导数与函数的单调性
- 格式:ppt
- 大小:694.50 KB
- 文档页数:17
导数与函数单调性和最小值的关系导数是微积分中的重要概念,它与函数的单调性和最小值之间存在着密切的关系。
本文将探讨导数与函数单调性以及最小值之间的相互关系。
一、导数与函数的单调性函数的单调性是指函数在定义域上的增减性质。
导数的存在性和符号可以揭示函数的单调性。
1.1 导数的存在性函数在某一点处的导数存在意味着函数在该点处的变化率存在。
如果函数在某一点处的导数存在,则说明函数在该点处具有切线,即函数在该点处局部近似为一条直线。
1.2 导数的符号导数的符号可以揭示函数在某一区间上的增减性。
假设函数在某一区间上的导数大于零,即导数为正,那么函数在该区间上是递增的;反之,如果导数小于零,即导数为负,那么函数在该区间上是递减的。
通过导数的符号,我们可以判断函数在不同区间上的单调性。
二、导数与函数的最小值函数的最小值是指函数在定义域上的最小取值。
导数可以帮助我们找到函数的最小值。
2.1 导数的零点函数在导数为零的点处可能存在最小值。
这是因为导数为零意味着函数在该点处的变化率为零,即函数在该点处的斜率为零。
这样的点可以是函数的最低点。
2.2 导数的符号变化函数在导数发生符号变化的点处可能存在最小值。
如果函数在某一点的导数由正变为负,那么函数在该点处可能具有最小值。
因为导数由正变为负,说明函数在该点的斜率从正向变为负向,即函数在该点附近由增加转为减少,可能达到了最小值。
综上所述,导数与函数的单调性和最小值之间存在着紧密的关系。
通过导数的存在性和符号,我们可以判断函数的单调性。
而导数的零点和符号变化可以帮助我们找到函数的最小值。
在微积分中,导数的应用不仅可以帮助我们理解函数的性质,还可以用来解决各种实际问题。
参考资料:1. Stewart, ___(2011). Calculus: ___.2. Anton, H., Bivens, I., & Davis, S. (2009). Calculus. WileyGlobal ___.。
导数与函数的单调性导数与函数的单调性是微积分中的重要概念,它们能够帮助我们理解函数的变化趋势以及函数在不同区间的单调性。
在本文中,我们将探讨导数与函数的单调性之间的关系,并介绍如何通过导数来确定函数的单调性。
一、导数的定义与意义导数描述了函数在某一点的变化率。
对于函数f(x)来说,其导数可以用以下形式表示:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h 〗其中,h表示自变量x的增量。
导数的几何意义是函数曲线在某一点处的切线的斜率。
二、导数与函数的单调性导数在函数上的正负性与函数的单调性密切相关。
具体而言,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。
三、通过导数确定函数的单调性要通过导数确定函数的单调性,我们需要进行以下几个步骤:1. 求取函数的导数。
2. 解方程 f'(x) = 0,求得导数的零点。
3. 在导数的零点处画出数轴,将数轴分为小区间。
4. 取各个小区间上的代表点,代入原函数并求出函数值。
5. 通过函数值的正负确定函数在小区间上的单调性。
举例来说,我们考虑函数f(x) = x^2,进行上述步骤:1. 求取导数:f'(x) = 2x2. 解方程 f'(x) = 0:2x = 0解得 x = 0。
3. 在数轴上画出导数的零点x = 0,并将数轴分为三个小区间:(-∞,0),(0,+∞)。
4. 取小区间上的代表点,例如取小区间 (-∞,0) 的代表点 x = -1,取小区间 (0,+∞) 的代表点 x = 1。
5. 分别代入原函数 f(x) = x^2,求出函数值:f(-1) = (-1)^2 = 1f(1) = (1)^2 = 1根据函数值的正负性,我们可以得出以下结论:在小区间 (-∞,0) 上,函数递增;在小区间 (0,+∞) 上,函数递增。
结论:函数f(x) = x^2 在整个定义域上都是递增的。
通过上述例子,我们可以看出导数与函数的单调性之间的联系。
导数与函数的单调性函数的单调性在(a,b)内函数f(x)可导,f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔f(x)在(a,b)上为增函数.f′(x)≤0⇔f(x)在(a,b)上为减函数.辨明导数与函数单调性的关系(1)f′(x)>0(或<0)是f(x)在(a,b)内单调递增(或递减)的充分不必要条件;(2)f′(x)≥0(或≤0)是f(x)在(a,b)内单调递增(或递减)的必要不充分条件.注意:由函数f(x)在区间[a,b]内单调递增(或递减),可得f′(x)≥0(或≤0)在该区间恒成立,而不是f′(x)>0(或<0)恒成立,“=”不能少.1.如图所示是函数f(x)的导函数f′(x)的图象,则下列判断中正确的是()A.函数f(x)在区间(-3,0)上是减函数B.函数f(x)在区间(-3,2)上是减函数C.函数f(x)在区间(0,2)上是减函数D.函数f(x)在区间(-3,2)上是单调函数2.函数f(x)=x3-3x+1的单调增区间是()A.(-1,1)B.(-∞,1)C.(-1,+∞)D.(-∞,-1),(1,+∞)3.已知函数f(x)=x sin x,x∈R,则f(1),f()A.f(1)>B.f(1)>C.f(1)>D.f(1)4.(选修11P93练习T1(2)改编)函数f (x )=e x -x 的单调递增区间是________.5.已知f (x )=x 3-ax 在[1,+∞)上是增函数,则实数a 的最大值是________.考点一利用导数判断或证明函数的单调性(2015·高考重庆卷)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,讨论g (x )的单调性.导数法证明函数f (x )在(a ,b )内的单调性的步骤(1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.考点二求函数的单调区间已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.导数法求函数单调区间的一般步骤(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0;(4)根据(3)的结果确定函数f (x )的单调区间.2.(2015·高考四川卷节选)已知函数f (x )=-2x ln x +x 2-2ax +a 2,其中a >0.设g (x )是f (x )的导函数,讨论g (x )的单调性.考点三已知函数的单调性求参数的范围(高频考点)利用导数根据函数的单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考向,常以解答题的形式出现.高考对函数单调性的考查主要有以下四个命题角度:(1)根据f (x )在区间A 上单调递增(减),求参数的取值范围;(2)根据f (x )在区间A 上存在单调递增(减)区间,求参数的取值范围;(3)根据f (x )在区间A 上为单调函数,求参数的取值范围;(4)根据f (x )在区间A 上不单调,求参数的取值范围.(1)(2014·高考课标全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是()A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)(2)已知函数g (x )=13x 3-12ax 2+2x .①若g (x )在(-2,-1)内为减函数,求实数a 的取值范围;②若g (x )在区间(-2,-1)内不单调,求实数a 的取值范围根据函数单调性确定参数范围的方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.3.(1)(2016·九江第一次统考)已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间13,2上是增函数,则实数a 的取值范围为________.(2)设f (x )=-13x 3+12x 2+2ax .若f (x )则a 的取值范围为________.方法思想——分类讨论思想研究函数的单调性(2015·高考江苏卷节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程1.(2016·九江模拟)函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2)B.(0,3)C.(1,4)D.(2,+∞)2.已知函数f(x)=2x3-6ax+1,a≠0,则函数f(x)的单调递减区间为()A.(-∞,+∞)B.(-a,+∞)C.(-∞,-a)和(a,+∞)D.(-a,a)x3+ax+4,则“a>0”是“f(x)在R上单调递增”的3.(2016·长春调研)已知函数f(x)=12()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.对于在R上可导的任意函数f(x),若满足(x-a)f′(x)≥0,则必有()A.f(x)≥f(a)B.f(x)≤f(a)C.f(x)>f(a)D.f(x)<f(a)5.(2016·郑州第一次质量预测)已知定义在R上的函数f(x)满足f(-3)=f(5)=1,f′(x)为f(x)的导函数,且导函数y=f′(x)的图象如图所示,则不等式f(x)<1的解集是()A.(-3,0)B.(-3,5)C.(0,5)D.(-∞,-3)∪(5,+∞)6.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则a的取值范围是()A.0<a<34B.12<a<34C.a≥34D.0<a<127.函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.8.(2016·石家庄二中开学考试)已知函数f(x)=ln x+2x,若f(x2+2)<f(3x),则实数x的取值范围是________.9.已知函数f(x)=e|x-a|(a为常数),若f(x)在区间[1,+∞)上是增函数,则a的取值范围是________.10.若函数f(x)=ax3+3x2-x恰好有三个单调区间,则实数a的取值范围是________.11.(2016·云南省第一次统一检测)已知函数f(x)=ln x-x1+2x.(1)求证:f(x)在区间(0,+∞)上单调递增;(2)若f[x(3x-2)]<-13,求实数x的取值范围.1.(2016·河北省衡水中学模拟)已知函数f(x)x,a∈R.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a=-1时,求证:f(x)在(0,+∞)上为增函数.2.已知a∈R,函数f(x)=(-x2+ax)e x(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)函数f(x)是否为R上的单调函数?若是,求出a的取值范围;若不是,请说明理由.三年高考两年模拟1.(2016·全国Ⅰ)若函数f(x)=x-13sin2x+a sin x在(-∞,+∞)单调递增,则a的取值范围是()A.[-1,1]B.-1,13C.-13,13 D.-1,-132.(2016·江西赣中南五校模拟)已知函数y=f(x)对任意的x -π2,f′(x)·cos x+f(x)sin x>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.2B.2C.f(0)>2D.f(0)>23.(2015·福建)若定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.<1k B.>1k-1C.<1k-1D.>kk-14.(2015·新课标全国Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0)5.(2014·新课标全国Ⅱ)若函数f(x)=kx-ln x在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)6,(2014·新课标全国Ⅰ)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)7.(2015·陕西)对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.-1是f(x)的零点B.1是f(x)的极值点C.3是f(x)的极值D.点(2,8)在曲线y=f(x)上8.(2014·新课标全国Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件9.(2016·河南八市模拟)已知函数f(x)=sin x-cos x,且f′(x)=12f(x),则tan2x的值是()A.-23B.-43C.4 3D.3 410.(2015·江西新余模拟)如图是函数f(x)=x2+ax+b的部分图象,则函数g(x)=ln x+f′(x)的零点所在的区间是()B.(1,2)D.(2,3)11.(2015·河北恒台模拟)设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n (x )=f n -1′(x ),n ∈N ,则f 2015(x )=()A.sin xB.-sin xC.cos xD.-cos x12.(2016·河南郑州一模)函数f (x )=e x cos x 的图象在点(0,f (0))处的切线方程是()A.x +y +1=0B.x +y -1=0C.x -y +1=0D.x -y -1=013.(2016·福建漳州八校模拟)设函数f ′(x )是函数f (x )(x ∈R )的导函数,f (0)=1,且3f (x )=f ′(x )-3,则4f (x )>f ′(x )的解集为()14.(2015·黑龙江绥化模拟)已知函数y =f (x -1)的图象关于直线x =1对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立,若a =20.2f (20.2),b =(ln 2)f (ln 2),c a ,b ,c的大小关系是()A.a >b >cB.b >a >cC.c >a >bD.a >c >b15.(2015·辽宁沈阳模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x ≠0时,f ′(x )+f (x )x >0,若a =12f b =-2f (-2),c a ,b ,c 的大小关系正确的是()A.a <c <bB.b <c <aC.a <b <cD.c <a <b16.(2015·河北唐山模拟)已知函数f (x )=a e x +x 2,g (x )=sin πx2+bx ,直线l 与曲线y =f (x )切于点(0,f (0))且与曲线y =g (x )切于点(1,g (1)).(1)求a ,b 的值和直线l 的方程.(2)证明:f(x)>g(x).17.(2015·山东潍坊模拟)已知函数f(x)=x4+ax-ln x-32,其中a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求a的值.(2)讨论函数f(x)的单调区间.三年高考两年模拟1C2A3C4A5D6C7A8C9D10C11D12C13B14B15A3.(2016·山东,20)设f(x)=x ln x-ax2+(2a-1)x,a∈R.(1)令g(x)=f′(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.。
利用导数判断函数的单调性知识要点梳理1. 函数的导数与函数的单调性的关系: (1)(函数单调性的充分条件)设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在这个区间内为增函数;如果在这个区间内/y <0,那么函数y=f(x) 在这个区间内为减函数。
(2)(函数单调性的必要条件)设函数y=f(x) 在某个区间内有导数,如果函数y=f(x) 在这个区间内为增函数,那么在这个区间内/y ≥0;如果函数y=f(x) 在这个区间内为减函数。
那么在这个区间内/y ≤0。
2. 求可导函数的单调区间的一般步骤和方法: ①确定函数()f x 的定义域;②计算导数'()f x ,令'()0f x =,解此方程,求出它们在定义域区间内的一切实根; ③把函数()f x 的间断点(即f(x)的无定义的点)的横坐标和上面的各实根按由小到大的顺序排列起来,然后用这些点把()f x 的定义域分成若干个小区间;④确定'()f x 在各个开区间内的符号,根据'()f x 的符号判定函数()f x 在每个相应小区间的增减性(若'()f x >0,则f(x)在相应区间内为增函数;若'()f x <0,则f(x)在相应区间内为减函数。
)疑难点、易错点剖析:1.利用导数研究函数的单调性比用函数单调性的定义要方便,但应注意f ’(x)>0(或f ’(x)<0)仅是f(x)在某个区间上递增(或递减)的充分条件。
在区间(a,b )内可导的函数f(x)在(a,b )上递增(或递减)的充要条件应是'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立,且f ’(x)在(a,b ) 的任意子区间内都不恒等于0。
这就是说,函数f(x)在区间上的增减性并不排斥在该区间内个别点x 0处有f ’(x 0)=0,甚至可以在无穷多个点处f ’(x 0)=0,只要这样的点不能充满所给区间的任何子区间,因此在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令'()0('()0)f x f x ≥≤或恒成立,解出参数的取值范围,然后检验参数的取值能否使f ’(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f ’(x)不恒为0,则由'()0('()0)f x f x ≥≤或,x (,)a b ∈恒成立解出的参数的取值范围确定。
第2节导数在研究函数中的应用知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数的关系(1)函数的极小值与极小值点若函数f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值与极大值点若函数f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数的极大值点,f(b)叫做函数的极大值.3.函数的最值与导数的关系(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.第1课时导数与函数的单调性考点一 求函数的单调区间【例1】 (经典母题)已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值.(1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间.解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0, 即3a ·169+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12. (2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x , 故g ′(x )=⎝ ⎛⎭⎪⎫32x 2+2x e x +⎝ ⎛⎭⎪⎫12x 3+x 2e x =⎝ ⎛⎭⎪⎫12x 3+52x 2+2x e x =12x (x +1)(x +4)e x . 令g ′(x )<0,得x (x +1)(x +4)<0,解之得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4).【迁移探究1】 若本例中函数f (x )变为“f (x )=ln x -12x 2+x ”,试求f (x )的单调区间.解 因为f (x )=ln x -12x 2+x ,且x ∈(0,+∞),所以f ′(x )=1x -x +1=-⎝ ⎛⎭⎪⎫x -1-52⎝ ⎛⎭⎪⎫x -1+52x. 令f ′(x )=0,所以x 1=1+52,x 2=1-52(舍去).由f ′(x )>0,得0<x <1+52;由f ′(x )<0,得x >1+52.所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1+52,单调递减区间为⎝ ⎛⎭⎪⎫1+52,+∞.【迁移探究2】若本例的函数变为“f(x)=x22-a ln x,a∈R”,求f(x)的单调区间.解因为f(x)=x22-a ln x,所以x∈(0,+∞),f′(x)=x-ax=x2-ax.(1)当a≤0时,f′(x)>0,所以f(x)在(0,+∞)上为单调递增函数.(2)当a>0时,f′(x)=(x+a)(x-a)x,则有①当x∈(0,a)时,f′(x)<0,所以f(x)的单调递减区间为(0,a).②当x∈(a,+∞)时,f′(x)>0,所以f(x)的单调递增区间为(a,+∞).综上所述,当a≤0时,f(x)的单调递增区间为(0,+∞),无单调递减区间. 当a>0时,函数f(x)的单调递减区间为(0,a),单调递增区间为(a,+∞). 规律方法求函数单调区间的步骤:(1)确定函数f(x)的定义域;(2)求f′(x);(3)在定义域内解不等式f′(x)>0,得单调递增区间;(4)在定义域内解不等式f′(x)<0,得单调递减区间.【训练】已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=1 2x.(1)求a的值;(2)求函数f(x)的单调区间.解(1)对f(x)求导得f′(x)=14-ax2-1x,由f(x)在点(1,f(1))处的切线垂直于直线y=12x知f′(1)=-34-a=-2,解得a=5 4.(2)由(1)知f(x)=x4+54x-ln x-32(x>0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5.但-1∉(0,+∞),舍去.当x ∈(0,5)时,f ′(x )<0;当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).考点二 证明(判断)函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0.(1)讨论f (x )的单调性;(2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0.f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增.②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2. 当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减, 在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝ ⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练】 (2015·全国Ⅱ卷改编)已知函数f (x )=ln x +a (1-x ),讨论f (x )的单调性.解 f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f ′(x )>0恒成立,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 考点三 导数在函数单调性中的应用【例3】 (1)(2018·武汉模拟)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( )A.a <b <cB.b <c <aC.a <c <bD.c <a <b解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2, ∵当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0.∴g (x )在(0,+∞)上是减函数.由f (x )为奇函数,知g (x )为偶函数,则g (-3)=g (3),又a =g (e),b =g (ln 2),c =g (-3)=g (3),∴g (3)<g (e)<g (ln 2),故c <a <b .答案 D【训练】.已知f (x )=1+x -sin x ,则f (2),f (3),f (π)的大小关系正确的是( )A.f (2)>f (3)>f (π)B.f (3)>f (2)>f (π)C.f (2)>f (π)>f (3)D.f (π)>f (3)>f (2)(2)已知函数f (x )=ln x ,g (x )=12ax 2+2x .①若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;②若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 ①h (x )=ln x -12ax 2-2x ,x >0. ∴h ′(x )=1x -ax -2.若函数h (x )在(0,+∞)上存在单调减区间,则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min .(*)又G (x )=⎝ ⎛⎭⎪⎫1x -12-1, 所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞).②由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x ,所以a ≥G (x )max .又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4], 因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x =(7x -4)(x -4)16x, ∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0, 当且仅当x =4时等号成立.(***)∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞. 规律方法 1.已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.2.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解.3.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.【训练】 (2018·郑州质检)若函数f (x )=13x 3-32x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________.(2018·兰州模拟)已知函数f (x )=12x 2-2a ln x +(a -2)x .(1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x. 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.∴f (x )的单调增区间为(0,1)和(2,+∞),单调减区间为(1,2).(2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数,∴g ′(x )=f ′(x )-a =x -2a x -2≥0恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. ∴x 2-2x -2a ≥0当x >0时恒成立,∴a ≤12(x 2-2x )=12(x -1)2-12恒成立.又φ(x )=12(x -1)2-12,x ∈(0,+∞)的最小值为-12. ∴当a ≤-12时,g ′(x )≥0恒成立.又当a =-12,g ′(x )=(x -1)2x当且仅当x =1时,g ′(x )=0. 故当a ∈⎝ ⎛⎦⎥⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增.解析 因为f (x )=1+x -sin x ,所以f ′(x )=1-cos x , 当x ∈(0,π]时,f ′(x )>0,所以f (x )在(0,π]上是增函数,所以f (π)>f (3)>f (2).答案 D9.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23. (1)求a 的值;(2)求函数f (x )的单调区间.解 (1)由f (x )=x 3+ax 2-x +c ,得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),令f ′(x )>0,解得x >1或x <-13;令f ′(x )<0,解得-13<x <1.所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞); f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.。