中考复习二次函数压轴题专题训练(教师版)
- 格式:pdf
- 大小:986.32 KB
- 文档页数:30
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。
中考数学复习之《二次函数》压轴题精选训练1.已知抛物线y=x2+kx﹣k2(k为常数,且k>0).(1)证明:此抛物线与x轴总有两个交点;(2)设抛物线与x轴交于M、N两点,若这两点到原点的距离分别为OM、ON,且,求k的值.2.在直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0).将直线y=kx沿y轴向上平移3个单位长度后恰好经过点B、C.(1)求k的值;(2)求直线BC和抛物线的解析式;(3)求△ABC的面积;(4)设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.3.如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向旋转90°交直线BC于点Q.(1)当点P在线段AB上运动(不与A,B重合)时,求证:OA•BQ=AP•BP;(2)在(1)成立的条件下,设点P的横坐标为m,线段CQ的长度为l,求出l关于m 的函数解析式,并判断l是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;(3)直线AB上是否存在点P,使△POQ为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.4.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,(1)求证:△ACE∽△CBE;(2)若AB=8,设OE=x(0<x<4),CE2=y,请求出y关于x的函数解析式;(3)探究:当x为何值时,tan∠D=.5.已知二次函数y=x2﹣x+c.(1)若点A(﹣1,n)、B(2,2n﹣1)在二次函数y=x2﹣x+c的图象上,求此二次函数的最小值;(2)若点D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函数y=x2﹣x+c的图象上,且D、E两点关于坐标原点成中心对称,连接OP.当2≤OP≤2+时,试判断直线DE与抛物线y=x2﹣x+c+的交点个数,并说明理由.6.已知OABC是一张矩形纸片,AB=6.(1)如图1,在AB上取一点M,使得△CBM与△CB′M关于CM所在直线对称,点B′恰好在边OA上,且△OB′C的面积为24cm2,求BC的长;(2)如图2.以O为原点,OA、OC所在直线分别为x轴、y轴建立平面直角坐标系.求对称轴CM所在直线的函数关系式;(3)作B′G∥AB交CM于点G,若抛物线y=x2+m过点G,求这条抛物线所对应的函数关系式.7.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且∠DBP=45°,求点P的坐标.8.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(﹣1,0),B(0,),O (0,0),将此三角板绕原点O顺时针旋转90°,得到△A′B′O.(1)如图,一抛物线经过点A,B,B′,求该抛物线解析式;(2)设点P是在第一象限内抛物线上一动点,求使四边形PBAB′的面积达到最大时点P的坐标及面积的最大值.9.如图,在矩形OABC中,已知A、C两点的坐标分别为A(4,0)、C(0,2),D为OA 的中点.设点P是∠AOC平分线上的一个动点(不与点O重合).(1)试证明:无论点P运动到何处,PC总与PD相等;(2)当点P运动到与点B的距离最小时,试确定过O、P、D三点的抛物线的解析式;(3)设点E是(2)中所确定抛物线的顶点,当点P运动到何处时,△PDE的周长最小?求出此时点P的坐标和△PDE的周长;(4)设点N是矩形OABC的对称中心,是否存在点P,使∠CPN=90°?若存在,请直接写出点P的坐标.10.如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度从点O出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF⊥AB,交BC于点F,连接DA、DF.设运动时间为t秒.(1)求∠ABC的度数;(2)当t为何值时,AB∥DF;(3)设四边形AEFD的面积为S.①求S关于t的函数关系式;②若一抛物线y=﹣x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).11.如图,在平面直角坐标系xOy中,半径为1的圆的圆心O在坐标原点,且与两坐标轴分别交于A、B、C、D四点.抛物线y=ax2+bx+c与y轴交于点D,与直线y=x交于点M、N,且MA、NC分别与圆O相切于点A和点C.(1)求抛物线的解析式;(2)抛物线的对称轴交x轴于点E,连接DE,并延长DE交圆O于F,求EF的长;(3)过点B作圆O的切线交DC的延长线于点P,判断点P是否在抛物线上,说明理由.12.如图,在直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.(1)求抛物线的解析式;(2)求当AD+CD最小时点D的坐标;(3)以点A为圆心,以AD为半径作⊙A.①证明:当AD+CD最小时,直线BD与⊙A相切;②写出直线BD与⊙A相切时,D点的另一个坐标:.13.如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ 垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线解析式;(2)求S与t的函数关系式;(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.14.如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=.(1)求这个二次函数的表达式.(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.15.已知函数y1=x,y2=x2+bx+c,α,β为方程y1﹣y2=0的两个根,点M(t,T)在函数y2的图象上.(Ⅰ)若α=,β=,求函数y2的解析式;(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值;(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.16.如图,△OAB是边长为2的等边三角形,过点A的直线+m与x轴交于点E.(1)求点E的坐标;(2)求过A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE 的面积为S,求S的最大值.17.如图,已知直线y=﹣x+1交坐标轴于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.(1)请直接写出点C,D的坐标;(2)求抛物线的解析式;(3)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(4)在(3)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.18.如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在该抛物线的对称轴上找一点P,使P A+PD最小,求出点P的坐标;(3)在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.19.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.20.如图,在平面直角坐标系中,点O为坐标原点.Rt△OAB的斜边OA在x轴的正半轴上,点A的坐标为(2,0),点B在第一象限内,且OB=,∠OBA=90°.以边OB 所在直线折叠Rt△OAB,使点A落在点C处.(1)求证:△OAC为等边三角形;(2)点D在x轴的正半轴上,且点D的坐标为(4,0).点P为线段OC上一动点(点P不与点O重合),连接P A、PD.设PC=x,△P AD的面积为y,求y与x之间的函数关系式;(3)在(2)的条件下,当x=时,过点A作AM⊥PD于点M,若k=,求证:二次函数y=﹣2x2﹣(7k﹣3)x+k的图象关于y轴对称.21.如图,在直角坐标系中,点A的坐标为(﹣2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号).22.定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:①b的值等于;②四边形ABCD为A、平行四边形;B、矩形;C、菱形;D、正方形.(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求△ABD的面积;(3)如图3,若F1:y=x2﹣x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.23.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.24.如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是(﹣1,2)(1)求点B的坐标;(2)求过点A、O、B的抛物线的表达式;(3)连接AB,在(2)中的抛物线上求出点P,使得S△ABP=S△ABO.25.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A(1,0)、B(5,0)两点.(1)求抛物线的解析式和顶点C的坐标;(2)设抛物线的对称轴与x轴交于点D,将∠DCB绕点C按顺时针方向旋转,角的两边CD和CB与x轴分别交于点P、Q,设旋转角为α(0°<α≤90°).①当α等于多少度时,△CPQ是等腰三角形?②设BP=t,AQ=s,求s与t之间的函数关系式.26.如图,已知点A(﹣4,8)和点B(2,n)在抛物线y=ax2上.(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线y=ax2,记平移后点A的对应点为A′,点B的对应点为B′,点C(﹣2,0)和点D(﹣4,0)是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.27.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h.(1)请你用含x的代数式表示h;(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少.28.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上(1)点A的坐标为,点B的坐标为;(2)抛物线的关系式为;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)将三角板ABC绕顶点A逆时针方向旋转90°,到达△AB′C″的位置.请判断点B′、C″是否在(2)中的抛物线上,并说明理由.。
中考备考训练:二次函数压轴题专项1.如图,二次函数y=﹣x2+2x+3的图象与x轴交于点A、B,与y轴交于点C,顶点为D.(1)写出A、B、D三点的坐标;(2)若P(0,t)(t<﹣1)是y轴上一点,Q(﹣5,0),将点Q绕着点P顺时针方向旋转90°得到点E.当点E恰好在该二次函数的图象上时,求t的值;(3)在(2)的条件下,连接AD、AE.若M是该二次函数图象上一点,且∠DAE=∠MCB,求点M的坐标.解:(1)y=﹣x2+2x+3,令x=0,则y=3,令y=0,则x=3或﹣1,故:A(﹣1,0),B(3,0),D(1,4);(2)如图1,过点E作EH⊥y轴于点H,∵∠PQO+∠OPQ=90°,∠OPQ+∠HPE=90°,∴∠HPE=∠PQO,而∠PHE=∠QOP=90°,由旋转知,PQ=PE,∴△EPH≌△PQO(AAS),∴EH=OP=﹣t,HP=OQ=5,∴E(﹣t,5+t)当点E恰好在该二次函数的图象上时,有5+t=﹣t2﹣2t+3,解得t1=﹣2,t2=﹣1(由于t<﹣1所以舍去),故所求t的值为﹣2;(3)设点M(a,﹣a2+2a+3)①若点M在x轴上方,如图2,过点M作MN⊥y轴于点N,过点D作DF⊥x轴于点F.∵∠EAB=∠OCB=45°,∠DAE=∠MCB,∴∠MCN=∠DAF,∴△MCN∽△DAF,∴,∴,a2=0(舍去)∴M(,);②若点M在x轴下方,同理可得M(4,﹣5)综上所述,M(,)或M(4,﹣5).2.在平面直角坐标系中,抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0)、点B,与y轴交于点C,抛物线的对称轴是直线x=1,连接BC、AC.(用含有a的代数式来表示);(1)求S△ABC=6,求抛物线的解析式;(2)若S△ABC(3)在(2)的条件下,当﹣1≤x≤m+1时,y的最大值是2,求m的值.解:(1)将点A的坐标代入抛物线表达式得:a﹣b+c=0…①,函数的对称轴为:x=1=﹣…②,联立①②并解得:b=﹣2a,c=﹣3a,故抛物线的表达式为:y=ax2﹣2ax﹣3a,则点B的坐标为:(3,0);S=AB×OC=4×(﹣3a)=﹣6a;△ABC=﹣6a=6,解得:a=﹣1,(2)S△ABC故抛物线的表达式为:y=﹣x2+2x+3;(3)①当m+1≤1时,即m≤0,函数在x=m+1时,取得最大值,即:﹣(m+1)2+2(m+1)+3=2,解得:m=(舍去正值),故m=;②当m>0时,函数在顶点处取得最大值,而顶点纵坐标为4≠2,故不存在m值;综上,m=.3.如图,在平面直角坐标系xOy中,O为坐标原点,抛物线y=a(x+3)(x﹣1)(a>0)与x轴交于A,B两点(点A在点B的左侧).(1)求点A与点B的坐标;(2)若a=,点M是抛物线上一动点,若满足∠MAO不大于45°,求点M的横坐标m 的取值范围.(3)经过点B的直线l:y=kx+b与y轴正半轴交于点C.与抛物线的另一个交点为点D,且CD=4BC.若点P在抛物线对称轴上,点Q在抛物线上,以点B,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.解:(1)y=a(x+3)(x﹣1),令y=0,则x=1或﹣3,故点A、B的坐标分别为:(﹣3,0)、(1,0);(2)抛物线的表达式为:y=(x+3)(x﹣1)…①,当∠MAO=45°时,如图所示,则直线AM的表达式为:y=x…②,联立①②并解得:m=x=4或﹣3(舍去﹣3),故点M(4,7);②∠M′AO=45°时同理可得:点M(﹣2,﹣1);故:﹣2≤m≤4;(3)①当BD是矩形的边时,如图2所示,过点Q作x轴的平行线EF,过点B作BE⊥EF,过点D作DF⊥EF,抛物线的表达式为:y=ax2+2ax﹣3a,函数的对称轴为:x=1,抛物线点A、B的坐标分别为:(﹣3,0)、(1,0),则点P的横坐标为:1,OB=1,而CD=4BC,则点D的横坐标为:﹣4,故点D(﹣4,5a),即HD=5a,线段BD的中点K的横坐标为:=﹣,则点Q的横坐标为:﹣2,则点Q(﹣2,﹣3a),则HF=BE=3a,∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,∴∠QBE=∠DQF,∴△DFQ∽△QEB,则,,解得:a=(舍去负值),同理△PGB≌△DFQ(AAS),∴PG=DF=8a=4,故点P(﹣1,4);②如图3,当BD是矩形的边时,作DI⊥x轴,QN⊥x轴,过点P作PL⊥DI于点L,同理△PLD≌△BNQ(AAS),∴BN=PL=3,∴点Q的横坐标为4,则点Q(4,21a),则Q N=DL=21a,同理△PLD∽△DI B,∴,即,解得:a=(舍去负值),LI=26a=,故点P(﹣1,),;综上,点P的坐标为:P(﹣1,4)或(﹣1,).4.已知抛物线C1:y=ax2+bx+b2向左平移1个单位长度,再向上平移4个单位长度得到抛物线C2:y=x2(1)直接写出抛物线C1的解析式;(2)如图1,已知抛物线C1交x轴于点A、点B,点A在点B的左侧,点P(2,t)在抛物线C1上,CB⊥PB交抛物线于点C,求C点的坐标;(3)已知点E、点M在抛物线C2上,EM∥x轴,点E在点M左侧,过点M的直线MD与抛物线C2只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段NE =DE,设点M、N的横坐标分别为m、n,求m和n的数量关系(用含m的式子表示n)解:(1)抛物线C2:y=x2向右平移1个单位长度,再向下平移4个单位长度得到C1:故抛物线C1的解析式为:y=(x﹣1)2﹣4;(2)过点B作y轴的平行线MN,过点C作CM⊥MN于点M,过点P作PN⊥MN于点N,∵∠PBN+∠BPN=90°,∠PBN+∠CBM=90°,∴∠BCM=∠PBN,点P的坐标为:(2,﹣3),则N B=3,PN=1,则tan∠PBN==tan∠MCB,设BM=m,则CM=3m,则点C(3﹣3m,m),将点C的坐标代入C1的解析式并解得:m=,故点C(﹣,);(3)设点M、N的坐标为:(m,m2)、(n,n2),则点E(﹣m,m2),将点M的坐标代入一次函数表达式:y=kx+b并解得:直线MD的表达式为:y=kx+m2﹣km,将直线MD的表达式与y=x2联立并整理得:x2=kx+m2﹣km,△=k2﹣4(﹣m2+km)=0,解得:k=2m,故直线MD的表达式为:y=2mx﹣m2,由点N、E的坐标,由中点公式得:点D(﹣2m﹣n,2m2﹣n2),将点D的坐标代入y=2mx﹣m2并整理得:n2﹣2mn﹣7m2=0,解得:n=(1)m.5.如图,直线y=x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P 的坐标.解:(1)直线y=x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=,故抛物线的表达式为:y=x2﹣x﹣2…①;(2)设点M(m, m2﹣m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(m﹣)x﹣2,则点N(,0),当=时,则=,即:=,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,﹣3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2…②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);(2)②当∠PAB=OAB时,无解;③当∠PAB=OBA时,则AH =BH ,设OH =a ,则AH =BH =4﹣a ,AO =2,故(4﹣a )2=a 2+4,解得:a =,故点H (,0),则直线AH 的表达式为:y =x ﹣2…③,联立①③并解得:x =0或(舍去0),故点P (,);综上,点P 的坐标为:(﹣1,0)或(,). 6.已知抛物线y =ax 2+bx +c (a ≠0)经过原点,(1)当顶点坐标为(2,2)时,求此函数的解析式;(2)继续探究,如果b ≠0,且抛物线顶点坐标为(m ,m ),m ≠0,求此函数的解析式(用含m 的式子表示)(3)现有一组过原点的抛物线,顶点A 1,A 2,A n 在直线y =x 上,横坐标依次为1,2,…,n (n 为正整数,且n ≤12),分别过每个顶点作x 轴的垂线,垂足记为B 1,B 2,…,B n ,以线段A n B n 为边向右作正方形A n B n ∁n D n ,若这组抛物线中有一条经过D n ,求所有满足条件的正方形边长.解:抛物线y =ax 2+bx +c (a ≠0)经过原点,则抛物线的表达式为:y =ax 2+bx ;(1)顶点坐标为(2,2)时,抛物线的表达式为:y =a (x ﹣2)2+2=ax 2﹣4ax +4a +2,故4a +2=0,解得:a =﹣,故抛物线的表达式为:y =﹣(x ﹣2)2+2=﹣x 2+2x ;(2)抛物线顶点坐标为(m ,m ),抛物线的表达式为:y =a (x ﹣m )2+m =ax 2﹣2max +am 2+m ,即:am 2+m =0,解得:a =﹣,故抛物线的表达式为:y =﹣(x ﹣m )2+m =﹣x 2+2x ;(3)∵顶点A 1,A 2,…,A n 在直线y =x 上,∴可设A n (n ,n ),点D n 所在的抛物线顶点坐标为(t ,t ).∴a =﹣,b =2,∴由(1)(2)可得,点D n 所在的抛物线解析式为y =﹣x 2+2x .∵四边形A n B n ∁n D n 是正方形,∴点D n 的坐标是(2n ,n ),∴﹣(2n )2+2•2n =n ,∴4n =3t .∵t 、n 是正整数,且t ≤12,n ≤12,∴n =3,6或9.∴满足条件的正方形边长是3,6或9.7.在平面直角坐标系中,抛物线y =mx 2﹣2x +n 与x 轴的两个交点分别为A (﹣3,0),B (1,0),C 为顶点.(1)求m 、n 的值.(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由.解:(1)把A (﹣3,0),B (1,0)代入y =mx 2﹣2x +n 得,,解得:;故m的值为﹣1,n的值为3;(2)存在,理由:过C作CE⊥y轴于E,∵抛物线的解析式为y=﹣x2﹣2x+3,∴y=﹣(x+1)2+4,∴C(﹣1,4),∴CE=1,OE=4,设D(0,a),则OD=a,DE=4﹣a,∵△ACD是以AC为斜边的直角三角形,∴∠CDE+∠ADO=90°,∴∠CDE=∠DAO,∴△CDE∽△DAO,∴=,∴=,∴a1=1,a2=3,∴点D的坐标为(0,1)或(0,3).8.如图1,已知y=的图象与x轴交于A,B两点,点P是抛物线上在第四象限的点,且tan∠BAP=.(1)求点P的坐标;(2)抛物线的对称轴交x轴于点Q,若抛物线上存在点C,使得∠CPQ=∠PQB,求点C 的坐标;(3)将x轴下方的抛物线沿x轴向上翻折得到如图2所示的图象,若直线y=kx+与这个图形恰有四个公共点,求出此时k的取值范围.解:(1)y=…①,令y=0,则x=6或﹣2,即点A、B的坐标分别为(﹣2,0)、(6,0),函数的对称轴为:x=2,tan∠BAP=,则设直线AP的表达式为:y=﹣x+b,将点A的坐标代入上式并解得:b=﹣,则直线AP的表达式为:y=﹣x﹣…②,联立①②并解得:x=3或﹣2(舍去﹣2),故点P(3,﹣3);(2)①如图,当点C在点P下方时,设直线PC与x轴交于点N,过点N作NM⊥PQ于点M,∵∠CPQ =∠PQB ,∴点M 是PQ 的中点,点P 、Q 的坐标分别为(3,﹣3)、(2,0),故点M (,﹣), 直线PQ 表达式中的k 值为:﹣3,则直线MN 的表达式为:y =x +b ,将点M 坐标代入上式并解得:b =﹣,故直线MN 的表达式为:y =x ﹣, 故点N (7,0),同理过点P 、N 的直线的函数表达式为:y =x ﹣…③,联立①③并解得:x =3或(舍去3),故点C (,﹣);②当点C (C ′)在点P 上方时, ∵∠C ′PQ =∠PQB∴C ′P ∥x 轴,点P (3,﹣3), 则点C ′(1,﹣3),综上,点C 的坐标为(1,﹣3)或(,﹣);(3)①当k <0时,抛物线沿x 轴向上翻折后顶点的纵坐标为,设点K (0,),作直线m 过点K 和翻折后顶点,m =1,(k =0), 则直线m 与图形有3个交点,过点K、B作直线n,将点K、B的坐标代入一次函数表达式并解得:直线n的表达式为:y=﹣x+,直线n与图形有3个交点,故在直线m与n之间的部分,直线与这个图形恰有四个公共点,故:﹣<k<0;②当k≥0时,当k=0时,直线和图象有4个交点,当直线与二次函数相切时,同理可得:k=,故:0<k<;当直线过点(﹣2,0)时,k=时,直线和图象有3个交点,∴0≤k<且k≠时,直线和图象有4个交点;综上,k的取值范围为:﹣<k<0或0≤k<且k≠,即﹣<k<且k≠.9.如图,已知抛物线C1的顶点为E(,﹣),与x轴交于点A,B(点A在点B左侧),与y轴交于点C(0,﹣2)(1)求抛物线C1的解析式;(2)点D是抛物线C1上一点,且∠ACO+∠BCD=45°,求点D的坐标;(3)在(2)的条件下,直线l1经过第四象限的D点,且直线l1与抛物线C1只有一个交点,l2:y=2x+n交抛物线C1于点E,F,记△DEF的面积为S,求1<S<8时n的取值范围.解:(1)抛物线的表达式为:y=a(x﹣)2,将点C坐标代入上式并解得:a=1,故抛物线的表达式为:y=(x﹣)2﹣=x2﹣x﹣2…①;(2)∵OB=OC=2,∴∠BCO=45°,①当点D在BC上方时,如下图:连接AC、BC,tan∠ACO=,∵∠ACO+∠BCD=45°,而∠BCD+DCO=45°,∴∠ACO=∠DCO,如图所示,故直线CD过(1,0),将(1,0)、点C(0,﹣2)代入一次函数表达式并解得:直线CD的函数表达式为:y=2x﹣2…②,联立①②并解得:x=3,故点D(3,4);②当点D在BC下方时,同理可得:点D(,﹣);综上,点D(3,4)或(,﹣);(3)D(,﹣),如图2,过点D 作DH ∥y 轴交EF 于点H ,则点H (,3+n ), 将直线l 2的表达式与二次函数表达式联立并整理得:x 2﹣3x ﹣(2+n )=0,设点F 、E 的横坐标分别为:r ,t (r >t ), 则r +t =3,rt =﹣2﹣n ,则r ﹣t ==,S =HD ×(r ﹣t )=×(3+n +)=(4n +17),即1<(4n +17)<8,解得:﹣<n <﹣.10.如图1,抛物线的顶点为点A ,与x 轴的负半轴交于点D ,直线AB 交抛物线W 于另一点C ,点B 的坐标为(1,0). (1)求直线AB 的解析式; (2)求tan ∠BDC 的值;(3)将抛物线W 向下平移m (m >0)个单位得到抛物线W 1,如图2,记抛物线W 1的顶点为A 1,与x 轴负半轴的交点为D 1,与射线BC 的交点为C 1.问:在平移的过程中,tan ∠D 1C 1B 是否恒为定值?若是,请求出tan ∠D 1C 1B 的值;若不是,请说明理由.解:(1)在中,当x=0时,有y=﹣2,∴A(0,﹣2),∵点B的坐标为(1,0),可设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x﹣2;(2)在中,当y=0时,有,解得:x1=﹣2,x2=2,∵抛物线与x轴的负半轴交于点D,∴D(﹣2,0),∵点C是直线AB与抛物线W的交点,∴联立方程组,解得,,由此可知,C(4,6),过点C作CE⊥x轴于点E,∴CE=6,OE=4,∴DE=DO+OE=6,∴△CDE为等腰直角三角形,∴∠CDE=45°,∴tan∠CDE=1,∴tan∠BDC=1;(3)tan∠D1C1B恒为定值,理由如下:由题意,抛物线W1的解析式为,设点D1的坐标为(t,0),其中t<0,∴,∴,∴,∵点C1是直线BC与抛物线W1的交点,∴,解得,,∵点C1是直线BC与抛物线W1的交点,且t<0,∴点C1的坐标为(2﹣t,2﹣2t),过C1作C1E1⊥x轴于点E1,∴C1E1=2﹣2t,OE1=2﹣t,∴D1E1=D1O+OE1=2﹣t+(﹣t)=2﹣2t,∴C1E1=D1E1,∴Rt△C1D1E1为等腰直角三角形,∴∠C1D1E1=45°,由(2)知∠BDC=45°.∴∠C1D1E1=∠BDC,∴D1C1∥DC,∴∠D1C1B=∠DCB,∴tan∠D1C1B=tan∠DCB,∴tan∠D1C1B恒为定值.如图2,过B作BF⊥DC于点F,∵∠BDC=45°,∴Rt△BDF为等腰直角三角形,∵BD =OD +OB =3,DF =BF =,由(1)知,DC =6,FC =DC ﹣DF =,∴在Rt △BFC 中,有tan FCB ==,∴tan ∠D 1C 1B =.11.如图,抛物线y =与x 轴分别交于A 、B 两点(点A 在点B 的左侧,)与y轴交于点C ,作直线AC .(1)点B 的坐标为 (2,0) ,直线AC 的关系式为 y =﹣2x ﹣4 .(2)设在直线AC 下方的抛物线上有一动点P ,过点P 作PD ⊥x 轴于D ,交直线AC 于点E ,当CE 平分∠OEP 时求点P 的坐标.(3)点M 在x 轴上,点N 在抛物线上,试问以点A 、C 、M 、N 为顶点的四边形能否成为平行四边形?若存在,直接写出所有点M 的坐标;若不存在,请简述你的理由.解:(1)y =,令y =0,则x =2或﹣8,令x =0,则y =﹣4,故点A 、B 、C 的坐标分别为:(﹣8,0)、(2,0)、(0,﹣4),将点A 、C 的坐标代入一次函数表达式:y =kx +b 得:,解得:,故直线AC 的表达式为:y =﹣2x ﹣4, 故答案为:(2,0),y =﹣2x ﹣4;(2)如图,左侧图是局部放大图,∵CE平分∠OEP时,∴∠OEC=∠CEP,∵PD∥y轴,∴∠CEP=∠ECO=∠OEC=α,则△OEC为等腰三角形,tan∠ECO==2=tanα,则sinα=,过点E作y轴的垂线交于点F,过点O作OH⊥EC于点H,设:OH=2x,则CH=x,而OH2+HC2=OC2,即x2+4x2=16,解得:x=,EF=EC sinα=2××,故m=﹣,则点P(﹣,﹣);(3)设:点N(m,n),n=m2+m﹣4,点M(s,0),①当AC是平行四边形的边时,则点A向右平移8个单位向下平移4个单位得到C,同理N(M)向右平移8个单位向下平移4个单位得到M(N),即m+8=s,n﹣4=0或m﹣8=s,n+4=0,而n=m2+m﹣4,解得:s=5±或﹣14,②当AC是平行四边形的对角线时,利用中点公式得:﹣8=m+s,﹣4=n,而n=m2+m﹣4,解得:s=﹣2;故点M的坐标为:(5+,0)或(5﹣)或(﹣14,0)或(﹣2,0).12.如图,已知直线l:y=﹣1和抛物线L:y=ax2+bx+c(a≠0),抛物线L的顶点为原点,且经过点,直线y=kx+1与y轴交于点F,与抛物线L交于点B(x1,y1),C(x2,y2),且x1<x2.(1)求抛物线L的解析式;(2)点P是抛物线L上一动点.①以点P为圆心,PF为半径作⊙P,试判断⊙P与直线l的位置关系,并说明理由;②若点Q(2,3),当|PQ﹣PF|的值最小时,求点P的坐标;(3)求证:无论k为何值,直线l总是与以BC为直径的圆相切.解:(1)抛物线的表达式为:y=ax2,将点A坐标代入上式得:=a(2)2,解得:a=,故抛物线的表达式为:y=x2…①;(2)①点F(0,1),设:点P(m, m2),则PF==m2+1,而点P到直线l的距离为: m2+1,则⊙P与直线l的位置关系为相切;②当点P、Q、F三点共线时,|PQ﹣PF|最小,将点FQ的坐标代入一次函数表达式:y=kx+b并解得:直线FQ的函数表达式为:y=x+1…②,联立①②并解得:x=2,故点P的坐标为:(2,3);(3)将抛物线的表达式与直线y=kx+1联立并整理得:x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,则y1+y2=k(x1+x2)+2=4k2+2,则x2﹣x1==4,设直线BC的倾斜角为α,则tanα=k,则cosα=,则BC==4(k2+1),则BC=2k2+2,设BC的中点为M(2k,2k2+1),则点M到直线l的距离为:2k2+2,故直线l总是与以BC为直径的圆相切.13.抛物线y=﹣x2+bx+c与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C.直线y=﹣2x+6经过B、C两点,连接AC.(1)求抛物线的解析式:(2)点P是第一象限抛物线上一点,P点横坐标为t,连接PC、PB,设△PBC的面积为S,求S与t之间的函数关系式(直接写出自变量t的取值范围):(3)在(2)问的条件下,当S=3且t<2时,连接PB,在抛物线上是否存在一点Q,使∠PBQ=∠ACB?若存在求出Q点坐标,若不存在,说明理由.解:(1)直线y=﹣2x+6经过B、C两点,则点B、C的坐标为:(3,0),(0,6),将点B、C的坐标代入抛物线表达式并解得:b=1,c=6,故抛物线的表达式为:y=﹣x2+x+6…①;(2)过点P作y轴的平行线交BC于点H,设点P(t,﹣t2+t+6),则点H(t,﹣2t+6),S=×PH×OB=(﹣t2+t+6+2t﹣6)=﹣t2+t(0<t<3);(3)S=3,即:﹣t2+t=3,解得:t=1或2(舍去2),故点P(1,6),而点B (0,3),则直线PB的表达式为:y=﹣x+9,则点M(0,9),tan∠BMO=,过点A作AL⊥BC于点L,S=OC×AB=×BC×AL,即3×5=AL×3,解得:AL=,△ABCsin∠ACB==,则tan∠ACB=5=tan∠MBQ,设BQ交y轴于点H,过点H作HN⊥MB于点N,tan∠BMO=,tan∠MBQ=5,设:HN=5x,则BN=x,MN=15x,MB=16x=,解得:x=,HB=x=,则OH2=BH2﹣OB2=,则点H(0,),则BH的函数表达式为:y=﹣x+…②,联立①②并解得:x=﹣(不合题意值已舍去),则点Q(﹣,).14.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点与△ABC的外心重合,求m的取值;(3)点P是坐标平面内的一点,使得△ACB与△MCP相似,且CM的对应边为AC,请写出所有点P的坐标(直接写出结果,不必写解答过程).解:(1)C(0,4),则c=4,抛物线表达式为:y=﹣x2+bx+4,将点A的坐标代入上式并解得:b=2,故抛物线的表达式为:y=﹣x2+2x+4,则点M(1,5);(2)点A(3,1)函数的对称轴为:x=1,则点B(﹣1,1),点C(0,4),直线BC的中点坐标为:(﹣,),则线段BC的中垂线的函数表达式为:y=﹣x+,当x=1时,y=2,即外心坐标为(1,2),则二次函数图象向下平移了5﹣2=3个单位;(3)△ACB与△MCP相似,且CM的对应边为AC,存在△ACB∽△CMP或△ACB∽△MPC,点A、B、C、M的坐标分别为:(3,1)、(﹣1,1)、(0,4)、(1,5),则AB=4,BC=,AC=3,CM=,①当△ACB∽△CMP时,如下图左侧图,则,即,解得:PM=,PC=,设点P(r,s),则r2+(s﹣4)2=,(r﹣1)2+(s﹣5)2=,解得:r=,s=4,故点P(,4);②当△ACB∽△CMP时,如上图右侧图,则点P在直线CA上,直线AC的表达式为:y=﹣x+3,同理可得:PC=,设点P(n,﹣n+3),则n2+(3﹣n﹣4)2=,解得:n=(不合题意的值已舍去),故点P(,);综上,点P的坐标为:(,4)或(,).15.已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、B(2,0),与y轴交于点C(0,﹣2),顶点为P(1)求抛物线的解析式;(2)如图,若直线PM与BC交于Q,且sin∠CQP=,求点M的坐标;(3)将抛物线平移至顶点为坐标原点,过F(0,)的直线交抛物线于G、H,GO交直线y=﹣于点N,求证:HN∥y轴.解:(1)函数的表达式为:y=a(x+1)(x﹣2)=a(x2﹣x﹣2),故﹣2a=﹣2,解得:a=1,故函数的表达式为:y=x2﹣x﹣2…①;(2)过点C作PM的平行线交x轴于点H,过点H作HG⊥BC于点G,则∠HCB=∠CQP,∵OB=OC=2,∴∠OBC=45°,设:OH=m,则BH=2﹣m,HG=BH sin∠OBC=(2﹣m),HC=,sin ∠HCB ==sin ∠CQP =,即:=,解得:m =(不合题意的值已舍去),则点H (,0),则直线CH 表达式中的k 值为:3,设直线PQ 的表达式为:y =3x +n ,将点P (,﹣)的坐标代入上式并解得:直线PM 的表达式为:y =3x ﹣…②,联立①②并解得:x =或(舍去),故点M (,);(3)新函数的表达式为:y =x 2…③,设点H 、G 的坐标分别为(x 1,x 12)、(x 2,x 22),则直线HG 的表达式为:y =x 2•x ,则点N 的坐标为(﹣,﹣);设直线HG 的表达式为:y =kx +…④,联立③④并整理得:x 2﹣kx ﹣=0,则x 1x 2=﹣,x 1=﹣则点H 的横坐标为:﹣,点H 、N 的横坐标均为:﹣, 故HN ∥y 轴.16.综合探究如图(1)示,抛物线y =x 2﹣x ﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 连接AC ,BC 得到△ABC ,再将它向右平移得到△A ′B ′C ′对应点如图示),直线l 经过B ,C 两点请解答下列问题(1)求直线l 的表达式.(2)如图(2)示,当点C 落在抛物线y =x 2﹣x ﹣2上时,①连接A ′C ,CC ′,BC ′,试判断四边形A ′CC ′B 的形状(要有说理过程); ②设A ′C ′与BC 交于点P ,求四边形BPC ′B ′的面积;(3)如图(3)示,在△ABC 向右平移的过程中,设点A ′关于直线l 的对称点为点A ″,试猜想点A ″能否落在直线B ′C ′上?若能,请直接写出此时△ABC 向右平移的距离;若不能,请说明理由.解:(1)y =x 2﹣x ﹣2,令y =0,则x =3或﹣1,故点A 、B 的坐标分别为(﹣1,0)、(3,0),点C (0,﹣2),将点B 、C 的坐标代入一次函数:y =kx +b 得:,解得:,故直线l 的表达式为:y =x ﹣2…①;(2)①点A 、C 、C ′、B 的坐标分别为:(﹣1,0)、(0,﹣2)、(2,﹣2)、(3,0),故:AC =,BC ′=,CC ′∥A ′B ,故A ′CC ′B 为等腰梯形;②同理可得:直线A ′C ′的表达式为:y =﹣2x +2…②,联立①②并解得:x =,故点P (,﹣1);S 四边形BPC ′B ′=S △A ′B ′C ′﹣S △A ′BP =×4×2﹣×2×1=3;(3)能,理由:△ABC 向右平移m 个单位,则点B ′的坐标为(3+m ,0),A ′(﹣1+m ,0),连接A′A″、BA″,过点A″作A″H⊥AB于点H,A′A″交BC于点G,设∠A′BG=∠A″BG=α,tanα=,则sinα=,cos,由三角形面积公式得: A″H×A′B=BG×A′A″,即:A″H×(3+1﹣m)=2(3+1﹣m)sinαcosα=(4﹣m)(4﹣m),A″H=(4﹣m),故点A″[3﹣(4﹣m),(4﹣m)],直线B′C′的表达式为:y=(x+m)﹣2,将点A″代入上式并整理得:26m=46(4﹣m),m=.故此时△ABC向右平移的距离为.。
第2单元二次函数压轴精选40题一.选择题(共3小题)1.对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或B.﹣3<n<﹣1或C.n≤﹣1或D.﹣3<n<﹣1或n≥1【答案】A【解答】解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.2.如图,函数y=ax2+bx+c的图象过点(﹣1,0)和(m,0),请思考下列判断:①abc<0;②4a+c<2b;③=1﹣;④am2+(2a+b)m+a+b+c<0;⑤|am+a|=正确的是()A.①③⑤B.①②③④⑤C.①③④D.①②③⑤【答案】B【解答】解:∵抛物线开口向下,∴a<0,∵抛物线交y轴于正半轴,∴c>0,∵﹣>0,∴b>0,∴abc<0,故①正确,∵x=﹣2时,y<0,∴4a﹣2b+c<0,即4a+c<2b,故②正确,∵y=ax2+bx+c的图象过点(﹣1,0)和(m,0),∴﹣1×m=,am2+bm+c=0,∴++=0,∴=1﹣,故③正确,∵﹣1+m=﹣,∴﹣a+am=﹣b,∴am=a﹣b,∵am2+(2a+b)m+a+b+c=am2+bm+c+2am+a+b=2a﹣2b+a+b=3a﹣b<0,故④正确,∵m+1=|﹣|,∴m+1=||,∴|am+a|=,故⑤正确,故选:B.3.定义符号min{a,b}含义为:当a>b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,2)=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.B.C.1D.0【答案】A【解答】解:在同一坐标系xOy中,画出二次函数y=﹣x2+1与正比例函数y =﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为小于;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所述,min{﹣x2+1,﹣x}的最大值是.故选:A.二.填空题(共2小题)4.设O为坐标原点,点A、B为抛物线y=2x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值为.【答案】.【解答】解:如图,分别作AE、BF垂直于x轴于点E、F,设OE=a,OF=b,由抛物线解析式为y=2x2,则AE=2a2,BF=2b2,作AH⊥BF于H,交y轴于点G,连接AB交y轴于点D,设点D(0,m),∵DG∥BH,∴△ADG∽△ABH,∴,即.化简得:m=2ab.∵∠AOB=90°,∴∠AOE+∠BOF=90°,又∠AOE+∠EAO=90°,∴∠BOF=∠EAO,又∠AEO=∠BFO=90°,∴△AEO∽△OFB.∴,即,化简得4ab=1.则,说明直线AB过定点D,D点坐标为.∵,∴点C是在以DO为直径的圆上运动,∴当点C到y轴距离为时,点C到y轴的距离最大.故答案为:.5.二次函数y=x2的图象如图.点A0位于坐标原点,点A1,A2,A3,…,A n在y轴的正半轴上,点B1,B2,B3,…,B n在二次函数位于第一象限的图象上,点C1,C2,C3,…,∁n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形A n﹣1B n A n∁n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=…=∠A n﹣1B n A n=60°,则△A0B1A1的边长为B n A n∁n的周长为.,菱形A n﹣1【答案】,.【解答】解:过点B1作B1D1垂直x轴于点D1,过点B2作B2D2垂直x轴于点D2,过点B3作B3D3垂直x轴于点D3,过点A1E1⊥B2D2于点E1,过点A2E2⊥B3D3于点E2,∵四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3,…,四边形.A n﹣1B n A n∁n 都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=⋅⋅⋅=∠A n﹣1B n A n=60°,∴△A0B1A1是等边三角形,设点B1坐标为(x,y),则:y=x2,∵∠A0B1A1=60°,∴∠B1A0D1=30°,在Rt△B1D1A0中,,∴,解得:(舍去)或,∴,∴,∴△A0B1A1的边长为,∴菱形A0B1A1C1的周长=;设点B2坐标为(x,y),在Rt△B2E1A1中,,且y=x2,∴,解得,或(舍去),∴,∵,∴,∴,∴菱形A1B2A2C2的周长=;同法可得:菱形A2B3A3C3的周长=;B n A n∁n的周长为:;∴菱形A n﹣1故答案为:,.三.解答题(共35小题)6.在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图甲,在y轴上找一点D,使△ACD为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)(0,0)或(0,﹣3)或(0,3﹣3)或(0,3+3);(3)存在,P(﹣1,3﹣),Q(﹣4,﹣)或P(﹣1,3+),Q(﹣4,)或P(﹣1,1),Q(﹣2,2)或P(﹣1,),Q(2,3+)或P(﹣1,﹣),Q(2,3﹣).【解答】解:(1)∵A(﹣3,0),B(1,0)两点在抛物线上,∴,解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴C(0,3),等腰△ACD,如图甲,当以点D为顶点时,DA=DC,点D与原点O重合,∴D(0,0);当以点A为顶点时,AC=AD,AO是等腰△ACD中线,∴OC=OD,∴D(0,﹣3);当以点C为顶点时,AC=CD===3,∴点D的纵坐标为3﹣3或3+3,∴D(0,3﹣3)或(0,3+3);综上所述,点D的坐标为(0,0)或(0,﹣3)或(0,3﹣3)或(0,3+3);(3)存在,理由如下:抛物线y=﹣x2﹣2x+3的对称轴为:x=﹣1,设P(﹣1,t),Q(m,n),∵A(﹣3,0),C(0,3),则AC2=(﹣3)2+32=18,AP2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图1,∴t2﹣6t+10=18,解得:t=3±,∴P1(﹣1,3﹣),P2(﹣1,3+),∵四边形ACPQ是菱形,∴AP与CQ互相垂直平分,即AP与CQ的中点重合,当P1(﹣1,3﹣)时,∴=,=,解得:m=﹣4,n=﹣,∴Q1(﹣4,﹣),当P2(﹣1,3+)时,∴=,=,解得:m=﹣4,n=,∴Q2(﹣4,);②以AC为对角线时,则PC=AP,如图2,∴t2﹣6t+10=t2+4,解得:t=1,∴P3(﹣1,1),∵四边形APCQ是菱形,∴AC与PQ互相垂直平分,即AC与CQ中点重合,∴=,=,解得:m=﹣2,n=2,∴Q3(﹣2,2);③当以CP为对角线时,则AP=AC,如图3,∴t2+4=18,解得:t=±,∴P4(﹣1,),P5(﹣1,﹣),∵四边形ACQP是菱形,∴AQ与CP互相垂直平分,即AQ与CP的中点重合,∴=,=,解得:m=2,n=3±,∴Q4(2,3+),Q5(2,3﹣);综上所述,符合条件的点P、Q的坐标为:P(﹣1,3﹣),Q(﹣4,﹣)或P(﹣1,3+),Q(﹣4,)或P(﹣1,1),Q(﹣2,2)或P(﹣1,),Q(2,3+)或P(﹣1,﹣),Q(2,3﹣).7.已知函数y=﹣x2+(m﹣3)x+2m(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的取值范围.【答案】(1)2个;(2)证明见解答过程;(3)4≤|AB|≤8.【解答】(1)解:∵Δ=(m﹣3)2+8m=(m+1)2+8>0,∴该函数图象与x轴的公共点的个数2个;(2)证明:∵y=﹣x2+(m﹣3)x+2m=﹣(x﹣)2+,把x=代入y=x2+4x+6=(x+2)2+2得:y=(+2)2+2=+2=,∴不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上.(3)解:过A作AC∥x轴,过B作BC∥y轴,如图,则△ACB是等腰直角三角形,设直线y=x与y=﹣x2+(m﹣3)x+2m的交点为A(x1,y1)B(x2,y2),联立方程得:,化简得:x2﹣(m﹣4)x﹣2m=0,∴x1+x2=m﹣4,x1x2=﹣2m,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣4)2﹣4(﹣2m)=m2+16,∴|AB|=,∵﹣4≤m≤2,∴当m=0时,|AB|有最小值为4,当m=﹣4时,|AB|有最大值为8,∴4≤|AB|≤8.8.如图,已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,点P为直线BC上方抛物线上一点.(1)求抛物线的解析式;(2)当点P的坐标为(1,4)时,求△PBC的面积;(3)当∠BCP=∠CAB时,求点P的坐标;(4)若点P的坐标为(2,3),连接PA,交直线BC于点E,交y轴于点F,点H在抛物线上,过H作HK∥y轴,交直线AP于点K.点Q是平面内一点,当以点E,H,K,Q为顶点的四边形是正方形时,请直接写出点Q的坐标.【答案】(1)y=﹣x2+2x+3;(2)3;(3);(4)点Q的坐标为(5,2)或或.【解答】解:(1)把A(﹣1,0)、B(3,0)、C(0,3)三点代入y=ax2+bx+c,得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3;(2)由(1)可知:y=﹣x2+2x+3,∴y=﹣(x﹣1)2+4,∵点P的坐标为(1,4),∴点P即为抛物线的顶点,过点P作PM∥y轴,交BC于点M,∵B(3,0)、C(0,3),设直线BC的解析式为:y=k1x+b1,∴,解得:,∴直线BC的解析式为:y=﹣x+3,∵PM∥y轴,P(1,4),M(1,2),∴PM=2,=S△PCM+S△BPM=,=∴S△PBC=3;(3)过B点作BD⊥x轴交射线CP于D,如图所示:∵A(﹣1,0)、B(3,0)、C(0,3),∴AB=4,OB=OC=3,∴,∠ABC=∠DBC=45°,∵∠BCP=∠CAB,∴△ABC~△CBD,∴,∴,∴,∴,设直线CD的解析式为:y=k2x+3,将代入得,,∴,∴直线CD的解析式为:,∴,解得:或,∴(4)∵P(2,3),A(﹣1,0)设直线CD的解析式为:y=mx+n,∴,解得:,∴直线AP的解析式为:y=x+1,∴F(0,1),∴OF=OA=1,∴∠EAB=45°,∵∠EBA=45°,∴∠AEB=90°,∴AP⊥BC,由(1)可知:直线BC的解析式为:y=﹣x+3,∴,解得:,∴E(1,2),∵以点E,H,K,Q为顶点的四边形是正方形,∴分两种情况讨论,:①当EH⊥EK时,H点在BC上,K点在AP上,如图所示:∵点H在抛物线上,∴点H为直线BC与抛物线的交点,∴,∴或,H(0,3)或H(3,0),当H(0,3)时,,∴,∴K(0,1),∴HK的中点为(0,2),则EQ的中点也为(0,2),∴Q(﹣1,2),但此时HK与y轴重合,不符合与y轴平行,∴Q(﹣1,2)不符合题意;当H(3,0)时,,∴,∴K(3,4),∴HK的中点为(3,2),则EQ的中点也为(3,2),∴Q(5,2),②当EH⊥HK时,此时EH⊥y轴,如图所示:∵y=﹣x2+2x+3,令y=2,则﹣x2+2x+3=2,解得:,∴或,当时,,∴,∴;当时,,∴,∴;综上所述:当以点E,H,K,Q为顶点的四边形是正方形,点Q的坐标为(5,2)或或.9.如图,在平面直角坐标系中,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求线段AC的长度;(2)点P为直线AC下方抛物线上的一动点,且点P在抛物线对称轴左侧,过点P作PD∥y轴,交AC于点D,作PE∥x轴,交抛物线于点E.求3PD+PE 的最大值及此时点P的坐标;(3)在(2)中3PD+PE取得最大值的条件下,将该抛物线沿着射线CA方向平移个单位长度,得到一条新抛物线y′,M为射线CA上的动点,过点M作MF∥x轴交新抛物线y′的对称轴于点F,点N为直角坐标系内一点,请直接写出所有使得以点P,F,M,N为顶点的四边形是菱形的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.【答案】(1)线段AC的长度为;(2)3PD+PE取最大值6,P的坐标为(﹣2,﹣2);(3)N的坐标为(,﹣2)或(﹣6,)或(,﹣2)或(,﹣2).【解答】解:(1)在y=x2+x﹣2中,令x=0得y=﹣2;∴C(0,﹣2);令y=0得:0=x2+x﹣2,解得x=1或x=﹣3,∴A(﹣3,0),B(1,0),∴AC==,∴线段AC的长度为;(2)∵y=x2+x﹣2=(x+1)2﹣,∴抛物线y=x2+x﹣2的对称轴是直线x=﹣1,设P(m,m2+m﹣2),由A(﹣3,0),C(0,﹣2)得直线AC的解析式为y=﹣x﹣2,∴D(m,﹣m﹣2),∴PD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∵PE关于直线x=﹣1对称,∴PE=2(﹣1﹣m)=﹣2﹣2m,∴3PD+PE=3(﹣m2﹣2m)﹣2﹣2m=﹣2m2﹣8m﹣2=﹣2(m+2)2+6,∵﹣2<0,∴当m=﹣2时,3PD+PE取最大值6,此时P的坐标为(﹣2,﹣2);(3)∵A(﹣3,0),C(0,﹣2),∴将抛物线y=(x+1)2﹣沿着射线CA方向平移个单位长度相当于先向左平移3个单位,再向上平移2个单位,∴新抛物线解析式为y'=(x+1+3)2﹣+2=(x+4)2﹣,∴新抛物线的对称轴为直线x=﹣4;设M(t,﹣t﹣2),N(p,q),则F(﹣4,﹣t﹣2),而P(﹣2,﹣2),①若MN,FP为对角线,则MN,FP的中点重合,且PM=PN,∴,解得:或(此时M不在射线CA上,舍去);∴N(,﹣2);②若MF,NP为对角线,则MF,NP的中点重合,且PM=PF,∴,解得:(此时N,P重合,舍去)或,∴N(﹣6,);③若MP,NF为对角线,则MP,NF的中点重合,且MF=PF,∴,解得:或,∴N(,﹣2)或(,﹣2);综上所述,N的坐标为(,﹣2)或(﹣6,)或(,﹣2)或(,﹣2).10.如图所示,抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C.点M为抛物线的顶点.(1)求抛物线的表达式及顶点M的坐标;(2)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求△BCN面积的最大值及此时点N的坐标;(3)若点D是抛物线对称轴上的动点,点G是抛物线上的动点,是否存在以点B、C、D、G为顶点的四边形是平行四边形.若存在,请直接写出点G的坐标;若不存在,试说明理由.【答案】(1)y=x2﹣2x﹣3,顶点坐标为:(1,﹣4);(2)N的坐标为();(3)G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5).【解答】解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3=(x﹣1)2﹣4;顶点坐标为:(1,﹣4).(2)过N点作x轴的垂线交直线BC于Q点,如图:在y=x2﹣2x﹣3中,令x=0得y=﹣3,∴C(0,﹣3),设直线BC解析式为y=kx+m,∴,解得,∴直线BC的解析式为:y=x﹣3,设N点坐标为(n,n2﹣2n﹣3),则Q点坐标为(n,n﹣3),其中0<n<3,∴NQ=n﹣3﹣(n2﹣2n﹣3)=﹣n2+3n,=NQ•|x B﹣x C|=(﹣n2+3n)×3=﹣n2+n=﹣(n﹣)2+,∴S△BCN∵﹣<0,有最大值为,∴当n=时,S△BCN此时n2﹣2n﹣3=()2﹣2×﹣3=﹣,∴N的坐标为();(3)设D点坐标为(1,t),G点坐标为(m,m2﹣2m﹣3),且B(3,0),C(0,﹣3).分情况讨论:①当DG为对角线时,则另一对角线是BC,由对角线互相平分及中点坐标公式可知,解得,经检验此时四边形DCGB为平行四边形,此时点G的坐标为(2,﹣3).②当DB为对角线时,则另一对角线是GC,由对角线互相平分及中点坐标公式可知,,解得,经检验此时四边形DCBG为平行四边形,此时点G的坐标为(4,5).③当DC为对角线时,则另一对角线是GB,由对角线互相平分及中点坐标公式可知,,解得,经检验此时四边形DGCB为平行四边形,此时点G的坐标为(﹣2,5).综上所述,G点坐标存在,为(2,﹣3)或(4,5)或(﹣2,5).11.已知抛物线y=x2+bx﹣3与x轴交于A、B两点,与y轴交于点C,其中点A 在x轴的负半轴上,点B在x轴的正半轴上,且tan∠ACO=.(1)求抛物线的解析式.(2)如图1,在第一象限内的抛物线上是否存在点D,满足条件∠DCB=∠ACO?若存在,请求出点D的坐标;若不存在,请说明理由.(3)如图2,设P是y轴上的一个动点,连接AP并延长交抛物线于另一点M,连接BP并延长交抛物线于另一点N,若M、N的横坐标分别为m、n.试探究m、n之间的数量关系.【答案】(1)y=x2﹣2x﹣3;(2)存在;D(4,5);(3)m+3n=0.【解答】解:(1)由题意可得点C(0,﹣3),∴OC=3,∴OA=OC•tan∠ACO=1,∴点A的坐标为:(﹣1,0),′代入y=x2+bx﹣3,得0=1﹣b﹣3,∴b=﹣2,∴抛物线解析式为:y=x2﹣2x﹣3;(2)存在.设CD交x轴于点E,由(1)可得:B(3,0),C(0,﹣3),∴OB=OC=3,∠OBC=∠OCB=45°,∵∠DCB=∠ACO,∴∠AEC=∠DCB+45°=∠ACO+45°,又∵∠ACB=∠ACO+45°,∴∠AEC=∠ACB,而∠CAB=∠BAC,∴△ACE∽△ABC,∴.其中AB=4,AC=,∴AE=,∴OE=AE﹣OA=,即点E(,0).设CD:y=kx+a,把C、E的坐标代入,得:,解得:,∴CD:y=2x﹣3,联立方程组得:,解得:或(舍去),∴D(4,5);(3)设点P的坐标为(0,t),由A(﹣1,0),P(0,t)可得:AP:y=tx+t.把y=tx+t代入y=x2﹣2x﹣3,消去y,并化简得:x2﹣(t+2)x﹣t﹣3=0,∵x A=﹣1,x M=m是上面方程的两个根,∴x A•x M=﹣t﹣3,∴m=t+3①;同理可得BP:y=﹣x+t.把y=x+t代入y=x2﹣2x﹣3,消去y,并化简得:x﹣t﹣3=0,∵x B=3,x N=n是上面方程的两个根,∴x B•x N=﹣t﹣3,∴3n=﹣t﹣3②,由①+②得:m+3n=0.12.如图,在平面直角坐标系中,二次函数y=﹣+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点B的坐标是(﹣8,0),点P (m,n)为该二次函数在第二象限内图象上的动点,点D为(0,4),连接BD.(1)求该二次函数的表达式;(2)依题补图1:连接OP,过点P作PQ⊥x轴于点Q;当△OPQ和△OBD 相似时,求m的值;(3)如图2,过点P作直线PQ∥BD,和x轴交点为Q,在点P沿着抛物线从点A到点B运动过程中,当PQ与抛物线只有一个交点时,求点Q的坐标.【答案】(1);(2)m的值为﹣4或;(3).【解答】解:(1)把A(0,8),B(﹣8,0)代入得,,解得,∴该二次函数的表达为;(2)如图:设,由∠OQP=∠BOD=90°,分两种情况:当△POQ∽△BDO时,,∴,∴PQ=2OQ,即,解得m=﹣4,或m=8(舍去);当△POQ∽△DBO时,,∴OQ=2PQ,即,解或(舍去),综上所述,m的值为﹣4或;(3)如图,设直线BD解析式为y=kx+n,∴,解得,∴直线BD解析式为,∵PQ∥BD,∴设直线PQ的解析式为,当直线PQ与的图象只有一个交点时,联立,整理得x2+6x﹣32+4n2=0,∴Δ=62﹣4×(﹣32+4n2)=0,解得,∴当时,直线PQ的解析式为,此时直线PQ与的图象只有一个交点,令y=0,则,解得,此时.13.如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A 在y轴上),运动员乙在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面约4米高.球第一次落地点后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式.(2)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取,)【答案】见试题解答内容【解答】解:(1)如图,设第一次落地时,抛物线的表达式为y=a(x﹣6)2+4.由已知:当x=0时y=1.即1=36a+4,∴a=﹣.∴表达式为y=﹣(x﹣6)2+4;(2)由题意得:0=﹣(x﹣6)2+4解得:x1=4+6≈13,x2=﹣4+6<0(舍去),∴点C坐标为(13,0).设第二次落地的抛物线为y=﹣(x﹣k)2+2.将C点坐标代入得:0=﹣(13﹣k)2+2.解得:k1=13﹣2<13(舍去),k2=13+2≈18.∴y=﹣(x﹣18)2+2.0=﹣(x﹣18)2+2.x 1=18﹣2(舍去),x2=18+2≈23,∴BD=23﹣6=17(米).答:运动员乙要抢到第二个落点D,他应再向前跑17米.14.如图1,在平面直角坐标系中,二次函数y=ax2+bx﹣3(a≠0)的图象与x 轴于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)当动点P运动到什么位置时,使四边形ACPB的面积最大,求出此时四边形ACPB的面积最大值和P的坐标;(3)如图2,点M在抛物线对称轴上,点N是平面内一点,是否存在这样的点M、N,使得以点M、N、A、C为顶点的四边形是菱形?若存在,请直接写出所有M点的坐标;若不存在,请说明理由.【答案】(1)y2=x2﹣2x﹣3;(2)当时,四边形ABCP的最大值是,此时点P的坐标为;(3)存在,、;M 3(1,0);M5(1,﹣1).【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,∴,解得:,∴这个二次函数的表达式为:y=x2﹣2x﹣3;(2)设点P的坐标为(m,m2﹣2m﹣3),S四边形ACPB=S△AOC+S△COP+S△BOP,===,∵,∴当时,四边形ABCP的最大值是,此时点P的坐标为,(3)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,当x=0时,y=﹣3,∴C(0,﹣3),设点M的坐标为(1,t),则:AM2=(﹣1﹣1)2+(0﹣t)2,AC2=(﹣1﹣0)2+[0﹣(﹣3)]2,CM2=(0﹣1)2+(﹣3﹣t)2,设AC的中点为Q,则点Q的坐标为,即,∴,,当AM=AC时,则AM2=AC2,∴(﹣1﹣1)2+(0﹣t)2=(﹣1﹣0)2+[0﹣(﹣3)]2,解得,,∴、,;当CM=CA时,则CM2=CA2,∴(0﹣1)2+(﹣3﹣t)2=(﹣1﹣0)2+[0﹣(﹣3)]2,解得,t1=0,t2=﹣6,∴M3(1,0)、M4(1,﹣6)(舍去,此时M、A、C三点共线,无法构成菱形);当AC为对角线时则有:AQ2+QM2=AM2,∴=(﹣1﹣1)2+(0﹣t)2,解得,t=﹣1,∴M5(1,﹣1),∴存在这样的点M、N能够使得以点M、N、A、C为顶点的四边形是菱形,此时点M的坐标为:、、M 3(1,0)、M5(1,﹣1).15.如图,在平面直角坐标系中,直线y=2x+6与x轴交于点A,与y轴交点C,抛物线y=﹣2x2+bx+c过A,C两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一动点E,连接BE,与直线AC相交于点F,当时,求E点坐标;(3)在(2)的条件下,若点E位于对称轴左侧,点M是抛物线对称轴上一点,点N是抛物线上一点,当以M,N,E,B为顶点的四边形是菱形时,直接写出点M的坐标.【答案】(1)y=﹣2x2﹣4x+6;(2)E点坐标为(﹣2,6)或(﹣1,8);(3)M的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,)或(﹣1,﹣2+6)或(﹣1,2+6).【解答】解:(1)在y=2x+6中,当x=0时y=6,当y=0时x=﹣3,∴C(0,6),A(﹣3,0),∵抛物线y=﹣2x2+bx+c的图象经过A、C两点,∴,解得,∴抛物线的解析式为y=﹣2x2﹣4x+6;(2)方法一:令﹣2x2﹣4x+6=0,解得x1=﹣3,x2=1,∴B(1,0),设E(t,﹣2t2﹣4t+6),如图,过点E作EH⊥x轴于点H,过点F作FG⊥x轴于点G,则EH∥FG,∵EF=BF,∴===,∵BH=1﹣t,∴BG=BH=﹣t,∴点F的横坐标为+t,∵点F在直线y=2x+6上,∴y=2(+t)+6=+t,∴F(+t,+t),∴﹣2t2﹣4t+6=(+t),∴t2+3t+2=0,解得t1=﹣2,t2=﹣1,当t=﹣2时,﹣2t2﹣4t+6=6,当t=﹣1时,﹣2t2﹣4t+6=8,∴E1(﹣2,6),E2(﹣1,8),综上所述:E点坐标为(﹣2,6)或(﹣1,8);方法二:过点E作EH⊥x轴交AC于点H,过点B作BM⊥x轴交AC于点M,∴EH∥BM,设E(m,﹣2m2﹣4m+6),∵直线AC解析式为y=2x+6,∴H(m,2m+6),M(1,8),∴EH=﹣2m2﹣4m+6﹣2m﹣6=﹣2m2﹣6m,MB=8,∵EH∥BM,∴△EHF∽△BMF,∴==,∴=,∴m1=﹣2,m2=﹣1,∴E1(﹣2,6),E2(﹣1,8),综上所述:E点坐标为(﹣2,6)或(﹣1,8);(3)∵抛物线的解析式为y=﹣2x2﹣4x+6=﹣2(x+1)2+8,∴抛物线顶点坐标为(﹣1,8),对称轴方程为x=﹣1,在(2)的条件下,∵点E位于对称轴左侧,∴E(﹣2,6),∵点M是抛物线对称轴上一点,∴设M(﹣1,m),∵B(1,0),E(﹣2,6),∴BM2=(1+1)2+(0﹣m)2=m2+4,BE2=(1+2)2+(0﹣6)2=45,ME2=(﹣1+2)2+(m﹣6)2=m2﹣12m+37,①当EB为菱形的边时,BM=BE,即BM2=BE2,∴m2+4=45,∴m=±,∴M(﹣1,)或(﹣1,﹣);②当EB为菱形的对角线时,BM=ME,即BM2=ME2,∴m2+4=m2﹣12m+37,∴m=,∴M(﹣1,),③当BE=ME时,即BE2=ME2,∴45=m2﹣12m+37,∴m=﹣3+6或m=3+6,∴M(﹣1,﹣2+6)或(﹣1,2+6);综上所述,M的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,)或(﹣1,﹣2+6)或(﹣1,2+6).16.如图1,直线y=﹣2x+2交x轴于点A,交y轴于点C,过A、C两点的抛物线与x轴的另一交点为B.(1)请直接写出该抛物线的函数解析式;(2)点D是第二象限抛物线上一点,设D点横坐标为m.①如图2,连接BD,CD,BC,求△BDC面积的最大值;②如图3,连接OD,将线段OD绕O点顺时针旋转90°,得到线段OE,过点E作EF∥x轴交直线AC于F.求线段EF的最大值及此时点D的坐标.【答案】(1)y=﹣x+2;(2)①4;②(﹣2,3).【解答】解:(1)由题意可得,当x=0时,y=﹣2×0+2=2,当y=0时,﹣2x+2=0,解得x=1,∴A(1,0),B(0,2),代入y=﹣+bx+c得,y=﹣x+2;(2)①连接OD,,令y=0,则﹣x+2=0,解得x1=﹣4,x2=1,∴B(﹣4,0)D在第二象限,∴﹣4<m<0,=S△BOD+S△COD﹣S△BOC∴S△BCD=×4×2=﹣m2﹣4m=﹣(m+2)2+4,当m=﹣2时,△BCD的面积最大为4,②过D作DM⊥x轴于M,EF交y轴于N,在△ODM和△OEN中,,∴△ODM≌△OEN(AAS),∴DM=EN=﹣m+2OM=ON=﹣m,∴,令y=﹣m,则﹣m=﹣2x+2x=m+1EF=﹣m﹣1=﹣﹣2m+1=﹣(m+2)2+3,∴当m=﹣2时EF最大为3,D点的坐标(﹣2,3).17.如图1,抛物线y=ax2+x+c与x轴交于A(﹣2,0),B(4,0)两点,与y轴交于C.(1)求抛物线的解析式;(2)点P是直线BC上方抛物线上的—个动点,使△PBC的面积等于△ABC面积的,求点P的坐标;(3)过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象(如图2),请你结合新图象解答:当直线y=﹣x+d与新图象只有一个公共点Q(m,n),且n≥﹣8时,求d 的取值范围.【答案】(1)抛物线的解析式为y=﹣x2+x+4;(2)点P的坐标为(1,)或(3,);(3)d的取值范围是﹣5≤d<4或d>.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+x+c得:,解得:,∴抛物线的解析式为y=﹣x2+x+4;(2)过P作PK∥y轴交BC于K,如图:在y=﹣x2+x+4中,令x=0得y=4,∴C(0,4),∵A(﹣2,0),B(4,0),∴AB=6,=×6×4=12,∴S△ABC由B(4,0),C(0,4)得直线BC函数表达式为y=﹣x+4,设P(m,﹣m2+m+4),则K(m,﹣m+4),∴PK=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∵△PBC的面积等于△ABC面积的,∴×(﹣m2+2m)×4=12×,解得m=1或m=3,∴点P的坐标为(1,)或(3,);(3)①当公共点Q(m,n)在C(0,4)下方时,在y=﹣x2+x+4中,令y=﹣8得:﹣8=﹣x2+x+4,解得x=6或x=﹣4,∵将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,∴新图象过点(6,﹣8),当直线y=﹣x+d与新图象公共点为(6,﹣8)时,﹣8=﹣×6+d,解得d=﹣5,如图:∵C(0,4),当﹣5≤d<4时,观察图象可知直线y=﹣x+d与翻折后的抛物线无交点,∴当﹣5≤d<4时,直线y=﹣x+d与新图象只有一个公共点;②当公共点Q(m,n)在C(0,4)上方时,如图:若有两个相等的实数解,即﹣x2+x+4﹣d=0的Δ=0,则()2﹣4×(﹣)(4﹣d)=0,解得d=;由图可知,当d>时,直线y=﹣x+d与新图象只有一个公共点;综上所述,d的取值范围是﹣5≤d<4或d>.18.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x 轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=1;n=3;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)1,3;(3)E的坐标为(﹣1,2);(4)点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).【解答】解:(1)把点B(﹣3,0),C(0,3)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式是y=﹣x2﹣2x+3;(2)把B(﹣3,0),C(0,3)代入y=mx+n中得:,解得:;故答案为:1,3;(3)如图1,由(2)知:直线BC的解析式为y=x+3,抛物线的对称轴为直线x=﹣=﹣1,直线BC与直线x=﹣1相交于点E,则EB=EA,此时AE+CE最小,此时点E的坐标为(﹣1,2);(4)∵B(﹣3,0),C(0,3),∴OB=OC=3,∴BC=3,分三种情况:①BC=BP,如图2,此时点P的坐标为(﹣3﹣3,0)或(3﹣3,0);②当P与O重合时,△BPC也是等腰三角形,此时P(0,0);③BC=CP,如图3,此时点P的坐标为(3,0);综上所述,点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).19.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是(1,0).(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.【答案】(1)直线x=﹣7,(﹣7,8);(2)(1,0);(3)y=x2﹣4x+3;(4)a的取值范围是:a=或0<a<或﹣5<a<0.【解答】解:(1)a=﹣时,y=﹣x2﹣x+∴对称轴为直线x=﹣=﹣7,把x=﹣7代入y=﹣x2﹣x+得,y=8,∴顶点坐标为(﹣7,8);(2)∵y=ax2﹣2(a+1)x+a+2(a≠0).∴对称轴为直线x=﹣=1+,∵y=ax2﹣2(a+1)x+a+2=a(x﹣1)2﹣2(x﹣1)=(x﹣1)[a(x﹣1)﹣2],∴二次函数经过的定点坐标为(1,0);故答案为:(1,0);(3)由(2)知:二次函数图象的对称轴为直线x=1+,分两种情况:①当a<0时,1+<1,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,∴当x=1时,y=0,而当1≤x≤5时,函数值有最大值为8,所以此种情况不成立;②当a>0时,1+>1,i)当1<1+≤3时,即a≥,当x=5时,二次函数的最大值为y=25a﹣10(a+1)+a+2=8,∴a=1,此时二次函数的解析式为y=x2﹣4x+3;ii)当1+>3时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,即x=1有最大值,所以此种情况不成立;综上所述:此时二次函数的解析式为:y=x2﹣4x+3;(4)分三种情况:①当抛物线的顶点在线段AB上时,抛物线与线段AB只有一个公共点,即当y=﹣3时,ax2﹣2(a+1)x+a+2=﹣3,ax2﹣2(a+1)x+a+5=0,Δ=4(a+1)2﹣4a(a+5)=0,∴a=,当a=时,x2﹣x+=0,解得:x1=x2=4(符合题意,如图1),②当a>0时,如图2,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴0<a<;③当a<0时,如图3,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴﹣5<a<0;综上所述,a的取值范围是:a=或0<a<或﹣5<a<0.20.如图1,在平面直角坐标系中,抛物线与x轴交于A、B两点,与y轴交于C点,其中A(﹣3,0),∠ACB=90°.(1)求该抛物线的函数解析式;(2)点P是直线AC上方抛物线上的一动点,过P作PM⊥AC于M点,在射线MA上取一点N,使得2MN=AC,连接PN,求△PMN面积的最大值及此时点P的坐标;(3)如图2,在(2)中△PMN面积取得最大值的条件下,将抛物线向左平移,当平移后的抛物线过点P时停止平移,平移后点C的对应点为C',D为原抛物线上一点,E为直线AC上一点,若以O、C′、D、E为顶点的四边形为平行四边形,求符合条件的D点横坐标.【答案】(1)抛物线的解析式为y=﹣x2﹣x+;最大值为×=,点P的坐标为(﹣,);(2)S△PMN(3)满足条件的点D坐标为(,)或(,)或(1,0)或(﹣4,﹣).【解答】解:(1)当x=0时,y=,则C(0,),OC=,∵A(﹣3,0),∴OA=3,则tan∠OAC==,∴∠OAC=30°,又∠ACB=90°,∴∠ABC=90°﹣30°=60°,∴OB==1,则B(1,0),设抛物线的解析式为y=a(x+3)(x﹣1),将C(0,)代入,得﹣3a=,解得a=﹣,∴抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)如图1,过P作PH∥y轴交AC于H,则∠PHM=∠ACO=90°﹣∠OAC =60°,∵PM⊥AC,∴PM=PH•sin∠PHM=PH,∵AC=2OC=2,2MN=AC,∴MN=,=•MN•PM=PM=PH,当PH最大时,S△PMN最大;∴S△PMN设直线AC解析式为y=kx+b′,将A(﹣3,0)、C(0,)代入,得,解得,∴直线AC的解析式为y=x+,由题意,设P(p,﹣p2﹣p+),则H(p,p+),∴PH=﹣p2﹣p+﹣(p+)=﹣p2﹣p=﹣(p+)2+,∵﹣<0,﹣3<p<0,∴当p=﹣时,PH有最大值,最大值为,最大,最大值为×=,此时,点P的坐标为(﹣,);即S△PMN(3)y=﹣x2﹣x+=﹣(x+1)2+,设抛物线向左平移a个单位,则新的抛物线解析式为y=﹣(x+1+a)2+,将点P(﹣,)代入,得=﹣(﹣+1+a)2+,解得a=1或a=0(不合题意,舍去),∴抛物线向左平移1个单位,∵C(0,),∴平移后点C的对应点C′的坐标为(﹣1,),由题意,设D(m,﹣m2﹣m+),E(n,n+),若以O、C′、D、E为顶点的四边形为平行四边形,则分三种情况:当OC′、DE为对角线时,则,消去n,得m2+3m﹣2=0,解得:m=,则点D坐标为(,)或(,);当OD、C′E为对角线时,则,消去n,得m2+3m+4=0,∵Δ=32﹣4×1×4=﹣7<0,∴方程无实数根,即点D不存在;当OE、C′D为对角线时,则,消去n,得m2+3m﹣4=0,解得:m=1或m=﹣4,∴点D的坐标为(1,0)或(﹣4,﹣),综上,满足条件的点D坐标为(,)或(,)或(1,0)或(﹣4,﹣).21.如图1,抛物线y=ax2+bx+3与x轴交于点A(﹣1,0)、点B,与y轴交于点C,顶点D的横坐标为1,对称轴交x轴于点E,交BC于点F.(1)求顶点D的坐标;(2)如图2所示,过点C的直线交线段BD于点M,交抛物线于点N.①若直线CM将△BCD分成的两部分面积之比为2:1,求点M的坐标;②若∠NCB=∠DBC,求点N的坐标.(3)如图1,若点P为线段OC上的一动点,请直接写出2AP+CP的最小值.【答案】(1)(1,4);(2)①或者;②;(3).【解答】解:(1)将A(﹣1,0)代入y=ax2+bx+3得:0=a﹣b+3①,∵顶点D的横坐标为1,∴,即b=﹣2a②,联立①②解得a=﹣1,b=2,∴y=﹣x2+2x+3,当x=1时,y=4,∴D(1,4);(2)①由(1)得y=﹣x2+2x+3,当y=0时,x1=﹣1,x2=3,∴B(3,0),即BO=3,如图,取DB的三等分点M1,M2,过点M1,M2分别作x轴,y轴的平行线分别交DE、x轴于点G、H、P、Q,∴△DGM1∽△DHM2∽△DEB,△BQM2∽△BPM1∽△BED,且相似比为1:2:3,∴,,∴,同理可得:,∴点M的坐标为:,;②∵∠NCB=∠DBC,∴CM=MB,取线段BC的中点G,作直线GM,。
二次函数60道压轴题型专项训练(12大题型)【题型目录】压轴题型一 二次函数的图象与性质压轴题压轴题型二 二次函数与各项系数符号压轴题压轴题型三 根据二次函数的对称性求值压轴题型四 二次函数的平移压轴题压轴题型五 二次函数与坐标轴交点压轴题压轴题型六 二次函数的应用(销售、增长率等问题)压轴题型七 二次函数的应用(图形运动、拱桥、投球等问题)压轴题型八 二次函数中的存在性问题压轴题型九 二次函数与一次函数压轴题压轴题型十 二次函数的翻折问题压轴题型十一 二次函数最值问题压轴题型十二 二次函数的综合【压轴题型一 二次函数的图象与性质压轴题】1.(2024·浙江嘉兴·二模)已知直线3y x =--与抛物线2()4=--y x m 对称轴左侧部分的图象有且只有一个交点,则m 的取值范围是( )A .54m £B .54m £或74m =C .1m £D .1m £或54m =2.(2024·浙江宁波·二模)已知二次函数2y x bx c =++的图象与x 轴只有一个公共点,且当x a =和x a n =+时函数值都为m ,则m 与n 的等量关系为 .3.(2024·浙江杭州·一模)已知二次函数()()13y a x x =--的图像过点()4,m ,(),p n (1)当1m =时,求a 的值;(2)若>>0m n ,求p 的取值范围;(3)求证:0>am an +.4.(2024·浙江杭州·一模)已知二次函数2(2)3(0)y m x m =-->的图象与x 轴交于点(,0),(,0)A a B b .(1)当3a =-时,求b 的值.(2)当0a b <<时,求m 的取值范围.(3)若(1,),(1,)P a p Q b q ++两点也都在此函数图象上,求证:0p q +>.5.(2024·浙江杭州·一模)在平面直角坐标系中,点(1,)m 和(3,)n 都在二次函数2y ax bx =+(0,,¹a a b 是常数)的图象上.(1)若6==-m n ,求该二次函数的表达式和函数图象的对称轴.(2)若1a =-,m n <,求b 的取值范围.(3)已知点()()()1231,,2,,4,y y y -也都在该二次函数图象上,若0mn <且a<0,试比较123y y y ,,的大小,并说明理由.【压轴题型二 二次函数与各项系数符号压轴题】1.(23-24九年级上·浙江杭州·阶段练习)抛物线()20y ax bx c a =++¹的顶点为(12)D -,,与x 轴的一个交点A 在点(30)-,和(20)-,之间,其部分图象如图,则以下结论:①0abc <;②若方程20ax bx c m ++-=没有实数根,则2m >;③320b c +<;④图象上有两点()11,P x y 和()22,Q x y ,若12x x <且122x x +<-,则一定有12y y >;正确的是( )A .4个B .3个C .2个D .1个2.(20-21九年级上·浙江·期末)抛物线2y ax bx c =++(a ,b ,c 为常数,且0a ¹)经过点()1,0-和()0m ,;且12m <<,当1x <-时,y 随着x 的增大而减小.下列结论:①0abc >;②0a b +>③若点()13,A y -,点()23,B y 都在抛物线上,则12y y <;④()10a m b -+=;⑤若1c £-,则244b ac a -£.其中结论正确的是.3.(23-24九年级上·浙江杭州·期中)在二次函数223(0)y x tx t =-+>中.(1)若函数图象的顶点在x 轴上,求t 的值.(2)若点(,)t s 在抛物线上,令q t s =+,求证:134q £.(3)如果(2,)A m a -,()4,B b ,(,)C m a 都在这个二次函数图象上,且3a b <<,求m 的取值范围.4.(2024·云南昆明·二模)在平面直角坐标系中,抛物线()24430y mx mx m m =-+->与x 轴的交点为A ,B .(1)求抛物线的对称轴及顶点坐标;(2)若 1,m =当 3t x t +≤≤时,函数最小值为 2-,求t 的值;(3)横、纵坐标都是整数的点叫做整点.若抛物线在点 A ,B 之间的部分与线段 AB 所围成的区域内(包括边界)恰有10个整点,求m 的取值范围.5.(23-24九年级下·北京·阶段练习)已知抛物线()20y ax bx c a =++>,(1)若抛物线过点()()35m m -,,,,求抛物线的对称轴;(2)已知点()()()()0112042y x y y n -,,,,,,,在抛物线上,其中121x -<<-,若存在1x 使1y n >,试比较012y y y ,,的大小关系.【压轴题型三 根据二次函数的对称性求值】1.(2024·山东淄博·二模)二次函数2y ax bx c =++(a ,b ,c 是常数,0a ¹)的自变量x 与函数值y 的部分对应值如下表:x…2-1-012…2y ax bx c=++…tm2-2-n…且当12x =-时,与其对应的函数值0y >,有下列结论:①函数图象的顶点在第四象限内;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③36m n +<-,其中正确的结论个数是( )A .0个B .1个C .2个D .3个2.(23-24九年级上·安徽芜湖·期中)已知二次函数2y ax bx c =++的图像过点(1,0)A -和(0,1)C .(1)若此抛物线的对称轴是直线12x =,点C 与点P 关于直线12x =对称,则点P 的坐标是 .(2)若此抛物线的顶点在第一象限,设t a b c =++,则t 的取值范围是 .3.(2024·云南曲靖·二模)已知抛物线²y ax bx c =++(a ,b ,c 为常数,0a ¹)(1)若20a b -=,4-+=a b c ,求此抛物线的顶点坐标;(2)在(1)的条件下,抛物线经过点()0,2,将抛物线²y ax bx c =++的图象0x <的部分向下平移h (h 为正整数)个单位长度,平移后的图象恰好与x 轴有2个交点,若点1(,)S m n y -与点2(,)Q m y 在平移后的抛物线上(点S ,Q 不重合),且点S 与点 Q 关于对称轴对称,求代数式22281244m mn n n h -+-+的值.4.(23-24九年级上·北京朝阳·期中)在平面直角坐标系xOy 中,点()1,m ,()4,n 在抛物线()20y ax bx c a =++>上.设抛物线的对称轴为直线x t =.(1)若30a b +=.比较,,m n c 的大小关系,并说明理由;(2)点()00),1(x m x ¹在抛物线上,若m c n <<,求t 及0x 的取值范围.5.(23-24九年级上·北京西城·期中)已知点()11,M x y ,()22,N x y 在抛物线()220y ax bx a =++>的图象上,设抛物线的对称轴为x t =.(1)若()2,1M -,()8,1N -,则t =_______;(2)当12x =-,223x <<时,都有122y y >>,求t 的取值范围.【压轴题型四 二次函数的平移压轴题】1.(2024·河北邯郸·二模)我们把横、纵坐标都是整数的点称为整点,如图,抛物线1C :224y x x =-++与()22:C y x m =-(m 是常数)围成的封闭区域(边界除外)内整点的个数不能是( )A .1个B .2个C .3个D .4个2.(2024·福建·模拟预测)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点()02A ,,点()20C ,,则互异二次函数()2y x m m =--与正方形OABC 有交点时m 的最大值和最小值的差为3.(2024·广东广州·二模)在平面直角坐标系中,将过点()2,1-的抛物线211:4C y x bx =-+(b 为常数)向右平移m 个单位(0m >),再向上平移n 个单位(0n ³)得到新的抛物线2C ,其顶点为E .(1)求点E 的坐标;(用含m ,n 的式子表示)(2)若抛物线2C 与坐标轴有且只有两个公共点,求满足条件的点E 的纵坐标;(3)当1n =时,抛物线2C 与x 轴交于A 、B 两点,与y 轴交于点D ,且当02x ££时,对抛物线1C 上的任意一点P ,在抛物线2C 上总存在一点Q ,使得点P ,Q 的纵坐标相等,探究下列问题:①求m 的取值范围;②若存在一点F ,满足DF AF BF ==,求点F 的纵坐标的取值范围.4.(2024·内蒙古赤峰·二模)小爱同学学习二次函数后,对函数()21y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①至少写出该函数的两条性质;②直接写出方程()211x --=-的解;③直接写出方程()21x a --=有四个实数根时a 的取值范围.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <£时,自变量x 的取值范围.5.(2024·山东济南·二模)已知抛物线1C :26y x mx m =--+交x 轴于点A ,B ,交y 轴于点C .(1)如图1,当点A 坐标为()30-,时,求抛物线的解析式;(2)在(1)的条件下,点D 是第二象限内抛物线上的一点,连接BD ,若BD 将四边形ABCD 平分成面积相等的两部分,求点D 的横坐标;(3)如图2,EFH V 为等边三角形,点F ,H 在x 轴上,且点E 的坐标为()06,,将抛物线1C :26y x mx m =--+向右平移m 个单位,再向下平移6m 个单位后得到新的抛物线2C ,若2C 与等边EFH V 三边恰有四个交点,求m 的取值范围.【压轴题型五 二次函数与坐标轴交点压轴题】1.(2024·浙江杭州·一模)已知抛物线2y ax bx =+与2y bx ax =+的交点为A ,与x 轴的交点分别为B ,C ,点A ,B ,C 的横坐标分别为1x ,2x ,3x ,且1230x x x ¹.若0a b +<,20a b +>,则下列说法正确的是( )A .231x x x <<B .321x x x <<C .213x x x <<D .312x x x <<2.(2023·浙江绍兴·中考真题)在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-££的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++££图象的关联矩形恰好也是矩形OABC ,则b =.3.(23-24九年级上·浙江杭州·期中)已知抛物线()230y ax ax c a =++¹与y 轴交于点A .(1)当1a =,2c =,求该抛物线与x 轴交点坐标;(2)若1a =,点(),P m n 在二次函数抛物线23y ax ax c =++的图象上,且0n c ->,试求m 的值;(3)若点A 的坐标是()0,1,当2c c -<时,抛物线与x 轴只有一个公共点,求a 的取值范围.4.(22-23九年级上·浙江湖州·期末)在书本阅读材料中提到利用几何画板可以探索函数2y ax bx c =++的系数a ,b ,c 与图像的关系.如图1,在几何画板软件中绘制一个二次函数的图像的具体步骤如下:步骤一:在直角坐标系内的x 轴上取任意三个点A (A 不在原点),B ,C ,度量三个点的横坐标,分别记为a ,b ,c ;步骤二:绘制函数2y ax bx c =++;步骤三:任意移动A ,B ,C 三点的位置,发现抛物线的开口方向、大小、位置会发生变化.问题:如图2,将点A 移动到点()1,0-的位置.(1)若点B 移动到点()4,0-,请求出此时抛物线的对称轴;(2)在点B ,C 移动的过程中,且满足AB AC =,是否存在某一位置使得抛物线与x 轴只有一个交点,若存在,请求出此时点B 的坐标,若不存在,请说明理由.5.(22-23九年级上·浙江杭州·期末)已知二次函数2(0)y ax bx c a =++>的图象经过点(1,1)A -和(2,4)B .(1)求a ,b 满足的关系式;(2)当自变量x 的值满足12x -££时,y 随x 的增大而增大,求a 的取值范围;(3)若函数图象与x 轴无交点,求2a b +的取值范围.【压轴题型六 二次函数的应用(销售、增长率等问题)】1.(2024·天津红桥·三模)某服装店试销一种成本为每件60元的服装,规定试销期间每件服装的销售单价不低于成本,且获得的利润不得高于成本的45%.经试销发现,销售量y (件)与销售单价x (元)符合一次函数关系120y x =-+.有下列结论:①销售单价可以是90元;②该服装店销售这种服装可获得的最大利润为891元;③销售单价有两个不同的值满足该服装店销售这种服装获得的利润为500元,其中,正确结论的个数是( )A .0B .1C .2D .32.(2021·江苏连云港·中考真题)某快餐店销售A 、B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是 元.3.(2024·四川德阳·三模)“端午节”吃粽子是中国传统习俗,在端午节来临前,某超市购进一种品牌粽子,每盒进价是40元,并规定每盒售价不得少于50元,日销售量不低于350盒,根据以往销售经验发现,当每盒定价为50元时,日销售量为500盒,每盒售价每提高1元,日销售量减少10盒,设每盒售价为x 元,日销售量为P 盒.(1)当60x =时,P 等于______;(2)当每盒售价定为多少元时,日销售利润W (元)最大?最大利润是多少?(3)小强说:“当日销售利润最大时,日销售额不是最大.”小红说:“当日销售利润不低于8000元时,每盒售价x 的范围为6080x ££.”你认为他们的说法正确吗?4.(22-23八年级下·浙江杭州·期中)某商店进购一商品,第一天每件盈利(毛利润)10元,销售500件.(1)第二、三天该商品十分畅销.销售量持续走高.在售价不变的基础上,第二、三天的销售量达到605件,求第二、三天的日平均增长率;(2)经市场调查发现,在进货价不变的情况下,若每件涨价1元,日销量将减少20件.①现要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每件应张价多少元?②现需按毛利润的10%交纳各种税费,人工费每日按销售量每件支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每件涨价应为多少?5.(2023·湖北省直辖县级单位·一模)某销售卖场对一品牌商品的销售情况进行了调查,已知该商品的进价为每件3元,每周的销售量y (件)与售价x (元/件)(x 为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x (元/件)456y (件)1000095009000(1)求y 关于x 的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品的售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠整数m 元()15m ££,捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出整数m 的值.【压轴题型七 二次函数的应用(图形运动、拱桥、投球等问题)】1.(22-23九年级上·浙江台州·期末)以初速度v (单位:m/s )从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系是24.9h vt t =-.现将某弹性小球从地面竖直向上抛出,初速度为9.8m/s ,经过a 秒后,将第二个相同材质的小球从地面以初速度4.9m/s 竖直上抛.若两球能在空中相遇,则a 的取值范围为( )A .34a <<B .12a <<C .324a <<D 2a <<2.(23-24九年级上·浙江湖州·期末)如图,乒乓球桌桌面是长 2.7m AB =,宽 1.5m AD =的矩形,E F ,分别是AB 和CD 的中点,在E ,F 处设置高0.15m HE =的拦网.一次运动员在AD 端发球,在P 点击打乒乓球后经过桌面O 点反弹后的运行路径近似二次项系数427a =-的抛物线的一部分.已知本次发球反弹点O 在到桌面底边AD 的距离为0.1m ,到桌面侧边AB 的距离为0.1m 处.若乒乓球沿着正前方飞行(垂直于BC ),此时球在越过拦网时正好比拦网上端GH 高0.1m ,则乒乓球落在对面的落点Q 到拦网EF 的距离为 m ;若乒乓球运行轨迹不变,飞行方向从O 点反弹后飞向对方桌面,落点Q 在距离BC 为0.2m 的Q 点处,此时QC 的长度为 m .3.(2023·浙江杭州·模拟预测)已知点(2,2)A -和点(4,)B n -在抛物线2(0)y ax a =¹上.(1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且ABP V 是以AB 为直角边的三角形,求点P 的坐标;(3)将抛物线2(0)y ax a =¹向右并向下平移,记平移后点A 的对应点为A ¢,点B 的对应点为B ¢,若四边形ABB A ¢¢为正方形,求此时抛物线的表达式.4.(22-23九年级上·天津河西·期末)如图所示,在ABC V 中,90B Ð=°,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm /s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm /s 的速度运动.P 、Q 分别从A 、B 同时出发,当P 、Q 两点中有一点停止运动时,则另一点也停止运动.设运动的时间为s t .(0)t ≥(1)当t 为何值时,PQ 的长度等于5cm ;(2)求出V BPQ S 关于t 的函数解析式,计算P 、Q 出发几秒时,V BPQ S 有最大值,并求出这个最大面积?5.(23-24九年级上·浙江温州·期中)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -、()1,0B ,与y 轴交于点C .(1)求抛物线的表达式.(2)已知点D 为y 轴上一点,点D 关于直线AC 的对称点为1D .①当点1D 刚好落在第二象限的抛物线上时,求出点D 的坐标.②点P 在抛物线上(点P 不与点A 、点C 重合),连接PD ,1PD ,1DD ,是否存在点P ,使1PDD △为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【压轴题型八 二次函数中的存在性问题】1.(2024·浙江宁波·一模)新定义:若一个点的横纵坐标之和为6,则称这个点为“和谐点”.若二次函数22y x x c =-+(c 为常数)在13-<<的图象上存在两个“和谐点”,则c 的取值范围是( )A .2574c <<B .2544c <<C .11c -<<D .2504c <<2.(23-24九年级上·浙江温州·期中)图1是洞头深门大桥,其桥底呈抛物线,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系(如图2所示),桥面CB ∥OA ,其抛物线解析式为()218020320y x =--+,抛物线上点A 离桥面距离22AB =米,若存在一点E 使得38CE CB =,则点E 到抛物线的距离ED = 米.3.(2024·浙江宁波·模拟预测)如图,一次函数y =的图象与坐标轴交于点A 、B ,抛物线2y x bx c =++的图象经过A 、B 两点.(1)求二次函数的表达式;(2)若点P 为抛物线上一动点,在直线AB 上方是否存在点P 使PAB V 的面积最大?若存在,请求出PAB V 面积的最大值及点P 的坐标,请说明理由.4.(23-24九年级上·黑龙江伊春·期末)如图,已知抛物线22y ax x c =-+与直线y kx b =+都经过(0,3)A -、(3,0)B 两点,该抛物线的顶点为.(1)求此抛物线和直线AB 的表达式;(2)设直线AB 与该抛物线的对称轴交于点E ,在射线EB 上是否存在一点M ,过M 作x 轴的垂线交抛物线于点N ,使点M ,N ,C ,E 是平行四边形的四个顶点?若存在,直接写出点M 的坐标;若不存在,说明理由;5.(22-23九年级上·浙江温州·期中)如图,直线212y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线23103y ax x c =++经过B C ,两点,与x 轴交于另一点A ,点E 是直线BC 上方抛物线上的一动点,过E 作EF y ∥轴交x 轴于点F ,交直线BC 于点M .(1)求抛物线的解析式;(2)求线段EM 的最大值;(3)在(2)的条件下,连接AM ,点Q 是抛物线对称轴上的动点,在抛物线上是否存在点P ,使得以P Q A M ,,,为顶点的四边形为平行四边形?如果存在,请直接写出P 点坐标;如果不存在,请说明理由.【压轴题型九 二次函数与一次函数压轴题】1.(2024·浙江杭州·一模)二次函数21y x bx c =++(b ,c 是常数)过()2,0-,()0m ,两个不重合的点,一次函数2y x d =+过()0m ,和二次函数的顶点,则m 的值为( )A .﹣1B .0C .1D .22.(23-24九年级上·浙江绍兴·期末)二次函数2(,,y ax bx c a b c =++为常数,且0)ab ¹经过()()11,0,,0x ,一次函数y a x c =+经过()2,0x ,一次函数y b x c =+经过()3,0x .已知1254,1x m x m -<<-<<+,31n x n <<+,其中,m n 为整数,则m n +的值为 .3.(2024·浙江舟山·三模)已知一次函数5y x =-的图象与x 轴,y 轴分别交于点A ,B ,将点A 向左平移4个单位,得到点A ¢,且点A ¢恰好在二次函数23y ax bx =+-(a 、b 是常数,0a ¹)图象的对称轴上.(1)用含a 的代数式表示b .(2)求证:二次函数与一次函数图象交于一个定点,并求出该点的坐标.(3)若二次函数图象与线段AB 恰有一个公共点,结合函数图象,求a 的取值范围.4.(23-24九年级上·浙江宁波·期末)如图,在平面直角坐标系xOy 中,一次函数121y x =+的图象与二次函数22y x ax b =++的图象相交于A ,B 两点,点A 坐标为()1m -,,点B 坐标为()25,.(1)求m 的值以及二次函数的解析式.(2)根据图象,直接写出当1y >2y 时x 的取值范围.(3)若将二次函数向上平移t 个单位长度后,得到的图象与x 轴没有交点,求t 的取值范围.5.(2023·浙江金华·三模)如图,一次函数()00b y x b a b a=-+>>,与坐标轴交于A ,B 两点,以A 为顶点的抛物线过点B ,过点B 作y 轴的垂线交该抛物线另一点于点D ,以AB ,AD 为边构造ABCD Y ,延长BC 交抛物线于点E .(1)若2a b ==,如图1.①求该抛物线的表达式.②求点E 的坐标.(2)如图2,请问BE AB 是否为定值,若是,请求出该定值;若不是,请说明理由.【压轴题型十 二次函数的翻折问题】1.(22-23九年级上·浙江湖州·期末)抛物线223y x x =-++与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()1,M m y ,()21,N m y +为图形G 上两点,若12y y >,则m 的取值范围是( )A .102m £<B 1m <<C m <<D 12m <<2.(2023江苏南通·模拟预测)如图,将二次函数2y x m =-(其中0m >)的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为1y ,另有一次函数2y x =+的图象记为2y ,若1y 与2y 恰有两个交点时,则m 的范围是 .3.(2024·浙江·模拟预测)如图,抛物线22(0)y x x m m =-++>与y 轴交于A 点,其顶点为D .直线122y x m =--分别与x 轴、y 轴交于B 、C 两点,与直线AD 相交于E 点.(1)求A 、D 的坐标(用m 的代数式表示);(2)将ACE V 沿着y 轴翻折,若点E 的对称点P 恰好落在抛物线上,求m 的值;(3)抛物线22(0)y x x m m =-++>上是否存在一点P ,使得以P 、A 、C 、E 为顶点的四边形是平行四边形?若存在,求此抛物线的解析式;若不存在,请说明理由.4.(23-24九年级上·浙江绍兴·期中)如图,在平面直角坐标系中,将二次函数223y x x =--在x 轴上方的图象沿x 轴翻折到x 轴下方,图象的其余部分不变,将这个组合的图象记为M .(1)若直线12y x n =+与图象M 恰好有3个交点.求n 的值.(2)若直线12y x n =+与图象M 恰好有2个交点.求n 的取值范围.5.(2023·浙江杭州·二模)已知二次函数2420y mx mx m m =-+-¹(),且与x 轴交于不同点M 、N .(1)若二次函数图象经过点30A (,),①求二次函数的表达式和顶点坐标;②将抛物线在05x ££之间的那部分函数图象沿直线5x =翻折,将抛物线翻折前后的这两部分合记为图象F ,若直线y kx n =+过点151C (,),且与图象F 恰有两个交点,求n 的取值范围;(2)若0m <,当4MN £时,求实数m 的取值范围.【压轴题型十一 二次函数最值问题】1.(2024·浙江温州·二模)已知二次函数222y x x -=+, 当0x t ££时,函数最大值为M ,最小值为N .若5M N =,则t 的值为 ( )A .0.5B .1.5C .3D .42.(2023·浙江杭州·模拟预测)已知二次函数()2211y ax b x =--+(a ,b 为常数且0a >),当21x -££-时,y 随x 的增大而增大,则ab 的最大值为 .3.(2024·浙江嘉兴·三模)已知二次函数 23y x bx =++的图象经过点()()()12,,,43A x n B x t C -,,.(1)求二次函数的函数表达式;(2)当 212x x -=时,①若 0nt £,求 t n -的取值范围;②设直线AB 的函数表达式为y kx m =+,求m 的最大值.4.(2024·浙江宁波·模拟预测)已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ³.(1)当0=t 时.①求y 关于x 的函数解析式;求出当x 为何值时,y 有最大值?最大值为多少?②当x a =和x b =时()a b ¹,函数值相等,求a 的值.(2)当0t >时,在08x ££范围内,y 有最大值18,求相应的t 和x 的值.5.(23-24九年级上·浙江湖州·期末)设二次函数2y ax bx c =++(a b c ,,均为常数,且0a ¹).已知函数值y 和自变量x 的部分对应取值如下表所示:x L3-2-1-01L y L n 5a -n a-4a L (1)若1a =.①求二次函数的表达式,并写出顶点坐标;②已知点()1,m y 与()23,m y -都在该二次函数图象上,且12y y ³,请求出1y 的最小值.(2)将该二次函数图象向右平移k (02k <<)个单位,若平移后的二次函数图象在20x -££的范围内有最小值为3116a -,求k 的值.【压轴题型十二 二次函数的综合】1.(22-23九年级上·浙江宁波·阶段练习)如图,抛物线218333y x x =+-与x 轴交于点A 和点B 两点,与y 轴交于点C ,D 点为抛物线上第三象限内一动点,当2180ACD ABC Ð+Ð=°时,点D 的坐标为( )A .(8,3)--B .(,)--1673C .(6,7)--D .(5,8)--2.(23-24九年级上·浙江金华·期末)定义:若x ,y 满足:24x y k =+,24y x k =+(k 为常数)且x y ¹,则称点(),M x y 为“好点”.(1)若()5,P m 是“好点”,则m .(2)在32x -<<的范围内,若二次函数23y x x c =-+的图象上至少存在一个“好点”,则c 的取值范围为 .3(2024·浙江温州·二模)在平面直角坐标系中,已知抛物线()2233y mx m x m =--+-(m 是常数,且0m ¹)经过点()2,4,且与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求出二次函数的表达式.(2)垂直于y 轴的直线l 与抛物线交于点(),P a p 和(),Q b q ,与直线AB 交于点(),c n ,若a c b <<,直接写出a b c ++的取值范围.(3)当13x t =-,2x t =,33x t =+时,对应的函数值分别为1y ,2y ,3y .求证:123454y y y ++³.4.(23-24九年级下·浙江宁波·期中)如图,已知抛物线21:4C y x =,()01F ,,点()11,A x y ,()22,B x y 为抛物线上第一象限内的两点,且满足FA FB ^,以FA FB 、为边向右作矩形FAPB ,若P 点纵坐标为5.(1)求12y y +的值;(2)求12x x 的值;(3)求矩形FAPB 的面积.5.(21-22九年级上·浙江·周测)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q æöç÷èø,,点M 在x 轴上,点E 在平面内,若BME AOM V V ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH V 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值.。
2024成都中考数学一轮复习专题二次函数解答压轴题一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.2.(2023·浙江·统考中考真题)已知点(),0m -和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =-时,求a 和b 的值;(2)若二次函数的图像经过点(),3A n 且点A 不在坐标轴上,当21m -<<-时,求n 的取值范围;(3)求证:240b a +=.5(1)求二次函数的表达式;(2)求四边形ACDB 的面积;(3)P 是抛物线上的一点,且在第一象限内,若ACO PBC ∠=∠6.(2023·山东烟台·统考中考真题)如图,抛物线2y ax =+(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为7.(2023·江苏苏州·统考中考真题)如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.8.(2023·山东东营·统考中考真题)如图,抛物线过点()0,0O ,()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作①如图,若点P 在第三象限,且tan 2CPD ∠=,求点②直线PD 交直线BC 于点E ,当点E 关于直线PC 周长.10.(2023·四川自贡·统考中考真题)如图,抛物线(1)求抛物线解析式及B ,(2)以A ,B ,C ,D 为顶点的四边形是平行四边形,求点(3)该抛物线对称轴上是否存在点11.(2023·四川达州·统考中考真题)如图,抛物线2y ax bx c =++过点()()()1,0,3,,00,3A B C -.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax 2x c =++与坐标轴分别相交于点A ,B ,()0,6C 三点,其对称轴为2x =.(1)求该抛物线的解析式;(2)点F 是该抛物线上位于第一象限的一个动点,直线AF 分别与y 轴,直线BC 交于点D ,E .①当CD CE =时,求CD 的长;②若CAD ,CDE ,CEF △的面积分别为1S ,2S ,3S ,且满足1322S S S +=,求点F 的坐标.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.∠的边与x轴平行时,求点P与点Q的纵坐标的差.(3)当PAQ(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD(3)在(2)的条件下,将该抛物线向右平移5个单位,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以Q15.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC标及PDDB的最大值;(3)过点P作x轴的垂线交直线AC于点M,连接PC,将好落在y轴上时,请直接写出此时点M的坐标.33(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点K 坐标.28.(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上.①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为(1)求抛物线的表达式;(2)如图1,直线11:y OP y x x =交BF 于点G ,求BPG BOGS S △△的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于求点P 的横坐标.31.(2023·山东枣庄·统考中考真题)如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.32.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点交x轴于点D,求与12PK PD+的最大值及此时点2①求证:23DO EO =.②当点E 在线段OB 上,且BE =35.(2023·山西·统考中考真题)如图,二次函数直线与该函数图象交于点()1,3B (1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE 设点P 的横坐标为m .①当12PD OC =时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ x ⊥轴于点Q ,36.(2023·湖北武汉·统考中考真题)抛物线21:28=--C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △(3)如图2,取线段OC 的中点D ,在抛物线上是否存在点若不存在,请说明理由.(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.41.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数2y ax bx =++交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.42.(2023·山东聊城·统考中考真题)如图①,抛物线29y ax bx =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P 是x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥PE BC ,交AC 于点E ,作PD BC ⊥,垂足为点D .当m 为何值时,PED V 面积最大,并求出最大值.43.(2023·湖北荆州·统考中考真题)已知:y 关于x 的函数()()221y a x a x b =-+++.(1)若函数的图象与坐标轴...有两个公共点,且4a b =,则a 的值是___________;(2)如图,若函数的图象为抛物线,与x 轴有两个公共点()2,0A -,()4,0B ,并与动直线:(04)l x m m =<<交于点P ,连接PA ,PB ,PC ,BC ,其中PA 交y 轴于点D ,交BC 于点E .设PBE △的面积为1S ,CDE 的面积为2S .①当点P 为抛物线顶点时,求PBC 的面积;②探究直线l 在运动过程中,12S S -是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.(1)求抛物线的解析式;(2)若32m<<,当m为何值时,四边形CDNP是平行四边形?(3)若32m<,设直线MN交直线BC于点E,是否存在这样的m值,使值;若不存在,请说明理由.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD 好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点F ,过点F 作FG x ⊥轴,垂足为G ,求2FG +(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD 与△为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?50.(2023·四川南充·统考中考真题)如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.51.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A -、()2,0B ,且经过点()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.52.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x -,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.53.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.54.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.(1)求a 的值.(2)将直线BC 向下平移()0m m >个单位长度,交抛物线于在定点D ,无论m 取何值时,都是点D 到直线B C ''的距离最大,若存在,请求出点请说明理由.(3)抛物线上是否存在点P ,使45PBC ACO ∠+∠=︒,若存在,请求出直线58.(2023·湖北十堰·统考中考真题)已知抛物线28y ax bx =++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.59.(2023·吉林长春·统考中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.60.(2023·湖北·统考中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线()260y ax bx a =+-≠与x 轴交于点()()2,0,6,0A B -,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于,M N 两点(直线l 与BC 不重合),连接,CN BM ,直线CN 与BM 交于点P .当MN BC ∥时,点P 的横坐标是否为定值,请说明理由.61.(2023·黑龙江齐齐哈尔·统考中考真题)综合与探究如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,点M 为y 轴负半轴上一点,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;【基础训练】(1)请分别直接写出抛物线214y x =的焦点坐标和准线l 的方程:___________,___________【技能训练】(2)如图2,已知抛物线21y x =上一点()()000,0P x y x >到焦点F 的距离是它到x 轴距离的参考答案一、解答题222(3)如图,P是抛物线上的一点,且在第一象限,当⊥交BP于连接PB,过C作CE BC∵5OC OB ==,则OCB 为等腰直角三角形,由勾股定理得:52CB =,∵ACO PBC ∠=∠,∴tan tan ACO PBC ∠=∠,即1552CE CE CB ==,∴2CE =由CH BC ⊥,得90BCE ∠=︒,【点拨】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.A7.【答案】(1)()2,0,y=【分析】(1)令0(2)由题意可得抛物线的对称轴为假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即∴2683m m -+=,解得:m =∵4m >∴5m =;②如图2:当点M 在点N 的上方,即∴2681m m -+=,解得:m =∵4m >∴32m =±;综上,32PM m =-=或2.∴当M 不经过点()3,2时,1【点拨】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.∵直线GH平分矩形ABCD的面积,∴直线GH过点P..由平移的性质可知,四边形OCHG是平行四边形,=.∴PQ CH∵四边形ABCD是矩形,∴P是AC的中点.33⎝∴90,PEC CED ∠=∠=︒。
将军饮马模型考情分析:通过全国中考试题分析来看,将军饮马的模型多出现在中考二次函数压轴题第二问中出现,难度不大,但需要注意对称点的选择,动点通常在对称轴上,而且已知定点中往往有一个与x 轴的交点.考法主要有以下几种:1.求取最小值时动点坐标2.求最小值.3.求三角形或四边形周长最小值.模型一:两定点一动点如图,A,B 为定点,P 为l 上动点,求AP+BP 最小值解析:作点A 关于直线的对称点A',连接P A',则P A '=P A ,所以P A +PB =P A '+PB当A'、P 、B 三点共线的时候,P A'+PB =A'B ,此时为最小值(两点之间线段最短)PBAA 'ABP 折点端点A 'P BA如图,P 为定点,M 、N 分别为OA 和OB 上的动点,求△PMN 周长最小值解析:分别作点P 关于OA 、OB 的对称点,则△PMN 的周长为PM +MN +NP =P'M +MN +NP '',当P '、M 、N 、P ''共线时,△PMN 周长最小.模型三:两定点两动点如图,P 、Q 为两定点,M 、N 分别为OA 、OB 上的动点,求四边形PQMN 的最小值.解析:∵PQ 是条定线段,∴只需考虑PM +MN +NQ 最小值即可, 分别作点P 、Q 关于OA 、OB 对称, PM +MN +NQ =P 'M +MN +NQ ',当P '、M 、N 、Q '共线时,四边形PMNQ 的周长最小。
BBBB如图,P 为定点,M 、N 分别为OA 、OB 上的动点,求PM +MN 最小值。
解析:作点P 关于OA 对称的点P ',PM +MN =P 'M +MN ,过点P '作OB 垂线分别交OA 、OB 于点M 、N , 得PM +MN 最小值(点到直线的连线中,垂线段最短)模型五:将军饮马有距离例一、如图,A 、D 为定点,B 、C 为直线l 上两动点,BC 为定值,求AB+BC+CD 最小值?解析:BC 为定值,只需求AB+CD 最小即可;平移AB 至CE ,则变成求CE+CD 的最小值,基本将军饮马的模型例二、如图,A 、D 为定点,B 、C 为直线l 1 、l 2上两动点,BC ⊥l 1,求AB+BC+CD 最小值?解析:BC 为定值,只需求AB+CD 最小即可;BB平移CD至BE,则变成求AB+BE最小,基本将军饮马.经典例题剖析:例一:如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点(1,0)A、(5,0)B、(0,4)C三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA PC+的值为最小的点P坐标(请在图1中探索);【分析】(1)将点A、B的坐标代入二次函数表达式得:2(1)(5)(65)y a x x a x x=--=-+,即可求解;(2)连接B、C交对称轴于点P,此时PA PC+的值为最小,即可求解;【解答】解:(1)将点A、B的坐标代入二次函数表达式得:2(1)(5)(65)y a x x a x x=--=-+,则54a=,解得:45a=,抛物线的表达式为:224424(65)4555y x x x x=-+=-+,函数的对称轴为:3x=,顶点坐标为16(3,)5-;(2)连接B、C交对称轴于点P,此时PA PC+的值为最小,将点B、C的坐标代入一次函数表达式:y kx b=+得:054k bb=+⎧⎨=⎩,解得:454kb⎧=-⎪⎨⎪=⎩,直线BC的表达式为:445y x=-+,当3x =时,85y =, 故点8(3,)5P ;例二:如图,直线3y x =-+与x 轴、y 轴分别交于B 、C 两点,抛物线2y x bx c =-++经过点B 、C ,与x 轴另一交点为A ,顶点为D .(1)求抛物线的解析式;(2)在x 轴上找一点E ,使EC ED +的值最小,求EC ED +的最小值;【分析】(1)直线3y x =-+与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3),将点B 、C 的坐标代入二次函数表达式,即可求解;(2)如图1,作点C 关于x 轴的对称点C ',连接CD '交x 轴于点E ,则此时EC ED +为最小,即可求解; 【解答】解:(1)直线3y x =-+与x 轴、y 轴分别交于B 、C 两点,则点B 、C 的坐标分别为(3,0)、(0,3), 将点B 、C 的坐标代入二次函数表达式得:9303b c c -++=⎧⎨=⎩,解得:23b c =⎧⎨=⎩,故函数的表达式为:223y x x =-++,令0y =,则1x =-或3,故点(1,0)A -; (2)如图1,作点C 关于x 轴的对称点C ',连接CD '交x 轴于点E ,则此时EC ED +为最小,函数顶点D 坐标为(1,4),点(0,3)C '-,将C '、D 的坐标代入一次函数表达式并解得: 直线C D '的表达式为:73y x =-, 当0y =时,37x =, 故点3(7E ,0),则EC ED +的最小值为DC '=例三:如图,以D 为顶点的抛物线2y x bx c =-++交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为3y x =-+. (1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO PA +的值最小,求点P 的坐标;【分析】(1)先求得点B 和点C 的坐标,然后将点B 和点C 的坐标代入抛物线的解析式得到关于b 、c 的方程,从而可求得b 、c 的值;(2)作点O 关于BC 的对称点O ',则(3,3)O ',则OP AP +的最小值为AO '的长,然后求得AO '的解析式,最后可求得点P 的坐标;【解答】解:(1)把0x =代入3y x =-+,得:3y =,(0,3)C ∴. 把0y =代入3y x =-+得:3x =,(3,0)B ∴,将(0,3)C 、(3,0)B 代入2y x bx c =-++得:9303b c c -++=⎧⎨=⎩,解得2b =,3c =.∴抛物线的解析式为223y x x =-++.(2)如图所示:作点O 关于BC 的对称点O ',则(3,3)O '. O '与O 关于BC 对称,PO PO ∴='.OP AP O P AP AO ∴+='+'.∴当A 、P 、O '在一条直线上时,OP AP +有最小值.设AP 的解析式为y kx b =+,则033k b k b -+=⎧⎨+=⎩,解得:34k =,34b =.AP ∴的解析式为3344y x =+. 将3344y x =+与3y x =-+联立,解得:127y =,97x =,∴点P 的坐标为9(7,12)7.例四:如图,抛物线2y ax bx c =++的图象过点(1,0)A -、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC ∆的周长最小,若存在,请求出点P 的坐标及PAC ∆的周长;若不存在,请说明理由;【分析】(1)由于条件给出抛物线与x 轴的交点(1,0)A -、(3,0)B ,故可设交点式(1)(3)y a x x =+-,把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆=++=++,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆=+最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.【解答】解:(1)抛物线与x 轴交于点(1,0)A -、(3,0)B ∴可设交点式(1)(3)y a x x =+- 把点(0,3)C 代入得:33a -=1a ∴=-2(1)(3)23y x x x x ∴=-+-=-++∴抛物线解析式为223y x x =-++(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小. 如图1,连接PB 、BC点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴=++=++当C 、P 、B 在同一直线上时,PC PB CB +=最小 (1,0)A -、(3,0)B 、(0,3)C221310AC ∴=+=,223332BC =+=1032PAC C AC CB ∆∴=+=+最小设直线BC 解析式为3y kx =+把点B 代入得:330k +=,解得:1k =-∴直线:3BC y x =-+132P y ∴=-+=∴点(1,2)P 使PAC ∆的周长最小,最小值为1032+专题训练1.(2020秋•马山县期中)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点A 、(1,0)B ,与y 轴交于点C ,直线122y x =-经过点A 、C .抛物线的顶点为D ,对称轴为直线l . (1)求抛物线的解析式;(2)设点G 是y 轴上一点,是否存在点G ,使得GD GB +的值最小,若存在,求出点G 的坐标;若不存在,请说明理由.【分析】(1)利用一次函数的性质求得点A 、C 的坐标,然后把点A 、B 、C 的坐标分别代入二次函数解析式,利用待定系数法求得二次函数解析式;(2)利用轴对称-最短路径方法得点G ,先计算B D '的解析式,令0x =可得点G 的坐标. 【解答】解:(1)如图1,对于直线122y x =-,令0y =,得4x =,令0x =,得2y =-,∴点(4,0)A ,点(0,2)C -,将(4,0)A ,(1,0)B ,(0,2)C -代入抛物线解析式得:164002a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,解得:12522a b c ⎧=-⎪⎪⎪=⎨⎪=-⎪⎪⎩,∴抛物线解析式为215222y x x =-+-;(2)存在.如图3,取点B 关于y 轴的对称点B ',则点B '的坐标为(1,0)-,连接B D ',直线B D '与y 轴的交点G 即为所求的点.22151592()22228y x x x =-+-=--+,∴顶点5(2D ,9)8,设直线B D '的解析式为(0)y kx d k =+≠, 则05928k d k d -+=⎧⎪⎨+=⎪⎩,解得:928928k b ⎧=⎪⎪⎨⎪=⎪⎩,∴直线B D '的解析式为992828y x =+, 当0x =时,928y =, ∴点G 的坐标为9(0,)28. 2.(2019•遵义)如图,抛物线21:2C y x x =-与抛物线22:C y ax bx =+开口大小相同、方向相反,它们相交于O ,C 两点,且分别与x 轴的正半轴交于点B ,点A ,2OA OB =.(1)求抛物线2C 的解析式;(2)在抛物线2C 的对称轴上是否存在点P ,使PA PC +的值最小?若存在,求出点P 的坐标,若不存在,说明理由;【分析】(1)1C 、22:C y ax bx =+开口大小相同、方向相反,则1a =-,将点A 的坐标代入2C 的表达式,即可求解;(2)作点C 关于1C 对称轴的对称点(1,3)C '-,连接AC '交函数2C 的对称轴于点P ,此时PA PC +的值最小,即可求解;【解答】解:(1)令:220y x x =-=,则0x =或2,即点(2,0)B ,1C 、22:C y ax bx =+开口大小相同、方向相反,则1a =-,则点(4,0)A ,将点A 的坐标代入2C 的表达式得:0164b =-+,解得:4b =,故抛物线2C 的解析式为:24y x x =-+;(2)联立1C 、2C 表达式并解得:0x =或3,故点(3,3)C ,作点C 关于2C 对称轴的对称点(1,3)C ',连接AC '交函数2C 的对称轴于点P ,此时PA PC +的值最小为:线段AC '的长度=此时点(2,2)P ;3.(2020秋•金乡县期中)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点(0,3)C -,A 点的坐标为(1,0)-.(1)求二次函数的解析式;(2)若Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC ∆的周长.【分析】(1)用待定系数法即可求解;(2)点A 关于函数对称轴的对称点为点B ,连接BC 交函数对称轴于点Q ,连接AQ ,则此时QAC ∆的周长最小,进而求解.【解答】解:(1)(1,0)A -,(0,3)C -在2y x bx c =++上, 则103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)点A 关于函数对称轴的对称点为点B ,连接BC 交函数对称轴于点Q ,连接AQ ,则此时QAC ∆的周长最小,理由:QAC ∆的周长AC AQ QC AB AQ QC BC CQ =++=++=+为最小,由点B 、C 的坐标得,直线BC 的表达式为3y x =-,当1x =时,32y x =-=-,即点(1,2)Q -,则QAC ∆的周长最小值BC AC =+==.4.(2020秋•房县期中)如图,抛物线213y x mx n =-+与x 轴交于A 、B 两点,与y 轴交于点(0,1)C -,且对称轴1x =.(1)求出抛物线的解析式及A ,B 两点的坐标;(2)在对称轴上方是否存在点D ,使三角形ADC 的周长最小?若存在,求出点D 的坐标;若不存在.说明理由(使用图1);【分析】(1)用待定系数法即可求解;(2)连接CB 交对称轴于点D ,此时三角形DAC 周长最小,进而求解;【解答】解:(1)抛物线与y 轴交于点(0,1)C -,且对称轴x l =, 则11231m n -⎧-=⎪⎪⨯⎨⎪=-⎪⎩,解得231m n ⎧=⎪⎨⎪=-⎩, ∴抛物线解析式为212133y x x =--, 令2121033y x x =--=,得:11x =-,23x =, (1,0)A ∴-,(3,0)B ;(2)在对称轴上存在D 使三角形形DAC 的周长最小,连接CB 交对称轴于点D ,此时三角形DAC 周长最小.设BC 的解析式为y kx b =+,把(3,0)B 、(0,1)C -分别代入上式得:130b k b =-⎧⎨+=⎩,解得131k b ⎧=⎪⎨⎪=-⎩, 故直线BC 的解析式为113y x =-, 当1x =时,23y =-, 所以点D 的坐标为2(1,)3-; 5.(2020秋•青羊区校级期中)如图,抛物线25()2y a x h =-+经过点(1,0)A ,(0,3)C . (1)求抛物线与x 轴的另一个交点B 的坐标;(2)如图①,在抛物线的对称轴上是否存在点P ,使得四边形PAOC 的周长最小?若存在,求出此时P 点坐标;若不存在,请说明理由;【分析】(1)根据函数的对称性即可求解;(2)A、B两点关于对称轴对称,连接BC交对称轴于点P,则P点即为所求,进而求解;【解答】解:(1)由抛物线表达式知,函数的对称轴为52x=,而点(1,0)A,根据点的对称性,则512(1)42xB=+⨯-=,故点B的坐标为(4,0);(2)存在,理由:抛物线经过点(1,0)A,(4,0)B,A∴、B关于对称轴对称,如图1,连接BC,BC ∴与对称轴的交点即为所求的点P ,此时PA PC BC +=,∴四边形PAOC 的周长最小值为:OC OA BC ++,(1,0)A ,(4,0)B ,(0,3)C ,设直线BC 解析式为y kx n =+,把B 、C 两点坐标代入可得403k n n +=⎧⎨=⎩,解得343k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的解析式为334y x =-+, 由抛物线的表达式知,抛物线的对称轴为52x =, 当52x =时,39348y x =-+=, 故点P 的坐标为5(2,9)8; 6.(2019•柳州)如图,直线3y x =-交x 轴于点A ,交y 轴于点C ,点B 的坐标为(1,0),抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,抛物线的顶点为点D ,对称轴与x 轴的交点为点E ,点E 关于原点的对称点为F ,连接CE ,以点F 为圆心,12CE 的长为半径作圆,点P 为直线3y x =-上的一个动点. (1)求抛物线的解析式;(2)求BDP ∆周长的最小值;【分析】(1)直线3y x =-,令0x =,则3y =-,令0y =,则3x =,故点A 、C 的坐标为(3,0)、(0,3)-,即可求解;(2)过点B 作直线3y x =-的对称点B ',连接BD 交直线3y x =-于点P ,直线B B '交函数对称轴与点G ,则此时BDP ∆周长BD PB PD BD B B =++=+'为最小值,即可求解;【解答】解:(1)直线3y x =-,令0x =,则3y =-,令0y =,则3x =,故点A 、C 的坐标为(3,0)、(0,3)-,则抛物线的表达式为:2(3)(1)(43)y a x x a x x =--=-+,则33a =-,解得:1a =-,故抛物线的表达式为:243y x x =-+-⋯①;(2)连接DB '交于直线于P ;此时三角形BDP 周长BD PB PD BD DB =++=+'为最小值,(2,1)D ,则点(2,1)G -,即:BG EG =,即点G 是BB '的中点,过点(3,2)B '-,BDP ∆周长最小值BD B D =+'7.(2019•荆州)如图,在平面直角坐标系中,平行四边形OABC 的顶点A ,C 的坐标分别为(6,0),(4,3),经过B ,C 两点的抛物线与x 轴的一个交点D 的坐标为(1,0).(1)求该抛物线的解析式;(2)若AOC ∠的平分线交BC 于点E ,交抛物线的对称轴于点F ,点P 是x 轴上一动点,当PE PF +的值最小时,求点P 的坐标;【分析】(1)由平行四边形OABC 的性质求点B 坐标,根据抛物线经过点B 、C 、D 用待定系数法求解析式.(2)由OE 平分AOC ∠易证得COE AOE OEC ∠=∠=∠,故有CE OC =,求得点E 坐标,进而求得直线OE 解析式.求抛物线对称轴为直线7x =,即求得点F 坐标.作点E 关于x 轴的对称点点E ',由于点P 在x 轴上运动,故有PE PE '=,所以当点F 、P 、E '在同一直线上时,PE PF PE PF FE ''+=+=最小.用待定系数法求直线E F '解析式,即求得E F '与x 轴交点P 的坐标.【解答】解:(1)平行四边形OABC 中,(6,0)A ,(4,3)C6BC OA ∴==,//BC x 轴610B C x x ∴=+=,3B C y y ==,即(10,3)B设抛物线2y ax bx c =++经过点B 、C 、(1,0)D∴10010316430a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得:19149139a b c ⎧=-⎪⎪⎪=⎨⎪⎪=-⎪⎩∴抛物线解析式为211413999y x x =-+-(2)如图1,作点E 关于x 轴的对称点E ',连接E F '交x 轴于点P (4,3)C5OC ∴= //BC OAOEC AOE ∴∠=∠ OE 平分AOC ∠AOE COE ∴∠=∠OEC COE ∴∠=∠5CE OC ∴==59E C x x ∴=+=,即(9,3)E∴直线OE 解析式为13y x = 直线OE 交抛物线对称轴于点F ,对称轴为直线:149712()9x =-=⨯-7(7,)3F ∴点E 与点E '关于x 轴对称,点P 在x 轴上 (9,3)E '∴-,PE PE '= ∴当点F 、P 、E '在同一直线上时,PE PF PE PF FE ''+=+=最小 设直线E F '解析式为y kx h =+ ∴93773k h k h +=-⎧⎪⎨+=⎪⎩解得:8321k h ⎧=-⎪⎨⎪=⎩ ∴直线8:213E F y x '=-+ 当82103x -+=时,解得:638x = ∴当PE PF +的值最小时,点P 坐标为63(8,0).。
二次函数 压轴题(八大题型)目录:题型1:存在性问题题型2:最值问题题型3:定值问题题型4:定点问题题型5:动点问题综合题型6:对称问题题型7:新定义题题型8:二次函数的代数(综合)应用题型1:存在性问题1.如图,抛物线26y ax x c =++与x 轴交于A 、()5,0B 两点,与y 轴交于点()0,5C -,点(),P t s 是抛物线上的一动点.(1)求该抛物线所对应的函数解析式;(2)如图,当点(),P t s 在直线BC 上方的抛物线时,过点P 作y 轴的平行线交直线BC 于点E .求PBC △面积的最大值;(3)如图,当点(),P t s 在直线BC 上方的抛物线时,过点P 作y 轴的平行线交直线BC 于点E .点M 是平面直角坐标系内一点,是否存在点P ,使得以点B ,E ,P ,M 为顶点的四边形是菱形,若存在,请求出所有点M 的坐标;若不存在,请说明理由.2.如下图,抛物线24y ax bx =+-与x 轴相交于(2,0)A ,0()6,B -两点,与y 轴相交于点C .连接BC ,过点A 作AD BC ∥交抛物线于点D .(1)求抛物线的解析式;(2)如下图,点M 为直线BC 下方抛物线上一点,连接DM 交BC 于N ,连接AM 、AN ,求AMN V 面积的最大值及此时点M 的坐标;(3)将抛物线沿DA 方向平移个单位,点P 为平移后的抛物线对称轴上一点,是否存在点P ,使得BCP V 为等腰三角形,若存在,写出点P 的坐标,并写出其中一个点的求解过程;若不存在,说明理由.3.如图,已知抛物线24y ax bx =++与x 轴交于(),40A B ,两点,与y 轴交于点C ,与直线BD 交于点51,2D æö-ç÷èø,其对称轴与直线BD 交于点E ,点F 是此抛物线上的一个动点.(1)求此抛物线的解析式并直接写出直线BD 的解析式;(2)如图1,若点F 是直线BD 上方抛物线上的一点,连接DF 、BF 和OD ,当BDF V 与BDO △面积相等时,求点F 的横坐标;(3)如图2,连接EF ,在此抛物线对称轴右侧的抛物线上是否存在点F 使得线段EF 最小?若存在,请求出点F 的坐标;若不存在,请说明理由.题型2:最值问题4.在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+-与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ^轴于点P ,交抛物线于点N .(ⅰ)如图1,当3PA PB=时,求线段MN 的长;(ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.5.已知抛物线(2)(4)(y a x x a =+-为常数,且0)a <与x 轴交于A ,B 两点(点A 在点B 的右侧),与y 轴交于点C ,经过点B 的直线12y x b =+与抛物线的另一交点为点D ,与y 轴的交点为点E .(1)如图1,若点D 的横坐标为3,试求抛物线的函数表达式;(2)如图2,若DE BE =,试确定a 的值;(3)如图3,在(1)的情形下,连接AC ,BC ,点P 为抛物线在第一象限内的点,连接BP 交AC 于点Q ,当APQ BCQ S S -△△取最大值时,试求点P 的坐标.6.在平面直角坐标系中,抛物线23y ax bx =++交x 轴于点(1,0)A -、(3,0)B ,交y 轴于点C ,连结AC 、BC .点D 在该抛物线上,过点D 作∥D E A C ,交直线BC 于点E ,连结AD 、AE 、BD .设点D 横坐标为(0)m m >,DAE V 的面积为1S ,DBE V 的面积为2S .(1)求a ,b 的值;(2)设抛物线上D 、B 两个点和它们之间的部分为图象G ,当图象G 的最高点的纵坐标与m 无关时,求m 的取值范围;(3)当点D 在第一象限时,求1S +2S 的最大值;(4)当12:2:1S S =时,直接写出m 的值.7.如图1,在平面直角坐标系xOy 中,O 为坐标原点,已知抛物线2y x bx c ¢=-++的顶点坐标为()3,4C -,与x 轴分别交于点A ,B .连接AC ,点D 是线段AC 上方抛物线上的一动点.(1)求抛物线的解析式;(2)如图1,在点D 运动过程中,连接AD CD 、,求ADC △面积的最大值;(3)如图2,在点D 运动过程中,连接OD 交AC 于点E ,点F 在线段OA 上,连接OC DF EF 、、,若ACO FDO DFE Ð=Ð+Ð,求点F 横坐标的最大值.题型3:定值问题8.已知抛物线()²30y ax bx a =+-¹与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,若直线BC 下方的抛物线上有一动点M ,过点M 作y 轴平行线交BC 于N ,过点M 作BC 的垂线,垂足为H ,求HMN △周长的最大值;(3)若点P 在抛物线的对称轴上,点Q 在x 轴上,是否存在以B ,C ,P ,Q 为顶点的四边形为平行四边形,若存在,求出点Q 的坐标,若不存在,请说明理由;(4)将抛物线向左平移1个单位,再向上平移4个单位,得到一个新的抛物线,问在y 轴正半轴上是否存在一点F ,使得当经过点F 的任意一条直线与新抛物线交于S ,T 两点时,总有2211FS FT +为定值?若存在,求出点F 坐标及定值,若不存在,请说明理由.9.已知抛物线()212y x a x a =+-+-.(1)对于任意实数a ,该抛物线都会经过一个定点,求此定点的坐标.(2)当1a =-时,该抛物线与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .①如图(1),若点P 是x 轴上的动点,当PD PC -取最大值时,求PBD △的面积;②小聪研究发现:如图(2),E ,F 是抛物线上异于B ,C 的两个动点,若直线CE 与直线BF 的交点始终在直线29y x =-上,那么在直线EF 存在点Q ,使得QCE V ,QAC △,QAF △中必存在定值的三角形,请直接写出其中面积为定值的三角形及其面积,不必说明理由.题型4:定点问题10.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点()2,0A -,()1,0B .(1)求抛物线的函数表达式;(2)直线43y x h =-+经过点B ,交抛物线于另一点C .P 是线段BC 上一点,过点P 作直线PQ y ∥轴交抛物线于点Q ,且PB PQ =,求点P 的坐标;(3)M ,N 是抛物线上的动点(不与点B 重合),直线BM ,BN 分别交y 轴于点E ,F ,若EBF EOB ∽△△,求证:直线MN 经过一个定点.11.已知二次函数2y x bx c =++图象1C 交x 轴于点()1,0-和()3,0两点;(1)求抛物线的解析式;(2)将抛物线1C 向上平移n 个单位得抛物线2C ,点P 为抛物线2C 的顶点,()0,4C ,过C 点作x 轴的平行线交抛物线2C 于点A ,点B 为y 轴上的一动点,若存在90ABP Ð=°有且只有一种情况,求此时n 的值;(3)如图2,恒过定点()1,1的直线QN 交抛物线1C 于点Q ,N 两点,过Q 点的直线2y x t =-+的直线交抛物线1C 于M 点,作直线MN ,求MN 恒过的定点坐标.题型5:动点问题综合12.如图,在平面直角坐标系中,抛物线2y x bx c =++与x 轴交于点A B ,(点A 在点B 的左侧),与y 轴交于点()0,3C -,其对称轴为直线1x =.(1)求该抛物线的函数解析式;(2)如图1,已知点D 为第三象限抛物线上一点,连接AC ,若90ABD BAC Ð+Ð=°,求点D 的坐标;(3)(),P m n 和点Q 分别是直线y x =--24和抛物线上的动点,且点Q 的横坐标比点P 的横坐标大4个单位长度,分别过P Q ,作坐标轴的平行线,得到矩形PMQN .设该抛物线在矩形PMQN 内部(包括边界)的图象的最高点与最低点的纵坐标的差为t .①如图2,当12m =-时,请直接写出t 的值;②请直接写出t 关于m 的函数关系式.13.如图, 抛物线2y x bx c =++与x 轴交于()1,0A -,()3,0B 两点,直线l 与抛物线交于A ,C 两点,其中点C 的横坐标为2.(1)求抛物线的解析式;(2)P 是线段AC 上的一个动点(P 与A , C 不重合),过 P 点作y 轴的平行线交抛物线于点 E ,求ACE △面积的最大值;(3)点H 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、H 四个点为顶点的四边形是平行四边形?如果存在,请求出所有满足条件的F 点坐标;如果不存在,请说明理由.(4)若直线PE 为抛物线的对称轴,抛物线与y 轴交于点 D ,直线AC 与y 轴交于点Q ,点M 为直线PE 上一动点,则在x 轴上是否存在一点N ,使四边形DMNQ 的周长最小?若存在,请直接写出点N 的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,抛物线21322y x x =--与x 轴正半轴交于点A ,过点A 的直线y =kx +b (k ≠0)与该抛物线的另一个交点B 的横坐标为2,P 是该抛物线上的任意一点,其横坐标为1m +,过点P 作x 轴的垂线,交直线AB 于点C ,在该垂线的点P 上方取一点D ,使1PD =,以CD 为边作矩形CDEF ,设点E 的横坐标为2m .(1)写出抛物线21322y x x =--的顶点坐标______.(2)当点P 与点A 重合时,求点E 的坐标;(3)当点E 在该抛物线上时,求抛物线的顶点到EF 的距离;(4)当矩形CDEF 的一组邻边与该抛物线相交,且该抛物线在矩形CDEF 内的部分所对应的函数值y 随x 的增大而增大时,直接写出m 的取值范围.15.如图1,抛物线²y x bx c =-++过点()()1,0,3,0A B -.(1)求抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,①当P 为抛物线的顶点时,求证:PBC △是直角三角形;②求出PBC △的最大面积及此时P 点的坐标;③如图2,过点P 作PN x ^轴,垂足为N ,PN 与BC 交于点E .当PE 的值最大时,求点P 的坐标.题型6:对称问题16.如图1,二次函数214y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C .点B 坐标为(6,0),点C 坐标为(0,3),点P 是第一象限内抛物线上的一个动点,过点P 作PD x ^轴,垂足为D ,PD 交直线BC 于点E ,设点P 的横坐标为m .(1)求该二次函数的表达式;(2)如图2,过点P 作PF BC ^,垂足为F ,当m 为何值时,PF 最大?最大值是多少?(3)如图3,连接CP ,当四边形OCPD 是矩形时,在抛物线的对称轴上存在点Q ,使原点O 关于直线CQ 的对称点O ¢恰好落在该矩形对角线所在的直线上,请直接写出满足条件的点Q 的坐标.17.如图1,已知抛物线23y ax bx =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,连接BC .(1)求a ,b 的值及直线BC 的解析式;(2)如图1,点P 是抛物线上位于直线BC 上方的一点,连接AP 交BC 于点E ,过P 作PF x ^轴于点F ,交BC 于点G ,(ⅰ)若EP EG =,求点P 的坐标,(ⅱ)连接CP ,CA ,记PCE V 的面积为1S ,ACE V 的面积为2S ,求12S S 的最大值;(3)如图2,将抛物线位于x 轴下方面的部分不变,位于x 轴上方面的部分关于x 轴对称,得到新的图形,将直线BC 向下平移n 个单位,得到直线l ,若直线l 与新的图形有四个不同交点,请直接写出n的取值范围.题型7:新定义题18.定义:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则称该函数为“()X n 函数”.(1)在下列函数中,是“()X n 函数”的有 (填序号).①y x =;②20241y x =+;③1y x =;④2y x =(2)若关于x 的函数()2y x h k =-+是“()0X 函数”,且图象与直线4y =相交于A ,B 两点,函数()2y x h k =-+图象的顶点为P ,当45PBA Ð=°时,求h ,k 的值.(3)若关于x 的函数()240y ax bx a =++¹是()1X 函数,且过点()3,1,当1t x t -££时,函数的最大值1y 与最小值2y 的差为2,求t 的值.19.以x 为自变量的两个函数y 与g ,令h y g =-,我们把函数h 称为y 与g 的“相关函数”例如:以x 为自变量的函数2y x =与21g x =-,则它们的“相关函数”为221h y g x x =-=-+.因为()222110h x x x =-+=-³恒成立.所以借助该“相关函数”可以证明:不论自变量x 取何值,y g ³恒成立.(1)已知函数2y x mx n =++与函数41g x =+相交于点()1,3--、()3,13.①此时m ,n 的值分别为:m =______,n =______;②求此时函数y 与g 的“相关函数”h ;(2)已知以x 为自变量的函数3y x t =+与2g x =-,当1x >时,对于x 的每一个值,函数y 与g 的“相关函数”0h >恒成立,求t 的取值范围;(3)已知以x 为自变量的函数2y ax bx c =++与2g bx c =--(,,a b c 为常数且0a >,0b ¹).点1,02A æöç÷èø,点()12,B y -,()21,C y 是它们的“相关函数”h 的图象上的三个点.且满足212c y y <<,求函数h 的图象截x 轴得到的线段长度的取值范围.题型8:二次函数的代数(综合)应用20.二次函数2y x bx c =++的图象与x 轴交于点()1,0A x ,()2,0B x 且12x x ¹.(1)当12x =,且6b c +=-时,①求b ,c 的值②当2x t -££时,二次函数2y x bx c =++的最大值与最小值的差为4,求t 的值;(2)若123x x =,求证:332b c -£.21.在平面直角坐标系中,已知抛物线()2233y mx m x m =--+-(m 是常数,且0m ¹)经过点()2,4,且与y 轴交于点A ,其对称轴与x 轴交于点B .(1)求出二次函数的表达式.(2)垂直于y 轴的直线l 与抛物线交于点(),P a p 和(),Q b q ,与直线AB 交于点(),c n ,若a c b <<,直接写出a b c ++的取值范围.(3)当13x t =-,2x t =,33x t =+时,对应的函数值分别为1y ,2y ,3y .求证:123454y y y ++³.22.已知y 关于x 的两个函数y ax a =+(a 为常数,0a ¹,0x £)与22y ax ax a =-+(a 为常数,0a ¹,0x >)的图像组成一个新图形N .图形N 与x 轴交于A ,B 两点(点A 在点B 左边),交y 轴于点C .(1)求点A ,B 坐标;(2)若ABC V 为直角三角形;①求实数a 的值;②若直线(0)y kx b k =+¹与图形N 有且只有两个交点()11,x y ,()22,x y ,满足12202x x -<<<<,求实数k 满足条件.。