. C. D.【答案】A3. 下列函数中,值域为的是A. B. C. D.【答案】D【解析】逐一考查函数的值域:的值域为;的值域为;的值域为;的值域为 .本题选择D选项.4. 若抛物线的焦点到其准线的距离是,则A. B. C. D.【答案】C5. 设,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】若,满足,此时,充分性不满足;若,满足,此时,必要性不满足;综上可得“”是“”的既不充分也不必要条件.本题选择D选项.6. 在平面直角坐标系中,不等式组表示的平面区域的面积是A. B. C. D.【答案】B【解析】由不等式组绘制可行域如图所示,则,不等式组表示的平面区域的面积是 .本题选择B选项.7. 某四面体的三视图如图所示,该四面体的体积为A. B. C. D.【答案】A点睛:三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.正方体与球各自的三视图相同,但圆锥的不同.学%8. 函数.若存在,使得,则k的取值范围是A. B. C. D.【答案】D综合以上两种情况可得k的取值范围是.点睛:无论参数出现在什么类型的题目中,只要根据解题要求,即参数的存在对解题造成了怎样的阻碍,通过分类讨论,消除这种阻碍,使问题得到解决。
但需要注意一点,不能形成定势思维:有参数就一定要分类讨论。
第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面内,复数对应的点是,则复数的共轭复数____.【答案】【解析】由题意可知: .10. 执行如图所示的程序框图,输出的值为____.【答案】11. 在中,角,,的对边分别是,,.若,,,则____.【答案】【解析】解:由余弦定理有:,即:,整理可得:,△ABC的边长为正数,则: .12. 已知圆.圆与圆关于直线对称,则圆的方程是____.【答案】【解析】设圆C的圆心(a,b),因为圆C的圆心与圆O:x2+y2=1的圆心关于直线l:x+y−2=0对称,所以,解得a=2,b=2;又圆的半径为1,则所求圆的方程为:(x−2)2+(y−2)2=1.13. 函数则____;方程的解是____.【答案】 (1). (2). 或【解析】解:由函数的解析式有:,当时,,当时,,综上可得,方程的解是或.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.14. 某班开展一次智力竞赛活动,共a,b,c三个问题,其中题a满分是20分,题b,c满分都是25分.每道题或者得满分,或者得0分.活动结果显示,全班同学每人至少答对一道题,有1名同学答对全部三道题,有15名同学答对其中两道题.答对题a与题b的人数之和为29,答对题a与题c的人数之和为25,答对题b与题c的人数之和为20.则该班同学中只答对一道题的人数是____;该班的平均成绩是____.【答案】 (1). (2).÷20=42(分).三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15. 已知函数.(Ⅰ)求的定义域;(Ⅱ)设是锐角,且,求的值.【答案】(1)(2)【解析】试题分析:(1)利用题意求得函数的定义域为.(2) 依题意,得.化简为.则.①式化简为.所以,所以.16. 某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以为组距分成组:,,,,,,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:B餐厅分数频数分布表分数区间频数(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;(Ⅱ)从对B餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.【答案】(1)20(2)(3)见解析(Ⅱ)对B餐厅评分在范围内的有2人,设为;对B餐厅评分在范围内的有3人,设为.从这5人中随机选出2人的选法为:,,,,,,,,,,共10种.学%其中,恰有1人评分在范围内的选法为:,,,,,,共6种.故2人中恰有1人评分在范围内的概率为.注:本题答案不唯一.只要考生言之合理即可.点睛:一是在频率分布直方图中,小矩形的高表示频率/组距,而不是频率;二是利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.17. 设是首项为,公差为的等差数列,是首项为,公比为的等比数列.记,.(Ⅰ)若是等差数列,求的值;(Ⅱ)求数列的前项和.【答案】(1)(2)见解析【解析】试题分析:(1)利用题意结合等差数列的性质可求得q=1,注意检验所得的结果;(2)利用题意分组求和即可,注意等比数列求和公式中讨论q=1和q≠1两种情况.试题解析:解:(Ⅰ)因为是首项为,公差为的等差数列,所以.因为是首项为,公比为的等比数列,所以.当时,.18. 如图,在几何体中,底面为矩形,,,,.为棱上一点,平面与棱交于点.(Ⅰ)求证:;(Ⅱ)求证:;(Ⅲ)若,试问平面是否可能与平面垂直?若能,求出的值;若不能,说明理由.【答案】(1)见解析(2)见解析(3)【解析】试题分析:(1)利用题意证得平面.所以.(2)利用线面平行的性质定理平面.所以.(3)假设平面是否可能与平面垂直,结合题意可求得试题解析:解:(Ⅰ)因为为矩形,所以.又因为,所以平面.所以.因为平面平面,若使平面平面,则平面,所以.在梯形中,因为,,,,所以.所以若使能成立,则为的中点.所以.点睛:高考中立体几何试题不断出现了一些具有探索性、开放性的试题。
西城区高三模拟测试数学(文科) 2018.5第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的 四个选项中,选出符合题目要求的一项.1.若集合{|01}A x x =<<,2{|20}B x x x =-<,则下列结论中正确的是 (A )AB =∅(B )A B =R(C )A B ⊆ (D )B A ⊆2.复数11i =- (A )1i 22+ (B )1i22-+(C )1i22--(D )1i 22-3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是 (A )1y x=(B )2y x = (C )cos y x = (D )ln ||y x =-4.某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是(A(B(C )(D )5.向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c共线,则实数λ= (A )2-(B )1-(C )1 (D )26.设,a b ∈R ,且0ab ≠.则“1ab >”是“1a b>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7.设不等式组 1,3,25x x y x y ⎧⎪+⎨⎪+⎩≥≥≤ 表示的平面区域为D .若直线0ax y -=上存在区域D 上的点,则实数a 的取值范围是 (A )1[,2]2(B )1[,3]2(C )[1,2] (D )[2,3]8.地铁某换乘站设有编号为 A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安 全出口,疏散1000名乘客所需的时间如下:则疏散乘客最快的一个安全出口的编号是 (A )A (B )B(C )D(D )E第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.函数1||2y x =+的最大值是____.10.执行如右图所示的程序框图,输出的k 值为____.11.在△ABC 中,3a =,2b =,4cos 5B =,则sin A =____.12.双曲线22:1916y x C -=的焦距是____;若圆222(1)(0)x y r r -+=>与双曲线C 的渐近线相切,则r =____.13.为绿化生活环境,某市开展植树活动.今年全年植树6.4万棵,计划3年后全年植树12.5万棵.若植树的棵数每年的增长率均为a ,则a =____.14.已知函数2,1,()1,1,2x a x f x x a x ⎧+⎪=⎨+>⎪⎩≤ 其中a ∈R .如果函数()f x 恰有两个零点,那么a 的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在等差数列{}n a 和等比数列{}n b 中,111a b ==,22a b =,432a b +=. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}n n a b +的前n 项和n S .16.(本小题满分13分)已知函数cos2()sin cos xf x x x=+.(Ⅰ)求()f x 的定义域; (Ⅱ)求()f x 的取值范围.17.(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(Ⅰ)求样本中患病者的人数和图中a,b的值;(Ⅱ)试估计此地区该项身体指标检测值不低于5的从业者的人数;(III)某研究机构提出,可以选取常数04.5X=,若一名从业者该项身体指标检测值大于X,则判断其患有这种职业病;若检测值小于X,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.18.(本小题满分14分)如图,梯形ABCD所在的平面与等腰梯形ABEF所在的平面互相垂直,////AB CD EF,AB AD⊥,G为AB 的中点.2CD DA AF FE====,4AB=.(Ⅰ)求证://DF平面BCE;(Ⅱ)求证:平面BCF⊥平面GCE;(Ⅲ)求多面体AFEBCD的体积.19.(本小题满分13分)已知函数ln()xf x axx=-,曲线()y f x=在1x=处的切线经过点(2,1)-.(Ⅰ)求实数a 的值;(Ⅱ)设1b >,求()f x 在区间1[,]b b上的最大值和最小值.20.(本小题满分14分)已知椭圆C :2222 1 (0)x y a b a b +=>>(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线y x =与椭圆C 交于A ,B 两点,斜率为k 的直线l 与椭圆C 交于M ,N 两点,与直线y x =交于点P (点P 与点A ,B ,M ,N 不重合). (ⅰ)当1k =-时,证明:||||||||PA PB PM PN =; (ⅱ)写出||||||||PA PB PM PN 以k 为自变量的函数式(只需写出结论).西城区高三模拟测试数学(文科)参考答案及评分标准2018.5一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.A 3.D 4.B 5.D 6.D 7.B 8.C二、填空题:本大题共6小题,每小题5分,共30分.9.12 10.511.91012.10,35 13.25% 14.1[2,)2--注:第12题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得 21,2(13).d q d q +=⎧⎨++=⎩……………… 2分 解得 2,3,d q =⎧⎨=⎩或1,0.d q =-⎧⎨=⎩(舍去) ……………… 4分 所以 21n a n =-,13n n b -=. ……………… 6分 (Ⅱ)因为 1213n n n a b n -+=-+, ……………… 7分所以 21[135(21)](1333)n n S n -=++++-+++++ ……………… 9分[1(21)]13213nn n +--=+- ………………11分 2312n n -=+. ………………13分16.(本小题满分13分)解:(Ⅰ)由 sin cos 0x x +≠, ……………… 2分得π)04x +≠, ……………… 3分所以 ππ4x k +≠,其中k ∈Z . ……………… 4分 所以()f x 的定义域为π{|π,}4x x k k ∈≠-∈R Z . ……………… 5分(Ⅱ)因为 22cos sin ()sin cos x xf x x x-=+ ……………… 7分cos sin x x =- ……………… 9分π)4x =+. ………………11分由(Ⅰ)得 ππ4x k +≠,其中k ∈Z ,所以 π1cos()14x -<+<, ………………12分所以 ()f x 的取值范围是(. ………………13分17.(本小题满分13分)解:(Ⅰ)根据分层抽样原则,容量为100的样本中,患病者的人数为3.4100408.5⨯=人. ……………… 2分 10.100.350.250.150.100.05a =-----=,10.100.200.300.40b =---=. ……………… 4分(Ⅱ)指标检测值不低于5的样本中,有患病者40(0.300.40)28⨯+=人,未患病者60(0.100.05)9⨯+=人,共37人.……………… 6分此地区该项身体指标检测值不低于5的从业者的人数约为378500031450100⨯=人. ……………… 8分(Ⅲ)当0 4.5X =时,在100个样本数据中, 有40(0.100.20)12⨯+=名患病者被误判为未患病, ………………10分有60(0.100.05)9⨯+=名未患病者被误判为患病者, ………………12分 因此判断错误的概率为21100. ………………13分 18.(本小题满分14分)解:(Ⅰ)因为 //CD EF ,且CD EF =,所以 四边形CDFE 为平行四边形,所以 //DF CE . …… 2分因为 DF ⊄平面BCE ,…… 3分所以 //DF 平面BCE .…… 4分 (Ⅱ)连接FG .因为 平面ABCD ⊥平面ABEF ,平面ABCD I 平面ABEF AB =,AD AB ⊥, 所以 AD ⊥平面ABEF ,所以 BF AD ⊥. ………………6分 因为 G 为AB 的中点,所以 //AG CD ,且AG CD =;//EF BG ,且EF BG =, 所以 四边形AGCD 和四边形BEFG 均为平行四边形.所以 //AD CG , 所以 BF CG ⊥. ……………… 7分 因为 EF EB =,所以 四边形BEFG 为菱形,所以 BF EG ⊥. ……………… 8分 所以 BF ⊥平面GCE . ……………… 9分所以 平面BCF ⊥平面GCE . ………………10分 (Ⅲ)设 BF GE O =I .由(Ⅰ)得 //DF CE ,所以 //DF 平面GCE , 由(Ⅱ)得 //AD CG ,所以 //AD 平面GCE , 所以 平面//AD F 平面GCE ,所以 几何体AD F GCE -是三棱柱. ………………11分 由(Ⅱ)得 BF ⊥平面GCE .所以 多面体AFEBCD 的体积 ADF GCE B GCE V V V --=+ ………………12分13GCE GCE S FO S BO ∆∆=⋅+⋅43GCE S FO ∆=⋅= ………………14分19.(本小题满分13分)解:(Ⅰ)()f x 的导函数为221ln ()x ax f x x --'=, ……………… 2分所以(1)1f a '=-. 依题意,有 (1)(1)112f a --=--,即1112a a -+=--, ……………… 4分 解得 1a =. ……………… 5分(Ⅱ)由(Ⅰ)得221ln ()x xf x x --'=.当0<<1x 时,210x ->,ln 0x ->,所以()0f x '>,故()f x 单调递增;当>1x 时,210x -<,ln 0x -<,所以()0f x '<,故()f x 单调递减.所以 ()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. ……………… 8分 因为 101b b<<<, 所以 ()f x 最大值为(1)1f =-. ……………… 9分 设 111()()()()ln h b f b f b b b b b b =-=+-+,其中1b >. ………………10分则 21()(1)ln 0h b b b '=->, 故 ()h b 在区间(1,)+∞上单调递增. ………………11分所以 ()(1)0h b h >=, 即 1()()f b f b >, ………………12分故 ()f x 最小值为11()ln f b b b b=--. ………………13分20.(本小题满分14分)解:(Ⅰ)设椭圆C 的半焦距为c .依题意,得c a =, 1b =, 且 222a b c =+. ……………… 2分解得 a ……………… 3分所以 椭圆C 的方程是 2213x y +=. ……………… 4分(Ⅱ)(ⅰ)由 22,33,y x x y =⎧⎪⎨+=⎪⎩ 得A ,(B . ……………… 5分1k =-时,设直线l 的方程为y x t =-+.由 22,33,y x t x y =-+⎧⎪⎨+=⎪⎩ 得 2246330x tx t -+-=. ……………… 6分 令223648(1)0t t ∆=-->,解得 24t <. 设 1122(,),(,)M x y N x y ,则 1232t x x +=,212334t x x -⋅=. ……………… 8分由 ,,y x t y x =-+⎧⎨=⎩ 得(,)22t tP . ……………… 9分所以 23||||2t PA PB -==. ………………10分因为 1||PM x =-,同理2||PN x =-.所以 12||||222t tPM PN x x =-⋅-2233324224t t t t -=-⋅+232t -=.所以 ||||||||PA PB PM PN =. ………………12分 (ⅱ)22||||13||||2(1)PA PB k PM PN k +=+. ………………14分。