2019高考数学 考点突破——导数及其应用与定积分:导数与函数的单调性学案
- 格式:doc
- 大小:55.50 KB
- 文档页数:6
第2讲 导数与函数的单调性1.函数的单调性与导数的关系(1)函数f (x )在(a ,b )内可导,且f ′(x )在(a ,b )任意子区间内都不恒等于0,当x ∈(a ,b )时.f ′(x )≥0⇔函数f (x )在(a ,b )上单调递增; f ′(x )≤0⇔函数f (x )在(a ,b )上单调递减.(2)f ′(x )>0(<0)在(a ,b )上成立是f (x )在(a ,b)上单调递增(减)的充分条件. [提醒] 利用导数研究函数的单调性,要在定义域内讨论导数的符号.判断正误(正确的打“√”,错误的打“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) 答案:(1)× (2)√函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数解析:选D.因为f ′(x )=-sin x -1<0. 所以f (x )在(0,π)上是减函数,故选D.(教材习题改编)函数f (x )的导函数f ′(x )有下列信息: ①f ′(x )>0时,-1<x <2; ②f ′(x )<0时,x <-1或x >2; ③f ′(x )=0时,x =-1或x =2. 则函数f (x )的大致图象是( )解析:选C.根据信息知,函数f (x )在(-1,2)上是增函数.在(-∞,-1),(2,+∞)上是减函数,故选C.(教材习题改编)函数f (x )=e x-x 的单调递增区间是________.解析:因为f (x )=e x -x ,所以f ′(x )=e x-1, 由f ′(x )>0,得e x-1>0,即x >0. 答案:(0,+∞)已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.解析:f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞),所以a ≤3,即a 的最大值是3. 答案:3利用导数判断(证明)函数的单调性[典例引领](2017·高考全国卷Ⅰ节选)已知函数f (x )=e x (e x -a )-a 2x .讨论f (x )的单调性. 【解】 (分类讨论思想)函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x-a e x -a 2=(2e x+a )(e x-a ).①若a =0,则f (x )=e 2x,在(-∞,+∞)单调递增. ②若a >0,则由f ′(x )=0得x =ln a . 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )单调递减,在(ln a ,+∞)单调递增. ③若a <0,则由f ′(x )=0得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2单调递减, 在⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞单调递增.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[通关练习]1.函数f (x )=e 2x+2cos x -4的定义域是[0,2π],则f (x )( ) A .在[0,π]上是减函数,在[π,2π]上是增函数 B .在[0,π]上是增函数,在[π,2π]上是减函数 C .在[0,2π]上是增函数 D .在[0,2π]上是减函数解析:选C.由题意可得f ′(x )=2e 2x-2sin x =2(e 2x-sin x ). 因为x ∈[0,2π],所以f ′(x )≥2(1-sin x )≥0, 所以函数f (x )在[0,2π]上是增函数,故选C. 2.已知函数f (x )=m ln(x +1),g (x )=xx +1(x >-1).讨论函数F (x )=f (x )-g (x )在(-1,+∞)上的单调性. 解:F ′(x )=f ′(x )-g ′(x )=mx +1-1(x +1)2=m (x +1)-1(x +1)2(x >-1). 当m ≤0时,F ′(x )<0,函数F (x )在(-1,+∞)上单调递减;当m >0时,令F ′(x )<0,得x <-1+1m ,函数F (x )在(-1,-1+1m)上单调递减;令F ′(x )>0,得x >-1+1m ,函数F (x )在(-1+1m,+∞)上单调递增.综上所述,当m ≤0时,F (x )在(-1,+∞)上单调递减;当m >0时,F (x )在(-1,-1+1m )上单调递减,在(-1+1m,+∞)上单调递增.求函数的单调区间[典例引领](2016·高考北京卷)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值;(2)求f (x )的单调区间. 【解】 (1)因为f (x )=x e a -x+bx ,所以f ′(x )=(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1, 解得a =2,b =e. (2)由(1)知f (x )=x e 2-x+e x .由f ′(x )=e 2-x(1-x +e x -1)及e2-x>0知,f ′(x )与1-x +ex -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+ex -1.所以当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减; 当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值, 从而g (x )>0,x ∈(-∞,+∞). 综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).利用导数求函数的单调区间的三种方法(1)当不等式f ′(x )>0或f ′(x )<0可解时,确定函数的定义域,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,确定函数的定义域,解方程f ′(x )=0,求出实数根,把函数f (x )的间断点(即f (x )的无定义点)的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f ′(x )在各个区间内的符号,从而确定单调区间.(3)不等式f ′(x )>0或f ′(x )<0及方程f ′(x )=0均不可解时求导数并化简,根据f ′(x )的结构特征,选择相应的基本初等函数,利用其图象与性质确定f ′(x )的符号,得单调区间.函数f (x )=3+x ln x 的单调递减区间是( )A.⎝ ⎛⎭⎪⎫1e ,e B.⎝ ⎛⎭⎪⎫0,1eC.⎝⎛⎭⎪⎫-∞,1e D.⎝ ⎛⎭⎪⎫1e ,+∞ 解析:选B.因为函数的定义域为(0,+∞)且f ′(x )=ln x +x ·1x=ln x +1,令f ′(x )<0,解得:0<x <1e.故f (x )的单调递减区间是⎝ ⎛⎭⎪⎫0,1e .函数单调性的应用(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下两个命题角度: (1)比较大小或解不等式;(2)已知函数单调性求参数的取值范围.[典例引领]角度一 比较大小或解不等式(构造函数法)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)【解析】 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,故选B. 【答案】 B角度二 已知函数单调性求参数的取值范围已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解】 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解.即a >1x 2-2x有解,设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=(1x-1)2-1,所以G (x )min =-1. 所以a >-1.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )ma x ,而G (x )=(1x-1)2-1,因为x ∈[1,4],所以1x ∈[14,1],所以G (x )ma x =-716(此时x =4),所以a ≥-716,即a 的取值范围是[-716,+∞).1.本例条件变为:若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解:由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,(1x 2-2x)min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].2.本例条件变为:若h (x )在[1,4]上存在单调递减区间,求a 的取值范围. 解:h (x )在[1,4]上存在单调递减区间, 则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,(1x 2-2x)min =-1,所以a >-1,即a 的取值范围是(-1,+∞).(1)利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.(2)利用函数的单调性求参数的取值范围的解题思路①由函数在区间[a ,b ]上单调递增(减)可知f ′(x )≥0(f ′(x )≤0)在区间[a ,b ]上恒成立列出不等式.②利用分离参数法或函数的性质求解恒成立问题.③对等号单独检验,检验参数的取值能否使f ′(x )在整个区间恒等于0,若f ′(x )恒等于0,则参数的这个值应舍去;若只有在个别点处有f ′(x )=0,则参数可取这个值. [提醒] f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任意一个非空子区间上f ′(x )≠0.应注意此时式子中的等号不能省略,否则漏解.[通关练习]1.已知函数f (x )=x 3-3x ,若在△ABC 中,角C 是钝角,则( ) A .f (sin A )>f (cos B ) B .f (sin A )<f (cos B ) C .f (sin A )>f (sin B )D .f (sin A )<f (sin B )解析:选A.因为f (x )=x 3-3x ,所以f ′(x )=3x 2-3=3(x +1)(x -1),故函数f (x )在区间(-1,1)上是减函数,又A 、B 都是锐角,且A +B <π2,所以0<A <π2-B <π2,所以sin A<sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,故f (sin A )>f (cos B ),故选A.2.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)若f (x )在(2,+∞)上为单调函数,求实数a 的取值范围. 解:(1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,f (x )在(0,+∞)上单调递增;若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知当a ≤0时,f (x )在(0,+∞)上单调递增,符合要求;当a >0时,f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减,则2≥1a ,即a ≥12.所以实数a 的取值范围是(-∞,0]∪⎣⎢⎡⎭⎪⎫12,+∞.导数与函数单调性的关系(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件; (2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件.利用导数研究函数的单调性的思路根据函数的导数研究函数的单调性,在函数解析式中含有参数时要进行分类讨论,这种分类讨论首先是在函数的定义域内进行,其次要根据函数的导数等于零的点在其定义域内的情况进行,如果这个点不止一个,则要根据参数在不同范围内取值时,导数等于零的根的大小关系进行分类讨论,在分类解决问题后要整合为一个一般的结论.化归转化思想的应用(1)已知函数f (x )在D 上单调递增求参数的取值范围,常转化为f ′(x )≥0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴下方的问题,已知函数f (x )在D 上单调递减求参数的取值范围,常转化为f ′(x )≤0在D 上恒成立,再通过构造函数转化为求最值或图象都不在x 轴上方的问题.(2)已知函数f (x )在D 上不单调,①将其转化为其导数在该区间不会恒大于零或恒小于零;②构造函数,通过构造函数,把复杂的函数转化为简单的函数.易误防范(1)求单调区间应遵循定义域优先的原则.(2)注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.(3)利用导数求函数的单调区间时,要正确求出导数等于零的点,不连续点及不可导点. (4)若f (x )在给定区间内有多个单调性相同的区间不能用“∪”连接,只能用“,”隔开或用“和”连接.1.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是( ) A .增函数 B .减函数 C .先增后减D .先减后增解析:选A .在(0,2π)上有f ′(x )=1-cos x >0恒成立,所以f (x )在(0,2π)上单调递增.2.函数f (x )=axx 2+1(a >0)的单调递增区间是( )A .(-∞,-1)B .(-1,1)C .(1,+∞)D .(-∞,-1)或(1,+∞)解析:选B.函数f (x )的定义域为R ,f ′(x )=a (1-x 2)(x 2+1)2=a (1-x )(1+x )(x 2+1)2.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1). 3.(2018·太原模拟)函数f (x )=exx的图象大致为( )解析:选 B.由f (x )=exx ,可得f ′(x )=x e x -e x x 2=(x -1)e xx 2,则当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,故选B.4.(2018·四川乐山一中期末)f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为( ) A .a <1 B .a ≤1 C .a <2D .a ≤2解析:选D.由f (x )=x 2-a ln x ,得f ′(x )=2x -ax, 因为f (x )在(1,+∞)上单调递增,所以2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立, 因为x ∈(1,+∞)时,2x 2>2,所以a ≤2故选D.5.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <b <a C .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b , 又f (x )=f (2-x ), 所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.6.函数f (x )=x 4+54x -ln x 的单调递减区间是________.解析:因为f (x )=x 4+54x-ln x ,所以函数的定义域为(0,+∞), 且f ′(x )=14-54x 2-1x =x 2-4x -54x2, 令f ′(x )<0,解得0<x <5,所以函数f (x )的单调递减区间为(0,5).答案:(0,5)7.若f (x )=x sin x +cos x ,则f (-3),f ⎝ ⎛⎭⎪⎫π2,f (2)的大小关系为________(用“<”连接).解析:函数f (x )为偶函数,因此f (-3)=f (3). 又f ′(x )=sin x +x cos x -sin x =x cos x , 当x ∈⎝⎛⎭⎪⎫π2,π时,f ′(x )<0.所以f (x )在区间⎝ ⎛⎭⎪⎫π2,π上是减函数,所以f ⎝ ⎛⎭⎪⎫π2>f (2)>f (3)=f (-3).答案:f (-3)<f (2)<f ⎝ ⎛⎭⎪⎫π28.(2018·张掖市第一次诊断考试)若函数f (x )=x 33-a2x 2+x +1在区间(12,3)上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-12a +1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞)9.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间.解:(1)因为f (x )=a (x -5)2+6ln x , 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=(x -2)(x -3)x.令f ′(x )=0,解得x =2或3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3). 10.已知函数g (x )=13x 3-a 2x 2+2x +5.(1)若函数g (x )在(-2,-1)内为减函数,求a 的取值范围; (2)若函数g (x )在(-2,-1)内存在单调递减区间,求a 的取值范围. 解:因为g (x )=13x 3-a 2x 2+2x +5,所以g ′(x )=x 2-ax +2.(1)法一:因为g (x )在(-2,-1)内为减函数,所以g ′(x )=x 2-ax +2≤0在(-2,-1)内恒成立. 所以⎩⎪⎨⎪⎧g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0. 解得a ≤-3.即实数a 的取值范围为(-∞,-3].法二:由题意知x 2-ax +2≤0在(-2,-1)内恒成立, 所以a ≤x +2x在(-2,-1)内恒成立,记h (x )=x +2x,则x ∈(-2,-1)时,-3<h (x )≤-22,所以a ≤-3. (2)因为函数g (x )在(-2,-1)内存在单调递减区间, 所以g ′(x )=x 2-ax +2<0在(-2,-1)内有解,所以a <⎝⎛⎭⎪⎫x +2x ma x.又x +2x≤-2 2.当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).1.(2018·安徽江淮十校第三次联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( ) A .1<a ≤2 B .a ≥4 C .a ≤2D .0<a ≤3解析:选A. 易知函数f (x )的定义域为(0,+∞),f ′(x )=x -9x ,由f ′(x )=x -9x <0,解得0<x <3.因为函数f (x )=12x 2-9ln x 在区间[a-1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2,选A.2.(2018·豫南九校联考)已知f ′(x )是定义在R 上的连续函数f (x )的导函数,满足f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( ) A .(-∞,-1) B .(-1,1) C .(-∞,0) D .(-1,+∞)解析:选A.设g (x )=f (x )e2x,则g ′(x )=f ′(x )-2f (x )e2x<0在R 上恒成立,所以g (x )在R 上递减,又因为g (-1)=0,f (x )>0⇔g (x )>0,所以x <-1.3.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值范围是________.解析:f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减,g ′(x )=e x +(x +a )e x =(x +a +1)e x ,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为(-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值范围是(-∞,-1). 答案:(-∞,-1)4.定义在R 上的奇函数f (x ),当x ∈(-∞,0)时f (x )+xf ′(x )<0恒成立,若a =3f (3),b =(log πe)f (log πe),c =-2f (-2),则a ,b ,c 的大小关系为________. 解析:设g (x )=xf (x ), 则g ′(x )=f (x )+xf ′(x ),因为当x ∈(-∞,0)时,f (x )+xf ′(x )<0恒成立, 所以此时g ′(x )=f (x )+xf ′(x )<0,即此时函数g (x )=xf (x )在(-∞,0)上单调递减,因为f (x )是奇函数,所以g (x )=xf (x )是偶函数,即当x >0时,函数g (x )=xf (x )单调递增,则a =3f (3)=g (3),b =(log πe)f (log πe)=g (log πe),c =-2f (-2)=g (-2)=g (2),因为0<log πe <1<2<3,所以g (3)>g (2)>g (log πe),即a >c >b . 答案:a >c >b5.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x-ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)因为a =e ,所以f (x )=e x-e x -1,f ′(x )=e x-e ,f (1)=-1,f ′(1)=0. 所以当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)因为f (x )=e x-ax -1,所以f ′(x )=e x-a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.所以当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x-a =0,得x =ln a ,所以当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, 所以f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.6.(2018·武汉市武昌区调研考试)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x ). 解:(1)f (x )的定义域为(0,+∞).由已知,得f ′(x )=x +1-a -a x =x 2+(1-a )x -a x =(x +1)(x -a )x.若a ≤0,则f ′(x )>0,此时f (x )在(0,+∞)上单调递增.若a >0,则由f ′(x )=0,得x =a .当0<x <a 时,f ′(x )<0;当x >a 时,f ′(x )>0. 此时f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.(2)证明:令g (x )=f (a +x )-f (a -x ),则g (x )=12(a +x )2+(1-a )(a +x )-a ln(a +x )-[12(a -x )2+(1-a )(a -x )-a ln(a -x )]=2x -a ln(a +x )+a ln(a -x ). 所以g ′(x )=2-a a +x -aa -x =-2x2a 2-x 2.当0<x <a 时,g ′(x )<0,所以g (x )在(0,a )上是减函数. 而g (0)=0,所以g (x )<g (0)=0. 故当0<x <a 时,f (a +x )<f (a -x ).。
导数与函数的极值、最值【考点梳理】1.函数的极值与导数的关系 (1)函数的极小值与极小值点若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数的极小值点,f (a )叫做函数的极小值.(2)函数的极大值与极大值点若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数的极大值点,f (b )叫做函数的极大值.2.函数的最值与导数的关系(1)函数f (x )在[a ,b ]上有最值的条件如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤 ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值. 【考点突破】考点一、利用导数研究函数的极值问题【例1】已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数. [解析] (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x ,令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如表.x (0,2) 2 (2,+∞)f ′(x ) + 0 - f (x )单调递增ln 2-1单调递减故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-axx(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )<0,故函数在x =1a处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a.【例2】(1)若函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫2,103B .⎣⎢⎡⎭⎪⎫2,103C .⎝ ⎛⎭⎪⎫103,174D .⎝ ⎛⎭⎪⎫2,174(2)已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为( ) A .-23B .-2C .-2或-23 D .2或-23[答案] (1) D (2) A[解析] (1)因为f (x )=x 33-a2x 2+x +1,所以f ′(x )=x 2-ax +1.函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫13,4上有极值点可化为f ′(x )=x 2-ax +1=0在区间⎝ ⎛⎭⎪⎫13,4上有解,即a =x +1x 在区间⎝ ⎛⎭⎪⎫13,4上有解,设t (x )=x +1x ,则t ′(x )=1-1x2,令t ′(x )>0,得1<x <4,令t ′(x )<0,得13<x <1.所以t (x )在(1,4)上单调递增,在⎝ ⎛⎭⎪⎫13,1上单调递减. 所以t (x )min =t (1)=2,又t ⎝ ⎛⎭⎪⎫13=103,t (4)=174,所以a ∈⎝⎛⎭⎪⎫2,174.(2)由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9,满足题意,故a b =-23. 【例3】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) [答案] D[解析] 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【类题通法】利用导数研究函数极值的一般流程【对点训练】1.求函数f (x )=x -a ln x (a ∈R)的极值. [解析] 由f ′(x )=1-a x =x -ax,x >0知:(1)当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; (2)当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a lna ,无极大值.2.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞)[答案] B[解析] ∵f′(x)=3x2+2ax+(a+6),由已知可得f′(x)=0有两个不相等的实根,∴Δ=4a2-4×3(a+6)>0,即a2-3a-18>0,∴a>6或a<-3.3.已知a为函数f(x)=x3-12x的极小值点,则a=( )A.-4 B.-2C.4 D.2[答案] D[解析] 由题意得f′(x)=3x2-12,令f′(x)=0得x=±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x=2处取得极小值,∴a=2.4.函数y=f(x)导函数的图象如图所示,则下列说法错误的是( )A.(-1,3)为函数y=f(x)的递增区间B.(3,5)为函数y=f(x)的递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值[答案] C[解析] 由函数y=f(x)的导函数f′(x)的图象知,当x<-1及3<x<5时,f′(x)<0,f(x)单调递减;当-1<x<3及x>5时,f′(x)>0,f(x)单调递增.所以f(x)的单调减区间为(-∞,-1),(3,5);单调增区间为(-1,3),(5,+∞).f(x)在x=-1,5处取得极小值,在x=3处取得极大值,因此C不正确.考点二、利用导数解决函数的最值问题【例4】已知函数f(x)=(x-k)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.[解析] (1)由f (x )=(x -k )e x,得f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.f (x )与f ′(x )的变化情况如下:x (-∞,k -1)k -1(k -1,+∞)f ′(x ) - 0 +f (x )单调递减-ek -1单调递增(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k , 当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-ek -1.当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上可知,当k ≤1时,f (x )min =-k ; 当1<k <2时,f (x )min =-ek -1;当k ≥2时,f (x )min =(1-k )e. 【类题通法】1.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: 第一步,求函数在(a ,b )内的极值;第二步,求函数在区间端点处的函数值f (a ),f (b );第三步,将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值. 【对点训练】 已知函数f (x )=x -1x-ln x . (1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数). [解析] (1)f (x )=x -1x -ln x =1-1x -ln x ,f (x )的定义域为(0,+∞). ∴f ′(x )=1x 2-1x=1-xx2,由f ′(x )>0,得0<x <1,由f ′(x )<0,得x >1,∴f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在[1,e]上单调递减, ∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-1-ln 1=0. 又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e). ∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e.∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e. 考点三、利用导数研究不等式的有关问题【例5】已知函数f (x )=ln(1+x ),g (x )=kx (k ∈R). (1)证明:当x >0时,f (x )<x ;(2)证明:当k <1时,存在x 0>0,使得对任意的x ∈(0,x 0)恒有f (x )>g (x ). [解析] (1)令F (x )=f (x )-x =ln(1+x )-x ,x ∈[0,+∞), 则有F ′(x )=11+x -1=-xx +1.当x ∈(0,+∞)时,F ′(x )<0, 所以F (x )在[0,+∞)上单调递减,故当x >0时,F (x )<F (0)=0,即当x >0时,f (x )<x . (2)令G (x )=f (x )-g (x )=ln(1+x )-kx ,x ∈[0,+∞), 则有G ′(x )=1x +1-k =-kx +1-kx +1. 当k ≤0时,G ′(x )>0,故G (x )在[0,+∞)上单调递增,G (x )>G (0)=0,故任意正实数x 0均满足题意.当0<k <1时,令G ′(x )=0,得x =1-k k =1k-1>0,取x 0=1k-1,对任意x ∈(0,x 0),有G ′(x )>0,从而G (x )在[0,x 0)上单调递增, 所以G (x )>G (0)=0,即f (x )>g (x ).综上,当k <1时,总存在x 0>0,使得对任意x ∈(0,x 0)恒有f (x )>g (x ). 【类题通法】1.证明不等式的常用方法——构造法(1)证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).(2)证明f (x )>g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )>0,则F (x )在(a ,b )上是增函数,同时若F (a )≥0,由增函数的定义可知,x ∈(a ,b )时,有F (x )>0,即证明了f (x )>g (x ).2.不等式成立(恒成立)问题中的常用结论(1)f (x )≥a 恒成立⇒f (x )min ≥a ,f (x )≥a 成立⇒f (x )max ≥a . (2)f (x )≤b 恒成立⇔f (x )max ≤b ,f (x )≤b 成立⇔f (x )min ≤b .(3)f (x )>g (x )恒成立 F (x )min >0(F (x )=f (x )-g (x )). (4)①∀x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)max ; ②∀x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)min >g (x 2)min ; ③∃x 1∈M ,∃x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)min ; ④∃x 1∈M ,∀x 2∈N ,f (x 1)>g (x 2)⇔f (x 1)max >g (x 2)max . 【对点训练】已知函数f (x )=e x-1-x -ax 2. (1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 的取值范围. [解析] (1)当a =0时,f (x )=e x-1-x ,f ′(x )=e x-1.当x ∈(-∞,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0.(2)f ′(x )=e x-1-2ax ,令h (x )=e x-1-2ax ,则h ′(x )=e x-2a .①当2a ≤1,即a ≤12时,h ′(x )≥0在[0,+∞)上恒成立,h (x )单调递增,∴h (x )≥h (0),即f ′(x )≥f ′(0)=0, ∴f (x )在[0,+∞)上为增函数, ∴f (x )≥f (0)=0, ∴当a ≤12时满足条件.②当2a >1,即a >12时,令h ′(x )=0,解得x =ln 2a ,当x ∈[0,ln 2a )时,h ′(x )<0,h (x )单调递减,∴当x ∈[0,ln 2a )时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0, ∴f (x )在区间[0,ln 2a )上为减函数, ∴f (x )<f (0)=0,不合题意. 综上,实数a 的取值范围为⎝⎛⎦⎥⎤-∞,12.。
课题:第三课时导数与函数的单调性(二)第三课时课题:导数与函数的单调性(二)主题内容:已知函数的单调性,判断参数的取值范围;判断含参函数的单调性以及求解其单调区间.教学目标1会根据已知函数单调性求参数的取值范围,对是否有等号能做出正确判断。
2能对含参函数的导函数类型进行合理划分,并根据不同导函数类型选择合理的分类标准,层次分明、不重不漏地对参数进行讨论,确定函数的单调性与单调区间;3在解题中融入分类讨论、数形结合、转化与化归等思想方法,训练学生综合运用知识解决问题的能力.教学重点:对含参函数单调性能不重不漏,合理有序的进行分类讨论。
重点突破:研究导函数的固定变号零点和含参部分零点。
含参部分是否有零点,以及有零点时与已知零点的大小顺序就是这部分分类的依据。
教学难点:含参函数单调性讨论时,怎样分类,以及分几类是学生解决问题时遇到的难点。
难点突破:利用零点分区法,通过画图和解方程,从数形两方面入手,帮助学生找到解决问题的思路,再归纳出解题流程,提升学生认知。
教学过程:开头语:“同学们好,上节我们学习了可导函数单调性与导函数之间的关系,这一节我们继续深入研究。
”师:展示ppt,公布答案,学生自查,并总结规律。
师:函数单调性与导函数之间关系是什么?生2:在(a,b)上,导函数大于零,函数单增,导函数小于零,函数单减。
师:对学生解答给予鼓励性评价,如果有问题给予纠正,然后进入下一个环节。
设计意图:再现型题组,题目比较简单,复习巩固函数单调区间的求法,并通过问题的解答,使学生进一步明确函数单调区间的求法。
题1详解题2详解师:ppt展示近几年高考题。
师:“同学们看,这些函数都含有参数,在解决问题的过程中,都离不开考虑参数对函数单调性的影响,属于高频考点,非常重要,我们这节课就研究含参函数单调性问题。
”设计意图:高考真题再现,使学生认识到这节课所学内容的重要性,激发学生学习兴趣,提高学生探究的积极性。
师:展示ppt,进入本节课重难点突破阶段生3:展示自己解答过程,并交流自己的解题思路设计意图:高三学生有一定基础,本题让学生提前做好,预备展示,并思考本题为啥要分类,根据什么分类,在交流环节中和同学们进行分享,为这节课重、难点突破做铺垫。
函数的单调性与导数(教学设计)教学设计:函数的单调性与导数本节课的主要内容是函数的单调性与导数。
在研究本节课之前,学生已经研究了导数、函数及函数单调性等概念,对导数的几何意义与函数单调性有了一定的感性和理性的认识。
函数的单调性是高中数学中极为重要的一个知识点。
在以前的研究中,学生已经研究了如何利用函数单调性的定义和函数的图像来研究函数的单调性。
而在研究了导数之后,学生可以利用导数来研究函数的单调性,这是导数在研究处理函数性质问题中的一个重要应用。
学好本课时的知识对接下来要研究利用导数研究函数的极值奠定知识基础,因此,研究本节内容具有承上启下的作用。
在本节课之前,学生已经研究了导数的概念、导数的几何意义和导数的四则运算,研究了用导数求曲线的切线方程。
因此,本节课应着重让学生通过探究来研究利用导数判定函数的单调性。
本节课的教学目标包括以下几点:1.知识与能力:1) 理解函数单调性与导数的关系:函数f(x)在区间(a,b)内可导,若f'(x)>0,则f(x)在区间(a,b)内单调递增;若f'(x)<0,则f(x)在区间(a,b)内单调递减。
2) 探究函数的单调性与导数的关系,利用导数与函数单调性的关系求函数的单调区间、画函数的简单图像。
2.过程与方法:通过利用导数研究单调性问题的研究过程,引导学生养成自主研究的研究惯,体会知识的类比迁移,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。
2) 通过导数研究单调性,使学生知道用导数判断函数的单调性比用单调性的定义更容易,知道导数作为研究函数的工具的实用价值。
本节课的教学重点是利用导数判断函数的单调性,并求函数的单调区间。
教学难点在于如何将导数与函数的单调性联系起来。
本节课的教学方法为启发引导式,课时安排为1课时。
教学准备包括多媒体平台和课件。
第二节导数与函数的单调性[最新考纲] 1.了解函数的单调性和导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不会超过三次).函数的单调性与导数的关系条件结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在(a,b)内单调递增f′(x)<0f(x)在(a,b)内单调递减f′(x)=0f(x)在(a,b)内是常数函数1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对任意x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.一、思考辨析(正确的打“√”,错误的打“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.( )(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.( )(3)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内是减函数.( )[答案] (1)×(2)√(3)√二、教材改编1.如图是函数y=f(x)的导函数y=f′(x)的图像,则下面判断正确的是( )A.在区间(-3,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.在区间(3,5)上f(x)是增函数C[由图像可知,当x∈(4,5)时,f′(x)>0,故f(x)在(4,5)上是增函数.]2.函数f (x )=cos x -x 在(0,π)上的单调性是( ) A .先增后减 B .先减后增 C .增函数D .减函数D [因为f ′(x )=-sin x -1<0在(0,π)上恒成立, 所以f (x )在(0,π)上是减函数,故选D.]3.函数f (x )=x -ln x 的单调递减区间为________.(0,1] [函数f (x )的定义域为{x |x >0},由f ′(x )=1-1x≤0,得0<x ≤1,所以函数f (x )的单调递减区间为(0,1].]4.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________. 3 [f ′(x )=3x 2-a ≥0,即a ≤3x 2,又因为x ∈[1,+∞ ),所以a ≤3,即a 的最大值是3.]考点1 不含参数函数的单调性求函数单调区间的步骤(1)确定函数f (x )的定义域. (2)求f ′(x ).(3)在定义域内解不等式f ′(x )>0,得单调递增区间. (4)在定义域内解不等式f ′(x )<0,得单调递减区间.1.函数f (x )=1+x -sin x 在(0,2π)上是( )A .单调递增B .单调递减C .在(0,π)上增,在(π,2π)上减D .在(0,π)上减,在(π,2π)上增A [f ′(x )=1-cos x >0在(0,2π)上恒成立,所以在(0,2π)上单调递增.] 2.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)B [∵y =12x 2-ln x ,∴x ∈(0,+∞),y ′=x -1x=x -1x +1x.由y ′≤0可解得0<x ≤1,∴y =12x 2-ln x 的单调递减区间为(0,1],故选B.]3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是________.⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2 [f ′(x )=sin x +x cos x -sin x =x cos x , 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2.]求函数的单调区间时,一定要树立函数的定义域优先的原则,否则极易出错.如T 2.考点2 含参数函数的单调性研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.(1)讨论分以下四个方面 ①二次项系数讨论; ②根的有无讨论; ③根的大小讨论; ④根在不在定义域内讨论.(2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.已知函数f (x )=12x 2-2a ln x +(a -2)x ,当a <0时,讨论函数f (x )的单调性.[解] 函数的定义域为(0,+∞),f ′(x )=x -2a x+a -2=x -2x +a x.①当-a =2,即a =-2时,f ′(x )=x -22x≥0,f (x )在(0,+∞)上单调递增.②当0<-a <2,即-2<a <0时,∵0<x <-a 或x >2时,f ′(x )>0;-a <x <2时,f ′(x )<0,∴f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减. ③当-a >2,即a <-2时,∵0<x <2或x >-a 时,f ′(x )>0;2<x <-a 时,f ′(x )<0, ∴f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.综上所述,当-2<a <0时,f (x )在(0,-a ),(2,+∞)上单调递增,在(-a,2)上单调递减;当a =-2时,f (x )在(0,+∞)上单调递增;当a <-2时,f (x )在(0,2),(-a ,+∞)上单调递增,在(2,-a )上单调递减.含参数的问题,应就参数范围讨论导数大于(或小于)零的不等式的解,在划分函数的单调区间时,要在函数定义域内确定导数为零的点和函数的间断点.已知函数f (x )=ln(e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.[解] f ′(x )=e xe x +1-a =1-1e x +1-a .①当a ≥1时,f ′(x )<0恒成立, ∴当a ∈[1,+∞)时, 函数y =f (x )在R 上单调递减. ②当0<a <1时,由f ′(x )>0,得(1-a )(e x+1)>1, 即e x>-1+11-a ,解得x >ln a 1-a ,由f ′(x )<0,得(1-a )(e x +1)<1, 即e x<-1+11-a ,解得x <ln a 1-a .∴当a ∈(0,1)时,函数y =f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增, 在⎝ ⎛⎭⎪⎫-∞,ln a 1-a 上单调递减. 综上,当a ∈[1,+∞)时,f (x )在R 上单调递减;当a ∈(0,1)时,f (x )在⎝ ⎛⎭⎪⎫ln a1-a ,+∞上单调递增,在⎝⎛⎭⎪⎫-∞,ln a 1-a 上单调递减.考点3 已知函数的单调性求参数根据函数单调性求参数的一般方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. [解] (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,所以G (x )min =-1.所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞). (2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x恒成立.所以a ≥G (x )max ,而G (x )=⎝ ⎛⎭⎪⎫1x-12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞). [母题探究]1.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. [解] 由h (x )在[1,4]上单调递增得,当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x恒成立,又当x ∈[1,4]时,⎝⎛⎭⎪⎫1x 2-2xmin =-1(此时x =1), 所以a ≤-1且a ≠0,即a 的取值范围是(-∞,-1].2.(变问法)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围. [解] h (x )在[1,4]上存在单调递减区间,则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解,又当x ∈[1,4]时,⎝ ⎛⎭⎪⎫1x2-2x min =-1,所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞).3.(变条件)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围. [解] 因为h (x )在[1,4]上不单调, 所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x 有解,令m (x )=1x 2-2x,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎪⎫-1,-716. (1)f (x )在D 上单调递增(减),只要满足f ′(x )≥0(≤0)在D 上恒成立即可.如果能够分离参数,则可分离参数后转化为参数值与函数最值之间的关系.(2)二次函数在区间D 上大于零恒成立,讨论的标准是二次函数的图像的对称轴与区间D 的相对位置,一般分对称轴在区间左侧、内部、右侧进行讨论.已知函数f (x )=3x a-2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围.[解] f ′(x )=3a -4x +1x,若函数f (x )在区间[1,2]上为单调函数,即在[1,2]上,f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0,即3a -4x +1x ≥0或3a -4x +1x≤0在[1,2]上恒成立,即3a≥4x -1x 或3a ≤4x -1x.令h (x )=4x -1x,因为函数h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,解得a <0或0<a ≤25或a ≥1.考点4 利用导数比较大小或解不等式用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题转化为利用导数研究函数单调性的问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有: (1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x x ′;(4)f ′(x )+f (x )→[e xf (x )]′; (5)f ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x e x ′.(1)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)(2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′x -f xx 2<0恒成立,则不等式x 2f (x )>0的解集是________.(1)A (2)(-∞,-2)∪(0,2) [(1)根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x (2f (x )+xf ′(x ))>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.(2)令φ(x )=f x x ,∵当x >0时,⎣⎢⎡⎦⎥⎤f x x ′<0,∴φ(x )=f xx在(0,+∞)上为减函数,又φ(2)=0, ∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0, 此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数. 故x 2f (x )>0的解集为(-∞,-2)∪(0,2).]如本例(1)已知条件“2f (x )+xf ′(x )>0”,需构造函数g (x )=x 2f (x ),求导后得x >0时,g ′(x )>0,即函数g (x )在(0,+∞)上为增函数,从而问题得以解决.而本例(2)则需构造函数φ(x )=f xx解决. 1.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2)>e x2f (x 1) B .e x1f (x 2)<e x2f (x 1) C .e x1f (x 2)=e x2f (x 1)D .e x1f (x 2)与e x2f (x 1)的大小关系不确定 A [设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意得g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f x 1ex 1<f x 2ex 2,所以e x1f (x 2)>e x2f (x 1).]2.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________. (-∞,-1)∪(1,+∞) [由题意构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12.因为f ′(x )<12,所以F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.因为f (x 2)<x 22+12,f (1)=1,所以f (x 2)-x 22<f (1)-12,所以F (x 2)<F (1),又函数F (x )在R 上单调递减,所以x 2>1,即x ∈(-∞,-1)∪(1,+∞).]。
函数的单调性与导数教案函数的单调性与导数教案一、目标知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。
过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。
二、重点难点教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。
需要教师指导并借助动画给予直观的认识。
五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
提问1.判断函数的单调性有哪些方法?(引导学生回答“定义法”,“图象法”。
)2.比如,要判断y=x2的单调性,如何进行?(引导学生回顾分别用定义法、图象法完成。
)3.还有没有其它方法?如果遇到函数:y=x3-3x判断单调性呢?(让学生短时间内尝试完成,结果发现:用“定义法”,作差后判断差的符号麻烦;用“图象法”,图象很难画出来。
)4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。
以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。
第14讲 导数与函数的单调性函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则(1)若f ′(x )>0,则f (x )在这个区间内__单调递增__; (2)若f ′(x )<0,则f (x )在这个区间内__单调递减__.1.思维辨析(在括号内打“√”或“×”).(1)若函数f (x )在区间(a ,b )上单调递增,那么在区间(a ,b )上一定有f ′(x )>0.( × )(2)如果函数在某个区间内恒有f ′(x )=0,则函数f (x )在此区间内没有单调性.( √ )(3)导数为零的点不一定是极值点.( √ ) (4)三次函数在R 上必有极大值和极小值.( × )解析 (1)错误.函数f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,故f ′(x )>0是f (x )在区间(a ,b )上单调递增的充分不必要条件.(2)正确.如果函数在某个区间内恒有f ′(x )=0,则f (x )为常数函数.如f (x )=3,则f ′(x )=0,函数f (x )不存在单调性.(3)正确.导数为零的点不一定是极值点.如函数y =x 3在x =0处导数为零,但x =0不是函数y =x 3的极值点.(4)错误.对于三次函数y =ax 3+bx 2+cx +d ,y ′=3ax 2+2bx +c .当Δ=(2b )2-12ac <0,即b 2-3ac <0时,y ′=0无实数根,此时三次函数没有极值.2.函数y =12x 2-ln x 的单调递减区间为( B )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)解析 函数y =12x 2-ln x 的定义域为(0,+∞),y ′=x -1x =(x -1)(x +1)x ,令y ′≤0,则可得0<x ≤1.3.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( B )解析 由导函数图象知,x =0处导数最大,由几何意义知B 项正确.4.已知函数f (x )=mx 3+3(m -1)x 2-m 2+1(m >0)的单调递减区间是(0,4),则m =!!! 13###. 解析 ∵f ′(x )=3mx 2+6(m -1)x ,f (x )的递减区间为(0,4),则由f ′(x )=3mx 2+6(m-1)x <0得0<x <4,即⎩⎪⎨⎪⎧Δ>0,f ′(0)=0,f ′(4)=0⇒m =13.5.函数f (x )=sin x 2+cos x 的单调递增区间是 ⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+2π3(k ∈Z ) ###. 解析 f ′(x )=2cos x +1(2+cos x )2,由f ′(x )≥0得cos x ≥-12, ∴x ∈⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+2π3(k ∈Z ).一 求函数的单调区间利用导数求函数的单调区间的两种方法方法一:(1)确定函数y =f (x )的定义域; (2)求导数y ′=f ′(x );(3)令f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)令f ′(x )<0,解集在定义域内的部分为单调递减区间. 方法二:(1)确定函数y =f (x )的定义域;(2)求导数y ′=f ′(x ),令f ′(x )=0,解此方程,求出在定义域内的一切实根; (3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义域分成若干个小区间;(4)确定f ′(x )在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.【例1】 已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解析 (1)f ′(x )=14-a x 2-1x ,f ′(1)=-34-a .由题意,得-34-a =-2,解得a =54.(2)由(1)知,f ′(x )=14-54x 2-1x =x 2-4x -54x 2,f (x )的定义域为(0,+∞).由f ′(x )>0,得x 2-4x -5>0(x >0),解得x >5;由f ′(x )<0,得x 2-4x -5<0(x >0),解得0<x <5. 故函数f (x )的递增区间为(5,+∞),递减区间为(0,5). 【例2】 试确定下列函数的单调递减区间. (1)f (x )=x +a x(a >0);(2)f (x )=13x 3-12(a +a 2)x 2+a 3x +a 2.解析 (1)函数的定义域为{x |x ≠0}.f ′(x )=⎝ ⎛⎭⎪⎫x +a x ′=1-a x 2=1x 2(x +a )(x -a ). 要求f (x )的单调递减区间,不妨令f ′(x )<0,则1x2(x +a )·(x -a )<0,解得-a <x <a ,且x ≠0,∴函数的单调减区间为(-a ,0)和(0,a ). (2)y ′=x 2-(a +a 2)x +a 3=(x -a )(x -a 2), 令y ′<0,得(x -a )(x -a 2)<0.①当a <0时,不等式解集为{x |a <x <a 2},此时函数的单调递减区间为(a ,a 2); ②当0<a <1时,不等式解集为{x |a 2<x <a },此时函数的单调递减区间为(a 2,a ); ③当a >1时,不等式解集为{x |a <x <a 2},此时函数的单调递减区间为(a ,a 2); ④当a =0,a =1时,y ′≥0,此时,无单调递减区间.综上所述,当a <0或a >1时,函数y =13x 3-12(a +a 2)x 2+a 3x +a 2的单调递减区间为(a ,a 2);当0<a <1时,函数y =13x 3-12(a +a 2)x 2+a 3x +a 2的单调递减区间为(a 2,a );当a =0,a=1时,无单调递减区间.二 已知函数的单调性求参数的范围由函数的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)(f ′(x )在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围.(2)可导函数在某一区间上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题.(3)若已知f (x )在区间I 上的单调性,区间I 中含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.【例3】 已知函数f (x )=x 3-ax -1. (1)若f (x )在R 上为增函数,求a 的取值范围; (2)若f (x )在(1,+∞)上为增函数,求a 的取值范围; (3)若f (x )在(-1,1)上为减函数,求a 的取值范围; (4)若f (x )的单调递减区间为(-1,1),求a 的值; (5)若f (x )在(-1,1)上不单调,求a 的取值范围.解析 (1)∵f (x )在R 上为增函数,∴f ′(x )=3x 2-a ≥0在R 上恒成立.∴a ≤3x 2对x ∈R 恒成立.∵3x 2≥0,∴只需a ≤0.又∵a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上为增函数,∴a 的取值范围是(-∞,0].(2)∵f ′(x )=3x 2-a ,且f (x )在(1,+∞)上为增函数,∴f ′(x )≥0在(1,+∞)上恒成立,∴3x 2-a ≥0在(1,+∞)上恒成立,∴a ≤3x 2在(1,+∞)上恒成立,∴a ≤3,即a 的取值范围是(-∞,3].(3)∵f ′(x )=3x 2-a ,且f (x )在(-1,1)上为减函数, ∴f ′(x )≤0⇔3x 2-a ≤0在(-1,1)上恒成立, ∴a ≥3x 2在(-1,1)上恒成立.∵x ∈(-1,1),∴3x 2<3,即a ≥3.∴a 的取值范围是[3,+∞). (4)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,故f (x )在(-∞,+∞)上为增函数. ②当a >0时,由f ′(x )<0,得3x 2-a <0, ∴x 2<a 3,即-a3<x <a3. 故f (x )的递减区间为⎝⎛⎭⎪⎫-a3,a 3. 由题意,得a3=1,解得a =3. (5)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0, 故f (x )在(-∞,+∞)上为增函数. ②当a >0时,∵f (x )在(-1,1)上不单调, ∴f ′(x )=0在(-1,1)内有解x =±a3,∴0<a3<1,解得0<a <3.∴a 的取值范围是(0,3).三 构造法在函数单调性中的应用构造法在函数单调性中的应用技巧对于含有导函数不等式的试题,一般要依据导函数不等式(或其变式)和所求结论构造新的函数,并对构造的新函数求导,研究其单调性,应用构造新函数的单调性将所求问题转化求解.【例4】 (1)已知函数y =f (x -1)的图象关于点(1,0)对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立(其中f ′(x )为f (x )的导函数).若a =(30.3)·f (30.3),b =(log π3)·f (log π3),c =⎝⎛⎭⎪⎫log 319·f ⎝ ⎛⎭⎪⎫log 319,则a ,b ,c 的大小关系是( C )A .a >b >cB .c >b >aC .c >a >bD .a >c >b(2)(2017·江苏卷)已知函数f (x )=x 3-2x +e x-1e x ,其中e 是自然对数的底数.若f (a-1)+f (2a 2)≤0,则实数a 的取值范围是!!! ⎣⎢⎡⎦⎥⎤-1,12 ###.解析 (1)∵函数y =f (x -1)的图象关于点(1,0)对称,∴y =f (x )的图象关于点(0,0)对称,∴y =f (x )为奇函数.令g (x )=xf (x ),则g (x )=xf (x )为偶函数,且g ′(x )=f (x )+xf ′(x )<0在(-∞,0)上恒成立,∴g (x )=xf (x )在(-∞,0)上为减函数,在(0,+∞)上为增函数. ∵c =⎝⎛⎭⎪⎫log 319·f ⎝ ⎛⎭⎪⎫log 319=(-2)·f (-2)=2f (2),0<log π3<30.3<2,∴g (log π3)<g (30.3)<g (2),∴c >a >b ,故选C .(2)由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12.1.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( D )解析 根据题意,已知导函数的图象有三个零点,且每个零点的两边导函数值的符号相反,因此函数f (x )在这些零点处取得极值,排除A 项,B 项;记函数f ′(x )的零点从左到右分别为x 1,x 2,x 3,又在(-∞,x 1)上f ′(x )<0,在(x 1,x 2)上f ′(x )>0,所以函数f (x )在(-∞,x 1)上单调递减,排除C 项,故选D .2.函数f (x )的定义域为R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x+1的解集是( A )A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<x <1}解析 令g (x )=e x ·f (x )-e x-1,则g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x(f (x )+f ′(x )-1). ∵f (x )+f ′(x )>1,∴g ′(x )=e x(f (x )+f ′(x )-1)>0, ∴g (x )在R 上是增函数.又∵g (0)=e 0·f (0)-e 0-1=0,∴e x ·f (x )>e x +1⇔e x ·f (x )-e x-1>0⇔g (x )>0⇔g (x )>g (0)⇔x >0,故选A .3.(2018·河北邯郸一模)已知函数f (x )=ln x +12ax 2-x -m (m ∈R )为增函数,那么实数a 的取值范围为!!! ⎣⎢⎡⎭⎪⎫14,+∞ ###. 解析 f ′(x )=1x+ax -1,x >0.依题意可得f ′(x )≥0,则a ≥⎝ ⎛⎭⎪⎫1x -1x 2max ,而1x -1x 2=-⎝ ⎛⎭⎪⎫1x -122+14≤14,当x =2时,等号成立,所以a 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.4.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求:(1)a 的值;(2)函数f (x )的单调区间.解析 (1)∵f (x )=x 3+ax 2-9x -1,∴f ′(x )=3x 2+2ax -9=3⎝ ⎛⎭⎪⎫x +a 32-9-a 23,即x =-a 3时,f ′(x )取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行,∴-9-a 23=-12,即a 2=9.解得a =±3,由题设a <0,∴a =-3.(2)由(1)知a =-3,因此f (x )=x 3-3x 2-9x -1,f ′(x )=3x 2-6x -9=3(x -3)(x +1).令f ′(x )=0,解得x 1=-1,x 2=3.当x ∈(-∞,-1)时,f ′(x )>0,故f (x )在(-∞,-1)上为增函数; 当x ∈(-1,3)时,f ′(x )<0,故f (x )在(-1,3)上为减函数; 当x ∈(3,+∞)时,f ′(x )>0,故f (x )在(3,+∞)上为增函数.可见,函数f (x )的单调递增区间为(-∞,-1)和(3,+∞),单调递减区间为(-1,3).易错点 导数与单调性的关系不明确错因分析:可导函数f (x )在某区间上f ′(x )>0(f ′(x )<0)为f (x )在该区间上是单调递增(减)函数的充分不必要条件.【例1】 已知函数f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数,求实数m 的取值范围.解析 ∵f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数, ∴f ′(x )=m (x +1)-m (x -1)(x +1)2-1x =-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立, 即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x在[1,+∞)上恒成立.∵x +1x∈[2,+∞),∴2m -2≤2,得m ≤2.∴实数m 的取值范围是(-∞,2].【跟踪训练1】 y =13x 3+bx 2+(b +2)x +3是R 上的单调增函数,则实数b 的取值范围为__[-1,2]__.解析 y ′=x 2+2bx +b +2≥0恒成立(显然y ′不恒为零), ∴Δ=4b 2-4(b +2)≤0,整理得(b -2)(b +1)≤0,∴-1≤b ≤2.课时达标 第14讲[解密考纲]本考点主要考查利用导数研究函数的单调性.高考中导数试题经常和不等式、函数、三角函数、数列等知识相结合,作为中档题或压轴题出现.三种题型均有出现,以解答题为主,难度较大.一、选择题1.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( D )解析 由函数f (x )的图象可知,f (x )在(-∞,0)上单调递增,f (x )在(0,+∞)上单调递减,所以在(-∞,0)上f ′(x )>0,在(0,+∞)上f ′(x )<0,故选D .2.函数f (x )=x -ln x 的单调递减区间为( A ) A .(0,1) B .(0,+∞)C .(1,+∞)D .(-∞,0)∪(1,+∞)解析 函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).3.(2018·吉林长春调研)已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.4.(2016·全国卷Ⅰ)函数y =2x 2-e |x |在[-2,2]的图象大致为( D )解析 易知y =2x 2-e |x |是偶函数,设f (x )=2x 2-e |x |,则f (2)=2×22-e 2=8-e 2,所以0<f (2)<1,所以排除A 项,B 项;当0≤x ≤2时,y =2x 2-e x ,所以y ′=4x -e x,又(y ′)′=4-e x ,当0<x <ln 4时,(y ′)′>0,当ln 4<x <2时,(y ′)′<0,所以y ′=4x -e x在(0,ln 4)上单调递增,在(ln 4,2)上单调递减,所以y ′=4x -e x在[0,2]有-1≤y ′≤4(ln 4-1),所以y ′=4x -e x 在[0,2]上存在零点ε,所以函数y =2x 2-e x在[0,ε)上单调递减,在(ε,2]上单调递增,排除C 项,故选D .5.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为( D )A .(-∞,-2)∪(1,+∞)B .(-∞,2)∪(1,2)C .(-∞,-1)∪(-1,0)∪(2,+∞)D .(-∞,-1)∪(-1,1)∪(3,+∞)解析 由题图可知,f ′(x )>0,则x ∈(-∞,-1)∪(1,+∞),f ′(x )<0,则x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,即⎩⎪⎨⎪⎧x <-1或x >1,x <-1或x >3或⎩⎪⎨⎪⎧-1<x <1,-1<x <3,解得x ∈(-∞,-1)∪(-1,1)∪(3,+∞).6.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( C )A .⎝ ⎛⎭⎪⎫0,34B .⎝ ⎛⎭⎪⎫12,34C .⎣⎢⎡⎭⎪⎫34,+∞ D .⎝ ⎛⎭⎪⎫0,12 解析 f ′(x )=(2x -2a )e x+(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间为__(-1,11)__.解析 由f (x )=x 3-15x 2-33x +6得f ′(x )=3x 2-30x -33,令f ′(x )<0,即3(x -11)(x +1)<0,解得-1<x <11,所以函数f (x )的单调减区间为(-1,11).8.幂函数f (x )=xn 2-3n (n ∈Z )在(0,+∞)上是减函数,则n =__1或2__. 解析 ∵f (x )在(0,+∞)上是减函数,∴n 2-3n <0,解得0<n <3. ∵n ∈Z ,∴n =1或n =2.9.(2017·山东卷)若函数e xf (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中所有具有M 性质的函数的序号为__①④__.①f (x )=2-x;②f (x )=3-x;③f (x )=x 3;④f (x )=x 2+2.解析 对于①,e x f (x )=e x ·2-x ,故[e x f (x )]′=(e x ·2-x )′=e x ·2-x(1-ln 2)>0,故函数e x f (x )=e x ·2-x在(-∞,+∞)上为增函数,故①符合要求;对于②,e x f (x )=e x ·3-x ,故[e x f (x )]′=(e x ·3-x )′=e x ·3-x(1-ln 3)<0,故函数e x f (x )=e x ·3-x在(-∞,+∞)上为减函数,故②不符合要求;对于③,e x f (x )=e x ·x 3,故[e x f (x )]′=(e x ·x 3)′=e x ·(x 3+3x 2),显然函数e xf (x )=e x ·x 3在(-∞,+∞)上不单调,故③不符合要求;对于④,e x f (x )=e x ·(x 2+2),故[e x f (x )]′=[e x ·(x 2+2)]′=e x ·(x 2+2x +2)=e x·[(x +1)2+1]>0,故函数e x f (x )=e x ·(x 2+2)在(-∞,+∞)上为增函数,故④符合要求.综上,具有M 性质的函数的序号为①④. 三、解答题10.已知函数f (x )=ln x +kex(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析 (1)由题意得f ′(x )=1x-ln x -ke x,又f ′(1)=1-ke=0,故k =1. (2)由(1)知,f ′(x )=1x-ln x -1ex. 设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),递减区间是(1,+∞).11.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图,f (x )=6ln x+h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎪⎫1,m +12上是单调函数,求实数m 的取值范围.解析 (1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,∴⎩⎪⎨⎪⎧b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,∴h (x )=x 2-8x +2,h ′(x )=2x -8, ∴f (x )=6ln x +x 2-8x +2.(2)f ′(x )=6x +2x -8=2(x -1)(x -3)x,∵x >0,∴f ′(x ),f (x )的变化如下.∴f (x )的单调递增区间为(0,1)和(3,+∞),递减区间为(1,3), 要使函数f (x )在区间⎝ ⎛⎭⎪⎫1,m +12上是单调函数,则1<m +12≤3,即m 的取值范围是⎝ ⎛⎦⎥⎤12,52.12.设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解析 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的增区间为(-∞,0)和(a ,+∞),减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2≤0成立,即x ∈(-2,-1)时,a ≤⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x,即x =-2时等号成立,所以满足要求的a 的取值范围是(-∞,-22].。
导数及其应用【2019年高考考纲解读】高考对本内容的考查主要有:(1)导数的几何意义是考查热点,要求是B级,理解导数的几何意义是曲线上在某点处的切线的斜率,能够解决与曲线的切线有关的问题;(2)导数的运算是导数应用的基础,要求是B级,熟练掌握导数的四则运算法则、常用导数公式及复合函数的导数运算,一般不单独设置试题,是解决导数应用的第一步;(3)利用导数研究函数的单调性与极值是导数的核心内容,要求是B级,对应用导数研究函数的单调性与极值要达到相等的高度.(4)导数在实际问题中的应用为函数应用题注入了新鲜的血液,使应用题涉及到的函数模型更加宽广,要求是B级;(5)导数还经常作为高考的压轴题,能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力.估计以后对导数的考查力度不会减弱.作为导数综合题,主要是涉及利用导数求最值解决恒成立问题,利用导数证明不等式等,常伴随对参数的讨论,这也是难点之所在.【重点、难点剖析】1.导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=f′(x0).(2)曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).2.基本初等函数的导数公式和运算法则(1)基本初等函数的导数公式(2)导数的四则运算①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ); ③⎣⎢⎡⎦⎥⎤u x v x ′=ux v x -u x vx[v x ]2(v (x )≠0).3.函数的单调性与导数如果已知函数在某个区间上单调递增(减),则这个函数的导数在这个区间上大(小)于零恒成立.在区间上离散点处导数等于零,不影响函数的单调性,如函数y =x +sin x .4.函数的导数与极值对可导函数而言,某点导数等于零是函数在该点取得极值的必要条件.例如f (x )=x 3,虽有f ′(0)=0,但x =0不是极值点,因为f ′(x )≥0恒成立,f (x )=x 3在(-∞,+∞)上是单调递增函数,无极值. 5.闭区间上函数的最值在闭区间上连续的函数,一定有最大值和最小值,其最大值是区间的端点处的函数值和在这个区间内函数的所有极大值中的最大者,最小值是区间端点处的函数值和在这个区间内函数的所有极小值中的最小值. 6.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 【题型示例】题型一、导数的几何意义【例1】(2018·全国Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x 答案 D解析 方法一 ∵f (x )=x 3+(a -1)x 2+ax , ∴f ′(x )=3x 2+2(a -1)x +a .又f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x .故选D.方法二 ∵f (x )=x 3+(a -1)x 2+ax 为奇函数, ∴f ′(x )=3x 2+2(a -1)x +a 为偶函数, ∴a =1,即f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . 故选D.【举一反三】(2018·全国Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________. 答案 2x -y -2=0解析 因为y ′=2x,y ′|x =1=2,所以切线方程为y -0=2(x -1),即2x -y -2=0.【变式探究】若函数f (x )=ln x (x >0)与函数g (x )=x 2+2x +a (x <0)有公切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫ln 12e ,+∞ B .(-1,+∞) C .(1,+∞) D .(-ln 2,+∞) 答案 A解析 设公切线与函数f (x )=ln x 切于点A (x 1,ln x 1)(x 1>0), 则切线方程为y -ln x 1=1x 1(x -x 1).设公切线与函数g (x )=x 2+2x +a 切于点B (x 2,x 22+2x 2+a )(x 2<0), 则切线方程为y -(x 22+2x 2+a )=2(x 2+1)(x -x 2), ∴⎩⎪⎨⎪⎧1x 1=x 2+,ln x 1-1=-x 22+a ,∵x 2<0<x 1,∴0<1x 1<2.又a =ln x 1+⎝⎛⎭⎪⎫12x 1-12-1=-ln 1x 1+14⎝ ⎛⎭⎪⎫1x 1-22-1,令t =1x 1,∴0<t <2,a =14t 2-t -ln t .设h (t )=14t 2-t -ln t (0<t <2),则h ′(t )=12t -1-1t =t -2-32t <0,∴h (t )在(0,2)上为减函数,则h (t )>h (2)=-ln 2-1=ln 12e,∴a ∈⎝ ⎛⎭⎪⎫ln 12e ,+∞. 【变式探究】【2016高考新课标2文数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线的切线,则b = . 【答案】1ln2-【感悟提升】函数图像上某点处的切线斜率就是函数在该点处的导数值.求曲线上的点到直线的距离的最值的基本方法是“平行切线法”,即作出与直线平行的曲线的切线,则这条切线到已知直线的距离即为曲线上的点到直线的距离的最值,结合图形可以判断是最大值还是最小值.【举一反三】(2015·陕西,15)设曲线y =e x在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析 ∵(e x)′|x =0=e 0=1,设P (x 0,y 0),有⎪⎪⎪⎝ ⎛⎭⎪⎫1x ′x =x 0=-1x 20=-1, 又∵x 0>0,∴x 0=1,故x P (1,1). 答案 (1,1)【变式探究】 (1)曲线y =x ex -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1(2)在平面直角坐标系xOy 中,若曲线y =ax 2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【命题意图】 (1)本题主要考查函数求导法则及导数的几何意义. (2)本题主要考查导数的几何意义,意在考查考生的运算求解能力.【感悟提升】1.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.2.利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 题型二、利用导数研究函数的单调性【例2】已知函数f (x )=4ln x -mx 2+1()m ∈R .(1)讨论函数f (x )的单调性;(2)若对任意x ∈[]1,e ,f (x )≤0恒成立,求实数m 的取值范围. 解 (1)由题意知f ′(x )=4x -2mx =4-2mx 2x(x >0),当m ≤0时,f ′(x )>0在x ∈(0,+∞)时恒成立, ∴f (x )在(0,+∞)上单调递增. 当m >0时,f ′(x )=4-2mx 2x=-2m ⎝⎛⎭⎪⎫x +2m ⎝⎛⎭⎪⎫x -2m x(x >0),令f ′(x )>0,得0<x <2m ;令f ′(x )<0,得 x >2m.∴f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝ ⎛⎭⎪⎫2m,+∞上单调递减.综上所述,当m ≤0时,f (x )在(0,+∞)上单调递增; 当m >0时,f (x )在⎝⎛⎭⎪⎫0,2m 上单调递增,在⎝⎛⎭⎪⎫2m,+∞上单调递减.(2)方法一 由题意知4ln x -mx 2+1≤0在[]1,e 上恒成立,即m ≥4ln x +1x2在[]1,e 上恒成立. 令g (x )=4ln x +1x2,x ∈[]1,e , ∴ g ′(x )=2()1-4ln x x3,x ∈[1,e], 令g ′(x )>0,得1<x <14e ;令g ′(x )<0,得14e <x <e.∴g (x )在⎝⎛⎭⎫1,14e 上单调递增,在⎝⎛⎭⎫14e ,e 上单调递减. ∴g (x )max =g 14e ⎛⎫ ⎪⎝⎭=4ln e 14+1⎝⎛⎭⎫e 142=2ee ,∴m ≥2e e.方法二 要使f (x )≤0恒成立,只需f (x )max ≤0, 由(1)知,若m ≤0,则f (x )在[]1,e 上单调递增. ∴f (x )max =f (e)=4-m e 2+1≤0, 即m ≥5e 2,这与m ≤0矛盾,此时不成立.若m >0, (ⅰ)若2m ≥e,即0<m ≤2e2, 则f (x )在[]1,e 上单调递增, ∴f (x )max =f (e)=4-m e 2+1≤0,即m ≥5e 2,这与0<m ≤2e 2矛盾,此时不成立.(ⅱ)若1<2m <e ,即2e2<m <2, 则f (x )在⎣⎢⎡⎦⎥⎤1,2m 上单调递增,在⎝ ⎛⎦⎥⎤2m,e 上单调递减.∴f (x )max =f ⎝⎛⎭⎪⎫2m =4ln 2m-1≤0,即2m ≤14e ,解得m ≥2e e. 又∵2e 2<m <2,∴2e e ≤m <2,(ⅲ)若0<2m≤1,即m ≥2,则f (x )在[]1,e 上单调递减, 则f (x )max =f (1)=-m +1≤0, ∴m ≥1. 又∵m ≥2, ∴m ≥2.综上可得m ≥2e e .即实数m 的取值范围是⎣⎢⎡⎭⎪⎫2e e ,+∞.【变式探究】 (2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增. (2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x ,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x -x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞). 【变式探究】【2016高考山东文数】已知.(I )讨论()f x 的单调性;(II )当1a =时,证明对于任意的[]1,2x ∈成立.【答案】(Ⅰ)见解析;(Ⅱ)见解析 【解析】(Ⅰ))(x f 的定义域为),0(+∞;.当0≤a , )1,0(∈x 时,()0f 'x >,)(x f 单调递增;,)(x f 单调递减.当0>a 时,.(1)20<<a ,12>a, 当)1,0(∈x 或x ∈),2(+∞a时,()0f 'x >,)(x f 单调递增; 当x ∈)2,1(a时,()0f 'x <,)(x f 单调递减; (2)2=a 时,12=a ,在x ∈),0(+∞内,()0f 'x ≥,)(x f 单调递增;(3)2>a 时,120<<a ,当)2,0(a x ∈或x ∈),1(+∞时,()0f 'x >,)(x f 单调递增;当x ∈)1,2(a时,()0f 'x <,)(x f 单调递减. 综上所述,当0≤a 时,函数)(x f 在)1,0(内单调递增,在),1(+∞内单调递减;当20<<a 时,)(x f 在)1,0(内单调递增,在)2,1(a 内单调递减,在),2(+∞a内单调递增; 当2=a 时,)(x f 在),0(+∞内单调递增;当2>a ,)(x f 在)2,0(a 内单调递增,在)1,2(a内单调递减,在),1(+∞内单调递增. (Ⅱ)由(Ⅰ)知,1=a 时,,]2,1[∈x,令,]2,1[∈x.则,由可得,当且仅当1=x时取得等号.又,设,则)(xϕ在x∈]2,1[单调递减,因为,所以在]2,1[上存在0x使得),1(xx∈时,时,0)(<xϕ,所以函数()h x在),1(x上单调递增;在)2,(x上单调递减,由于,因此,当且仅当2=x取得等号,所以,即对于任意的]2,1[∈x恒成立。
课题函数的单调性与导数学习目标知识与技能:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间。
过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法;2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想。
情感态度与价值观:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
学习重点 探索并应用函数的单调性与导数的关系求单调区间。
学习难点 探索函数的单调性与导数的关系。
教学方法问题启发式教学过程合作探究 教学札记复习 1:导数的几何意义复习2:函数单调性的定义,判断单调性的方法,(图像法,定义法)问题提出:判断y=x 2的单调性,如何进行?(分别用图像法,定义法完成)那么如何判断();,0,sin )(π∈-=x x x x f 的单调性呢?探究任务一:函数单调性与其导数的关系:问题1:如图(1)表示高台跳水运动员的高度h 随时间t 变化的函数105.69.4)(2++-=t t t h 的图像,图(2)表示高台跳水运动员的速度5.68.9)(')(+-==t t h t V h 的图像.通过观察图像, 运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?此时你能发现)(')(t h t h 和这两个函数图像有什么联系吗?引导学生图像法,定义去尝试可先分析函数的单调性与导数的符号之间的关系.函数)(t h 在(0,a)上是增函数,函数)('t h 在(0,a)上有何特点呢?函数)(t h 在(a,b)上为减函数,那么函数)('t h 在(a,b)上有何特点呢?师生共同观察并总结出曲线的切线的斜问题2:观察图(1)~图(4),探讨函数与其导函数是否也存在问题(1)的关系呢?问题3:通过对问题1和问题2的观察,你能得到原函数的单调性与其导函数的正负号有何关系?你能得到怎样的结论?问题4:上述结论主要是通过观察得到的,你能结合导数的几何意义为切线的斜率,你能从这个角度给予说明吗?探究任务二:()0'=x f 与函数单调性的关系: 问题5:若函数()x f 的导数()0'=x f ,那么()x f 会是一个什么函数呢?问题6:在区间()b a ,上()0'≥x f ,则函数()x f 区间()b a ,必为增函数,你认为这句话对吗?请说明理由.问题7:函数()x f 在区间()b a ,上为增函数,则在区间()b a ,上()0'≥x f 成立.你认为这句话对吗?说明理由. 问题8:平时我们遇到很多需要数形结合的题目,那么现在我们知道了导数的正负能帮助我们判断函数的单调性,那么我们能否利用导数信息画出函数的大致图像呢?例1:已知某函数的导函数的下列信息:率值与导数的关系及曲线的单调性与导数的关系:同一个函数在每一点处的切线的斜率值都大于零或都小于零。
第三章 导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0Δy Δx =lim Δx →0 f x 0+Δx -f x 0Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0 f x 0+Δx -f x 0Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f x +Δx -f xΔx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )²g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′ x g x -f x g ′ x [g x ](g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′²u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎪⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x,则⎝ ⎛⎭⎪⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)³ (2)³ (3)√ (4)³ (5)³ (6)³ (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝ ⎛⎭⎪⎫π4=________. 解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝ ⎛⎭⎪⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018²钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( ) A .1-8ln 2 B .1+8ln 2 C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝ ⎛⎭⎪⎫π3=1,则φ的值为( )A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝ ⎛⎭⎪⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝ ⎛⎭⎪⎫π3=1,所以cos ⎝ ⎛⎭⎪⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A.[答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D.2.(2018²延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C. 3.(2018²南宁模拟)设f (x )在x =x 0处可导,且li m Δx →0f x 0+3Δx -f x 0Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D因为lim Δx →0f x 0+3Δx -f x 0Δx=1,所以lim Δx →0 ⎣⎢⎡⎦⎥⎤3³f x 0+3Δx -f x 0 3Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018²桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018²九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2lnx ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln xC .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)³ 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a²e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a²e x 0=-1,∴e x 0=a ,又-1a²e x 0=-x 0+1,∴x 0=2,a =e 2.答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2), 又切线过点(x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f x 1 ,y 0-y 1=f ′ x 1 x 0-x 1 ,求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] 32f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018²长沙一模)若曲线y =2e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018²南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为se,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12es 2=a ln s ,解得ln s=12,s 2=e ,故a =1. (2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x+2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x+2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018²东城期末)若直线y =-x +2与曲线y =-e x +a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-ex +a)′=-ex +a,令-ex +a=-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018²西安一模)若曲线y =e x-aex (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎢⎡⎭⎪⎫π3,π2,则a =( ) A.112 B.13 C.34D .3解析:选 C y ′=e x+ae x ,∵y =e x-aex 在任意一点处的切线的倾斜角的取值范围是⎣⎢⎡⎭⎪⎫π3,π2,∴e x +a e ≥3,由a >0知,e x+a e ≥2a ⎝ ⎛⎭⎪⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014²全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3.2.(2016²全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1²x +lnx 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+1)-x2x 2+1.根据题意,有⎩⎪⎨⎪⎧1x 1=1x 2+1,ln x 1+1=ln x 2+1 -x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016²全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x , 所以当x >0时,f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1. 答案:y =-2x -1[课时达标检测][小题对点练——点点落实]对点练(一) 导数的运算1.(2018²泉州质检)设函数f (x )=x (x +k )(x +2k ),则f ′(x )=( ) A .3x 2+3kx +k 2B .x 2+2kx +2k 2C .3x 2+6kx +2k 2D .3x 2+6kx +k 2解析:选C 法一:f (x )=x (x +k )(x +2k ),f ′(x )=(x +k )(x +2k )+x [(x +k )(x +2k )]′=(x +k )²(x +2k )+x (x +2k )+x (x +k )=3x 2+6kx +2k 2,故选C.法二:因为f (x )=x (x +k )(x +2k )=x 3+3kx 2+2k 2x ,所以f ′(x )=3x 2+6kx +2k 2,故选C.2.(2018²泰安一模)给出下列结论:①若y =log 2x ,则y ′=1x ln 2;②若y =-1x ,则y ′=12x x;③若f (x )=1x 2,则f ′(3)=-227;④若y =a x (a >0),则y ′=a xln a .其中正确的个数是( )A .1B .2C .3D .4解析:选D 根据求导公式可知①正确;若y =-1x=-x-12,则y ′=12x -32=12x x,所以②正确;若f (x )=1x 2,则f ′(x )=-2x -3,所以f ′(3)=-227,所以③正确;若y =a x(a >0),则y ′=a xln a ,所以④正确.因此正确的结论个数是4,故选D.3.若函数y =x m的导函数为y ′=6x 5,则m =( ) A .4 B .5 C .6D .7解析:选C 因为y =x m,所以y ′=mxm -1,与y ′=6x 5相比较,可得m =6.4.已知函数f (x )=xe x (e 是自然对数的底数),则其导函数f ′(x )=( ) A.1+x ex B.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e xe 2x =1-xe x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞)B .(0,2)C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选 B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x=2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B.6.(2018²信阳模拟)已知函数f (x )=a e x+x ,若1<f ′(0)<2,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x+x ,则f ′(x )=(a e x)′+x ′=a e x+1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018²安徽八校联考)函数f (x )=tan x 2在⎣⎢⎡⎦⎥⎤π2,f ⎝ ⎛⎭⎪⎫π2处的切线的倾斜角α为( )A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x 2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝ ⎛⎭⎪⎫π2=1,故α=π4,选B. 2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018²福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( ) A .0条 B .1条 C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2= a 3-a 2-2a +1 -1a - -1,所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018²重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a 的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018²临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln x x ,f ′(x )=1+1-ln xx2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12³1³12=14,故选B.6.(2018²成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,+∞B.⎣⎢⎡⎭⎪⎫-12,+∞C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017²柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R),F (x )=f ′ xex,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -bex,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧F ′ 0 =-2,F 0 =c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min =0.8.(2018²唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( )A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝ ⎛⎭⎪⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝ ⎛⎭⎪⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018²包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018²兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2. ∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得,而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎥⎤-∞,-53.2.(2018²青岛期末)设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +b x2,所以⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x.(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎪⎫1+3x20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 0(x -x 0).令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x=2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝ ⎛⎭⎪⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝ ⎛⎭⎪⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝ ⎛⎭⎪⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)²(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)³4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一) 利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.( )(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.( )(3)f′(x)>0是f(x)为增函数的充要条件.( )答案:(1)³(2)√(3)³2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016²山东高考节选)已知f (x )=a (x -ln x )+2x -1x2,a ∈R.讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3= ax 2-2 x -1 x 3.当a ≤0,x ∈(0,1)时,f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )=a x -1 x 3⎝⎛⎭⎪⎫x - 2a ⎝⎛⎭⎪⎫x +2a .①若0<a <2,则 2a>1, 当x ∈(0,1)或x ∈⎝⎛⎭⎪⎫2a,+∞时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫1,2a 时,f ′(x )<0,f (x )单调递减.②若a =2,则2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0<2a<1,当x ∈⎝ ⎛⎭⎪⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎪⎫2a,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝ ⎛⎭⎪⎫1, 2a 内单调递减,在⎝⎛⎭⎪⎫2a,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝ ⎛⎭⎪⎫0, 2a 内单调递增,在⎝⎛⎭⎪⎫2a,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018²山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10;当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0,∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018²江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f xex的单调递减区间为( )A .(0,4)B .(-∞,1),⎝ ⎛⎭⎪⎫43,4 C.⎝ ⎛⎭⎪⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f ′ x e x -f x e x e x2=f ′ x -f xex,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018²芜湖一模)函数f (x )=e x-e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x-e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x+1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减,在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b ,由已知可得⎩⎪⎨⎪⎧f 1 =a +1=c ,g 1 =1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-a 2,⎝ ⎛⎭⎪⎫-a6,+∞;单调递减区间为⎝⎛⎭⎪⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)因为f(x)在区间(-1,1)上为减函数,所以f′(x)=3x2-a≤0在(-1,1)上恒成立,即a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即a的取值范围为[3,+∞).(3)因为f(x)=x3-ax-1,所以f′(x)=3x2-a.由f′(x)=0,得x=±3a3(a≥0).因为f(x)的单调递减区间为(-1,1),所以3a3=1,即a=3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a,b)上单调,实际上就是在该区间上f′(x)≥0(或f′(x)≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a,b)上恒为0.(2)可导函数在区间(a,b)上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,即f′(x)max>0(或f′(x)min<0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f(x)在区间I上的单调性,区间I上含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017²吉林长春三模)定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则e x1f(x2)与e x2f(x1) 的大小关系为( )A.e x1f(x2)>e x2f(x1)B.e x1f(x2)<e x2f(x1)C.e x1f(x2)=e x2f(x1)D.e x1f(x2)与e x2f(x1)的大小关系不确定(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f xex,则g ′(x )=f ′ x e x -f x e x e x2=f ′ x -f xex,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f x 1 ex 1<f x 2ex 2,所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x x ′;(4)f ′(x )+f (x )→[e xf (x )]′; (5)f ′(x )-f (x )→⎣⎢⎡⎦⎥⎤f x e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎢⎡⎦⎥⎤-1,-13B.⎣⎢⎡⎦⎥⎤-13,13C .[-1,1]D.⎣⎢⎡⎦⎥⎤-1,13 解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x ∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf ′ x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018²江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e xf (x )>e x-1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e xf (x )-e x,则g ′(x )=e xf (x )+e xf ′(x )-e x.由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e xf (x )>e x-1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018²四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =- x -1 x -3x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)6.[考点一](2018²辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值. 解:(1)f ′(x )=1x +a x +1 -ax x +1 2= x +1 2+axx x +1 2. ∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0,即a ≥-x 2+2x +1x =-⎝ ⎛⎭⎪⎫x +1x -2在(0,4)上恒成立. ∵x +1x≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+ax 0+1 2=2,①且2x 0=ln x 0+ax 0x 0+1.②由①得a =⎝⎛⎭⎪⎫2-1x(x 0+1)2,③代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x>0,∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律]1.(2014²全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.2.(2016²全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13D.⎣⎢⎡⎦⎥⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎪⎨⎪⎧g 1 =-43+a +53≥0,g -1 =-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015²全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R)的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞) 解析:选A 设y =g (x )=f xx(x ≠0),则g ′(x )=xf ′ x -f xx 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017²全国卷Ⅰ)已知函数f (x )=a e 2x+(a -2)e x-x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1).(ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a . 当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a+ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a+ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0, 故f (x )在(-∞,-ln a )有一个零点.设正整数n 0满足n 0>ln ⎝ ⎛⎭⎪⎫3a-1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0.由于ln ⎝ ⎛⎭⎪⎫3a-1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018²福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3的单调递减区间为( )A .(-∞,-2)B .[3,+∞)C .[-2,3]D.⎣⎢⎡⎭⎪⎫12,+∞解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c 3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎪⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017²焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )²1x-2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫12,1,故选B.3.(2018²湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.。
导数与函数的单调性
【考点梳理】
函数的导数与单调性的关系 函数y =f (x )在某个区间内可导,则
(1)若f ′(x )>0,则f (x )在这个区间内单调递增; (2)若f ′(x )<0,则f (x )在这个区间内单调递减; (3)若f ′(x )=0,则f (x )在这个区间内是常数函数. 【考点突破】
考点一、判断或证明函数的单调性
【例1】已知函数已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性. [解析] f (x )的定义域为(0,+∞),f ′(x )=1
x
-a .
若a ≤0,则f ′(x )>0恒成立, 所以f (x )在(0,+∞)上单调递增.
若a >0,则当x ∈⎝
⎛⎭
⎪⎫0,1a 时,f ′(x )>0;
x ∈⎝ ⎛⎭
⎪⎫1
a ,+∞时,f ′(x )<0,
所以f (x )在⎝
⎛⎭
⎪⎫0,1a 上单调递增,在⎝ ⎛⎭
⎪⎫1a ,+∞上单调递减.
【类题通法】
用导数判断或证明函数f (x )在(a ,b )内的单调性的步骤 (1)一求.求f ′(x );
(2)二定.确认f ′(x )在(a ,b )内的符号;
(3)三结论.作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数. 【对点训练】
已知函数f (x )=x 3+ax 2+b (a ,b ∈R),试讨论f (x )的单调性. [解析] f ′(x )=3x 2
+2ax ,令f ′(x )=0, 解得x 1=0,x 2=-2a 3
.
当a =0时,因为f ′(x )=3x 2
≥0,所以函数f (x ) 在(-∞,+∞)上单调递增;
当a >0时,x ∈⎝
⎛⎭⎪⎫-∞,-2a 3∪(0,+∞)时,f ′(x )>0, x ∈⎝
⎛⎭
⎪⎫-2a 3
,0时,f ′(x )<0, 所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭
⎪⎫-2a 3,0上单调递减; 当a <0时,x ∈(-∞,0)∪⎝ ⎛⎭
⎪⎫-2a 3,+∞时,f ′(x )>0, x ∈⎝ ⎛⎭
⎪⎫0,-2a 3
时,f ′(x )<0,
所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝
⎛⎭⎪⎫0,-2a 3上单调递减. 考点二、求函数的单调区间
【例2】已知函数f (x )=x 2
2-a ln x ,a ∈R ,求f (x )的单调区间. [解析] 因为f (x )=x 2
2
-a ln x ,所以x ∈(0,+∞),
f ′(x )=x -a x =x 2-a
x
.
(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )
x
,则有
①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞). 【类题通法】
求函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );
(3)在定义域内解不等式f ′(x )>0,得单调递增区间; (4)在定义域内解不等式f ′(x )<0,得单调递减区间.
【对点训练】
已知函数f (x )=ax 2
-a -ln x ,a ∈R ,求f (x )的单调区间. [解析] 由题意得f ′(x )=2ax -1x =2ax 2
-1
x
(x >0).
当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =
12a ,
当x ∈⎝ ⎛⎭⎪⎫0,12a 时,f ′(x )<0,所以f (x )的单调递减区间为⎝ ⎛
⎭⎪⎫
0,
12a . 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,所以f (x )的单调递增区间为⎝
⎛⎭
⎪⎫1
2a ,+∞. 综上所述,当a ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间.
当a >0时,函数f (x )的单调递减区间为⎝ ⎛⎭⎪⎫0,12a ,单调递增区间为⎝ ⎛⎭
⎪⎫12a ,+∞.
考点三、已知函数的单调性求参数
【例3】已知函数f (x )=x 3
-ax -1.若f (x )在R 上为增函数,求实数a 的取值范围. [解析] 因为f (x )在(-∞,+∞)上是增函数, 所以f ′(x )=3x 2
-a ≥0在(-∞,+∞)上恒成立, 即a ≤3x 2
对x ∈R 恒成立. 因为3x 2≥0,所以只需a ≤0.
又因为a =0时,f ′(x )=3x 2
≥0,f (x )=x 3
-1在R 上是增函数,所以a ≤0, 即实数a 的取值范围为(-∞,0].
【变式1】函数f (x )不变,若f (x )在区间(1,+∞)上为增函数,求a 的取值范围. [解析] 因为f ′(x )=3x 2
-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立, 即3x 2
-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2
在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3].
【变式2】函数f (x )不变,若f (x )在区间(-1,1)上为减函数,试求a 的取值范围. [解析] 由f ′(x )=3x 2
-a ≤0在(-1,1)上恒成立,得a ≥3x 2
在(-1,1)上恒成立. 因为-1<x <1,
所以3x 2
<3, 所以a ≥3.
即当a 的取值范围为[3,+∞)时,f (x )在(-1,1)上为减函数.
【变式3】函数f (x )不变,若f (x )在区间(-1,1)上不单调,求a 的取值范围. [解析] ∵f (x )=x 3
-ax -1,∴f ′(x )=3x 2
-a . 由f ′(x )=0,得x =±
3a
3
(a ≥0). ∵f (x )在区间(-1,1)上不单调, ∴0<
3a
3
<1,得0<a <3, 即a 的取值范围为(0,3). 【类题通法】
根据函数单调性求参数的一般方法
(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.
(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解. 【对点训练】
1.若函数f (x )=x -1
3sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )
A .[-1,1]
B .⎣⎢⎡⎦⎥⎤-1,13
C .⎣⎢⎡⎦
⎥⎤-13,13
D .⎣
⎢⎡⎦⎥⎤-1,-13 [答案] C
[解析] 取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-2
3cos 2x -cos x ,但f ′(0)
=1-23-1=-2
3
<0,不具备在(-∞,+∞)单调递增的条件,故排除A ,B ,D.故选C.
2.已知a ∈R ,若函数f (x )=(-x 2
+ax )e x
(x ∈R ,e 为自然对数的底数)在(-1,1)上单调递增,求a 的取值范围.
[解析] 因为函数f (x )在(-1,1)上单调递增,
所以f ′(x )≥0对x ∈(-1,1)都成立.
因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x =[-x 2+(a -2)x +a ]e x
, 所以[-x 2
+(a -2)x +a ]e x
≥0对x ∈(-1,1)都成立. 因为e x
>0,
所以-x 2+(a -2)x +a ≥0,
则a ≥x 2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1
对x ∈(-1,1)都成立.
令g (x )=(x +1)-
1x +1,则g ′(x )=1+1
(x +1)2>0, 所以g (x )=(x +1)-
1
x +1
在(-1,1)上单调递增, 所以g (x )<g (1)=(1+1)-
11+1=32
, 所以a ≥32,又当a =3
2
时,当且仅当x =0时,f ′(x )=0,
所以a 的取值范围是⎣⎡⎭⎫32,+∞.此资源为word 格式,
您下载后可以自由编辑,让智慧点亮人生,用爱心播种未来。
感谢您的选用。