2019年高考数学按章节分类汇编(人教必修四):第一章三角函数
- 格式:pdf
- 大小:214.21 KB
- 文档页数:5
人教版高中数学必修精品教学资料重点列表:重点详解:一、弧度制及任意角的三角函数 1.任意角 (1)角的概念角可以看成平面内一条____________绕着端点从一个位置旋转到另一个位置所成的图形.我们规定:按____________方向旋转形成的角叫做正角,按____________方向旋转形成的角叫做负角.如果一条射线没有作任何旋转,我们称它形成了一个____________. (2)象限角使角的顶点与____________重合,角的始边与x 轴的____________重合.角的终边在第几象限,就说这个角是第几象限角. ①α是第一象限角可表示为⎩⎨⎧⎭⎬⎫α|2k π<α<2k π+π2,k ∈Z ;②α是第二象限角可表示为 ; ③α是第三象限角可表示为 ; ④α是第四象限角可表示为 . (3)非象限角如果角的终边在 上,就认为这个角不属于任何一个象限. ①终边在x 轴非负半轴上的角的集合可记作{α|α=2k π,k ∈Z };②终边在x 轴非正半轴上的角的集合可记作 _________________________________________; ③终边在y 轴非负半轴上的角的集合可记作 _________________________________________; ④终边在y 轴非正半轴上的角的集合可记作 _________________________________________; ⑤终边在x 轴上的角的集合可记作_________________________________________; ⑥终边在y 轴上的角的集合可记作_________________________________________; ⑦终边在坐标轴上的角的集合可记作_________________________________________; (4)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S =________________________. 2.弧度制(1)把长度等于____________的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度.||α= ,l 是半径为r 的圆的圆心角α所对弧的长.(2)弧度与角度的换算:360°=________rad,180°=________rad,1°= rad≈0.01745rad ,反过来1rad = ≈57.30°=57°18′. (3)若圆心角α用弧度制表示,则弧长公式l =_______;扇形面积公式S扇== . 3.任意角的三角函数 (1)任意角的三角函数的定义 设α是一个任意角,它的终边上任意一点P (x ,y )与原点的距离为r (r >0),则sin α= ,cos α= ,tan α= (x ≠0). ※cot α=x y (y ≠0),sec α=r x (x ≠0),csc α=r y(y ≠0). (2)正弦、余弦、正切函数的定义域(3)三角函数值在各象限的符号sin α cos α tan α4.特殊角的三角函数值易求15°,75°的余弦值和余切值. 【答案】1.(1)射线 逆时针 顺时针 零角 (2)原点 非负半轴②⎩⎨⎧⎭⎬⎫α|2k π+π2<α<2k π+π,k ∈Z③⎩⎨⎧⎭⎬⎫α|2k π+π<α<2k π+32π,k ∈Z④⎩⎨⎧⎭⎬⎫α|2k π+32π<α<2k π+2π,k ∈Z 或{α|2k π-π2<α<2k π,k ∈Z }(3)坐标轴②{}α|α=2k π+π,k ∈Z③⎩⎨⎧⎭⎬⎫α|α=2k π+π2,k ∈Z④⎩⎨⎧⎭⎬⎫α|α=2k π+32π,k ∈Z ⑤{α|α=k π,k ∈Z }⑥⎩⎨⎧⎭⎬⎫α|α=k π+π2,k ∈Z ⑦⎩⎨⎧⎭⎬⎫α|α=k π2,k ∈Z(4){β|β=α+2k π,k ∈Z }或{β|β=α+k ·360°,k ∈Z } 2.(1)半径长 l r (2)2π π π180⎝ ⎛⎭⎪⎫180π° (3)||αr 12||αr 2 12lr3.(1)y rx r y x(2)①R ②R ③⎩⎨⎧⎭⎬⎫α|α≠k π+π2,k ∈Z4.二、同角三角函数的关系及诱导公式 1.同角三角函数的基本关系(1)由三角函数的定义,同角三角函数间有以下两个等式: ①____________________; ②____________________.(2)同角三角函数的关系式的基本用途:①根据一个角的某一三角函数值,求出该角的其他三角函数值;②化简同角的三角函数式;③证明同角的三角恒等式.2.三角函数的诱导公式 (1)诱导公式的内容:(2)诱导公式的规律:三角函数的诱导公式可概括为:奇变偶不变,符号看象限.其中“奇变偶不变”中的奇、偶分别是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则正、余弦互变,正、余切互变;若是偶数倍,则函数名称________.“符号看象限”是把α当成________时,原三角函数式中的角⎝ ⎛⎭⎪⎫如π2+α 所在________原三角函数值的符号.注意把α当成锐角是指α不一定是锐角,如sin(360°+120°)=sin120°,sin(270°+120°)=-cos120°,此时把120°当成了锐角来处理.“原三角函数”是指等号左边的函数. (3)诱导公式的作用:诱导公式可以将任意角的三角函数转化为________三角函数,因此常用于化简和求值,其一般步骤是: 任意负角的三角函数―――――――→去负(化负角为正角)任意正角的三角函数――→脱周脱去k ·360°0°到360°的三角函数――――→化锐(把角化为锐角)锐角三角函数 3.sin α+cos α,sin αcos α,sin α-cos α三者之间的关系 (sin α+cos α)2=________________; (sin α-cos α)2=________________;(sin α+cos α)2+(sin α-cos α)2=______________; (sin α+cos α)2-(sin α-cos α)2=______________.【参考答案】1.(1)①sin 2α+cos 2α=1 ②sin αcos α=tan α2.(1)(2)不变 锐角 象限 (3)锐角3.1+2sin αcos α 1-2sin αcos α 2 4sin αcos α 重点1:弧度制及任意角的三角函数 【要点解读】1.将角的概念推广后,要注意锐角与第一象限角的区别,锐角的集合为{α|0°<α<90°},第一象限角的集合为{α|k ·360°<α<k ·360°+90°,k ∈Z },显然锐角的集合仅是第一象限角的集合的一个真子集,即锐角是第一象限角,但第一象限角不一定是锐角.2.角度制与弧度制可利用180°=π rad 进行换算,在同一个式子中,采用的度量制必须一致,不可混用.如α=2k π+30°(k ∈Z ),β=k ·360°+π2(k ∈Z )的写法都是不正确的. 3.一般情况下,在弧度制下计算扇形的弧长和面积比在角度制下计算更方便、简捷. 4.已知角的终边上一点的坐标可利用三角函数的定义求三角函数值,但要注意对可能情况的讨论.5.牢记各象限三角函数值的符号,在计算或化简三角函数关系时,要注意对角的范围以及三角函数值的正负进行讨论.6.2k π+α表示与α终边相同的角,其大小为α与π的偶数倍(而不是整数倍)的和,是π的整数倍时,要分类讨论.如: (1)sin(2k π+α)=sin α;(2)sin(k π+α)=⎩⎪⎨⎪⎧sin α(k 为偶数),-sin α(k 为奇数)=(-1)ksin α.7.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧. 【考向1】角的概念【例题】若α是第二象限角,试分别确定2α,α2,α3的终边所在位置.(3)∵30°+k ·120°<α3<60°+k ·120°(k ∈Z ),当k =3n (n ∈Z )时,30°+n ·360°<α3<60°+n ·360°,当k =3n +1(n ∈Z )时,150°+n ·360°<α3<180°+n ·360°,当k =3n +2(n ∈Z )时,270°+n ·360°<α3<300°+n ·360°.∴α3的终边在第一或第二或第四象限. 【评析】关于一个角的倍角、半角所在象限的讨论,有些书上列有现成的结论表格,记忆较难.解此类题一般步骤为先写出α的范围→求出2α,α2,α3的范围→分类讨论求出2α,α2,α3终边所在位置.【考向2】扇形的弧长与面积公式【例题】 如图所示,已知扇形AOB 的圆心角∠AOB =120°,半径R =6,求:(1)AB ︵的长; (2)弓形ACB 的面积.解:(1)∵∠AOB =120°=2π3,R =6,∴l AB⌒=2π3×6=4π.【评析】①直接用公式l =|α|R 可求弧长,利用S 弓=S 扇-S △可求弓形面积.②关于扇形的弧长公式和面积公式有角度制与弧度制这两种形式,其中弧度制不仅形式易记,而且好用,在使用时要注意把角度都换成弧度,使度量单位一致.③弧长、面积是实际应用中经常遇到的两个量,应切实掌握好其公式并能熟练运用. 【考向3】三角函数的定义【例题】已知角α的终边经过点P (a ,2a )(a >0),求sin α,cos α,tan α的值. 解:因为角α的终边经过点P (a ,2a )(a >0),所以r =5a ,x =a ,y =2a . sin α=yr =2a5a=255,cos α=x r=a5a=55, tan α=y x =2aa=2. 【评析】若题目中涉及角α终边上一点P 的相关性质或条件,往往考虑利用三角函数的定义求解.重点2:同角三角函数的基本关系及诱导公式 【要点解读】1.诱导公式用角度制和弧度制表示都可,运用时应注意函数名称是否要改变以及正负号的选取.2.已知一个角的某一个三角函数值,求这个角的其他三角函数值,这类问题用同角三角函数的基本关系式求解,一般分为三种情况:(1)一个角的某一个三角函数值和这个角所在的象限或终边所在的位置都是已知的,此类情况只有一组解.(2)一个角的某一个三角函数值是已知的,但这个角所在的象限或终边所在的位置没有给出,解答这类问题,首先要根据已知的三角函数值确定这个角所在的象限或终边所在的位置,然后分不同的情况求解.(3)一个角的某一个三角函数值是用字母给出的,此类情况须对字母进行讨论,并注意适当选取分类标准,一般有两组解. 3.计算、化简三角函数式常用技巧(1)减少不同名的三角函数,或化切为弦,或化弦为切,如涉及sin α,cos α的齐次分式问题,常采用分子分母同除以cos n α(n ∈N *),这样可以将被求式化为关于tan α的式子.※(2)巧用“1”进行变形,如1=sin 2α+cos 2α=tan αcot α=tan45°=sec 2α-tan 2α等.(3)平方关系式需开方时,应慎重考虑符号的选取.(4)理解sin α±cos α,sin αcos α的内在联系,必要时可用方程思想或整体代换方法解决. 【考向1】利用同角三角函数的基本关系式进行化简和求值 【例题】(1)已知sin α=13,且α为第二象限角,求tan α;(2)已知sin α=13,求tan α;(3)已知sin α=m (m ≠0,m ≠±1),求tan α.(3)∵sin α=m (m ≠0,m ≠±1),∴cos α=±1-sin 2α=±1-m 2(当α为第一、四象限角时取正号,当α为第二、三象限角时取负号).∴当α为第一、四象限角时,tan α=m1-m2; 当α为第二、三象限角时,tan α=-m1-m2.【评析】解题时要注意角的取值范围,分类讨论,正确判断函数值的符号. 【考向2】诱导公式的应用 【例题】(1)化简sin (2π-α)cos (π+α)cos ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫11π2-αcos (π-α)sin (3π-α)sin (-π-α)sin ⎝ ⎛⎭⎪⎫9π2+α;(2)已知α是第三象限角,且f (α)=sin (π-α)cos (2π-α)tan ()α+πtan (-α-π)sin (-α-π).①若cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值; ②若α=-1860°,求f (α)的值.【评析】①三角式的化简通常先用诱导公式,将角度统一后再用同角三角函数关系式,这可以避免交错使用公式时导致的混乱.②在运用公式时正确判断符号至关重要.③三角函数的化简、求值是三角函数中的基本问题,也是高考常考的问题,要予以重视.难点列表:难点详解:三角函数线如图,角α的终边与单位圆交于点P .过点P 作x 轴的垂线,垂足为M ,过点A (1,0)作单位圆的切线,设它与α的终边(当α为第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于点T .根据三角函数的定义,有OM =x =________,MP =y =________,AT = =________.像OM ,MP ,AT 这种被看作带有方向的线段,叫做有向线段,这三条与单位圆有关的有向线段MP ,OM ,AT ,分别叫做角α的 、 、 ,统称为三角函数线.【答案】cos α sin α y xtan α 正弦线 余弦线 正切线 难点1:三角函数线的应用 【要点解读】(1)已知角α终边上一点P 的坐标求三角函数值,先求出点P 到原点的距离r ,然后利用三角函数定义求解.(2)已知角α的终边与单位圆的交点坐标求三角函数值,可直接根据三角线求解.(3)已知角α的终边所在的直线方程求三角函数值,先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数定义求解相关问题,同时注意分类讨论.(4)判断三角函数值的符号问题,先判断角所在的象限,再根据各象限的符号规律判断. 【考向1】三角函数线的概念【例题】用单位圆证明角α的正弦绝对值与余弦绝对值之和不小于1,即已知0≤α<2π, 求证:|sin α|+|cos α|≥1.证明:作平面直角坐标系xOy 和单位圆.(1)当角α的终边落在坐标轴上时,不妨设为Ox 轴,设它交单位圆于A 点,如图1,显然sin α=0,cos α=OA =1,所以|sin α|+|cos α|=1.图1图2【评析】三角函数线是任意角的三角函数的几何表示,利用单位圆中的三角函数线可以直观地表示三角函数值的符号及大小,并能从任意角的旋转过程中表示三角函数值的变化规律.在求三角函数的定义域、解三角不等式、证明三角不等式等方面,三角函数线具有独特的简便性.【考向2】利用三角函数线进行证明【例题】求证:当α∈⎝⎛⎭⎪⎫0,π2时,sin α<α<tan α.证明:如图所示,设角α的终边与单位圆相交于点P ,单位圆与x 轴正半轴的交点为A ,过点A 作圆的切线交OP 的延长线于T ,过P 作PM ⊥OA 于M ,连接AP ,则在Rt △POM 中,sin α=MP ,在Rt △AOT 中,tan α=AT ,又根据弧度制的定义,有AP ︵=α·OP =α,易知S △P O A <S 扇形P O A<S △A O T ,即12OA ·MP <12AP ︵·OA <12OA ·AT ,即sin α<α<tan α. 难点2:关于sin α,cos α的齐次式问题【要点解读】(1)已知sin α(或cos α)的值,求cos α(或sin α)、tan α的值时,先利用平方关系sin2α+cos 2α=1,再利用商数关系tan α=sin αcos α,其中利用平方关系进行开方时要注意根据角所在的象限选择恰当的符号.(2)已知tan α的值,求sin α和cos α的值时,通常利用两个基本关系式建立方程组求解. 【考向1】一次变换【例题】已知tan αtan α-1=-1,求下列各式的值.(1)sin α-3cos αsin α+cos α; (2)sin 2α+sin αcos α+2.【评析】(1)形如a sin α+b cos α和a sin 2α+b sin αcos α+c cos 2α的式子分别称为关于sin α,cos α的一次齐次式和二次齐次式,对涉及它们的三角变换通常转化为正切(分子分母同除以cos α或cos 2α)求解.如果分母为1,可考虑将1写成sin 2α+cos 2α.(2)已知tan α=m 的条件下,求解关于sin α,cos α的齐次式问题,必须注意以下几点:①一定是关于sin α,cos α的齐次式(或能化为齐次式)的三角函数式.②因为cos α≠0,所以可以用cos n α(n ∈N *)除之,这样可以将被求式化为关于tan α的表示式,可整体代入tan α=m 的值,从而完成被求式的求值运算.③注意1=sin 2α+cos 2α的运用. 【考向2】高次变换【例题】已知tan α=3,求sin 2α-3sin αcos α+1的值. 解法一:sin 2α-3sin αcos α+1=sin 2α-3sin αcos αsin 2α+cos 2α+1=tan 2α-3tan α1+tan 2α+1 =32-3×31+32+1=1.解法二:∵tan α=3>0,∴α是第一、三象限角.由⎩⎪⎨⎪⎧sin 2α+cos 2α=1,sin α=3cos α, 有⎩⎪⎨⎪⎧sin α=31010,cos α=1010(α为第一象限角),或⎩⎪⎨⎪⎧sin α=-31010,cos α=-1010(α为第三象限角).∴sin αcos α=310.∴sin 2α-3sin αcos α+1=910-3×310+1=1.【趁热打铁】1.sin585°的值为( ) A .-22B.22 C .-32 D .322.若sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,则tan α的值为( )A .34B .-34C .43D .-433.下列关系式中正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°4.已知f (cos x )=cos2x ,则f (sin15°)的值等于( ) A .12B .-12C .32D .-325.若sin α是5x 2-7x -6=0的根,则sin ⎝ ⎛⎭⎪⎫-α-3π2sin ⎝ ⎛⎭⎪⎫3π2-αtan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2+αsin (π+α)=( )A .35B .53C .45D .546.已知sin α-cos α=2,α∈()0,π,则tan α=( ) A .-1B .-22 C.22D .1 7.已知sin αcos α=18,且π4<α<π2,则cos α-sin α的值是________.8.若一扇形的周长为60cm,那么当它的半径和圆心角各为________cm 和________rad 时,扇形的面积最大.9.若α是第三象限角,则2α,α2分别是第几象限角?10.已知角α的终边经过点P (x ,-2)(x ≠0)且cos α=36x ,求sin α+tan α的值.第一章1解:sin585°=sin ()90°×6+45°=-sin45°=-22.故选A . 2解:∵sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π,∴cos α=-45. ∴tan α=sin αcos α=-34.故选B .3解:∵cos10°=sin80°,sin168°=sin()180°-12°=sin12°,∴sin11°<sin168°<cos10°.故选C .4解:f (sin15°)=f (cos75°)=cos150°=-32.故选D . 5解:由5x 2-7x -6=0得x =-35或x =2.∴sin α=-35.∴原式=cos α(-cos α)·tan 2αsin α·(-sin α)·(-sin α)=1-sin α=53.故选B .6解:将sin α-cos α=2两端平方,整理得2sin αcos α=-1,∴2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-1,即(tan α+1)2=0,解得tan α=-1.故选A . 7解:∵π4<α<π2,∴sin α>cos α.∵1-2sin αcos α=(cos α-sin α)2=34,∴cos α-sin α=-32.故填-32.9解:∵α是第三象限角, ∴2k π+π<α<2k π+32π,k ∈Z .∴4k π+2π<2α<4k π+3π,k ∈Z .∴2α是第一、二象限角,或角的终边在y 轴非负半轴上. 又k π+π2<α2<k π+34π,k ∈Z ,∴当k =2m (m ∈Z )时,2m π+π2<α2<2m π+34π(m ∈Z ),则α2是第二象限角;当k =2m +1(m ∈Z )时,2m π+32π<α2<2m π+74π(m ∈Z ),则α2是第四象限角.故α2是第二、四象限角.10解:∵P (x ,-2)(x ≠0), ∴点P 到原点的距离r =x 2+2. 又cos α=x x 2+2=36x ,∴x =±10,r =2 3. 当x =10时,点P (10,-2), 由三角函数定义知sin α=-66,tan α=-210=-55.∴sin α+tan α=-66-55=-56+6530. 当x =-10时,同理可求得sin α+tan α=65-5630.。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的看法的实行①按旋转方向不相同分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角任意角负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地址不相同分为象限角和轴线角.角的极点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,那么称为第几象限角.第一象限角的会集为k360k 36090 , k第二象限角的会集为k36090k 360180 , k第三象限角的会集为k360180k360270 , k第四象限角的会集为k360270k 360360 , k终边在 x 轴上的角的会集为k180 , k终边在 y 轴上的角的会集为k180 90 , k终边在坐标轴上的角的会集为k 90 ,k(2)终边与角α相同的角可写成α+ k·360 °(k∈Z ).终边与角相同的角的会集为k 360, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做 1 弧度的角.②弧度与角度的换算:360°= 2π弧度; 180°=π弧度.③半径为 r 的圆的圆心角所对弧的长为 l ,那么角的弧度数的绝对值是l r④ 假设扇形的圆心角为为弧度制,半径为 r ,弧长为l,周长为C,面积为S,那么l r ,C2r l ,S1lr1r 2.222.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P(x, y),它与原点的距离为r r x2y2,那么角α的正弦、余弦、正切分别是: sin α=yr, cos α=xr, tan α=yx.〔三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦〕3.特别角的三角函数值1角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的根本关系与引诱公式A.基础梳理1.同角三角函数的根本关系(1)平方关系: sin2α+ cos2α= 1;〔在利用同角三角函数的平方关系时,假设开方,要特别注意判断符号〕sin α(2)商数关系:=tanα.〔3〕倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k ) tan其中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan(π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.其中的奇、偶是指π引诱公式可概括为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假设是奇数倍,那么函数名称要变( 正弦变余弦,余弦变正弦) ;假设是偶数倍,那么函数名称不变,符号看象限是指:把πα看作锐角时,依照 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与要点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转变.〔 sin cos、sin cos、sin cos三个式子知一可求二〕2(3)巧用 “1〞的变换: 1= sin 2θ+ cos 2θ= sinπ =tan24〔 〕齐次式化切法: tank ,那么 asinbcosa tanb ak b4m sinn cosm tannmkn三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法〔如y sin x 与 y cosx 的周期是〕。
描述:例题:高中数学必修4(人教A版)知识点总结含同步练习题及答案
第一章 三角函数 1.1 任意角和弧度制
一、学习任务
1. 了解任意角的概念,了解终边相同的角的意义.
2. 了解弧度制的意义,并能进行弧度与角度的互化.
二、知识清单
任意角的概念 弧度制
三、知识讲解
1.任意角的概念
任意角角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图,一条射线的端点是 ,它从起始位置 按逆时针方向旋转到终止位置 ,形成一个角 ,射线 称为角的始边,射线 称为角的终边.
角的分类
正角(positive angle) 按逆时针方向旋转形成的角.
负角(negative angle) 按顺时针方向旋转形成的角.
零角(zero angle) 如果一条射线没有作任何旋转,我们称它形成了一个零角.象限角与轴线角
在直角坐标系内,使角的顶点与原点重合,角的始边与 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角(quadrant angle).如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称这样的角为轴线角.
终边相同的角
所有与角 终边相同的角,连同角 在内,可以构成一个集合
,即任一与角 终边相同的角,都可以表示成角 与整数个周角的和.
O OA OB αOA OB x ααS ={β| β=α+k ⋅,k ∈Z }360∘αα在下列说法中:
①时钟经过两个小时,时针转过的角是
;②钝角一定大于锐角;③射线 绕端点 按逆时针旋转一周所成的角是 ;
60∘OA O 0∘
高考不提分,赔付1万元,关注快乐学了解详情。
又 ,∴令 得 .
∵α∈(0,2π)k =1α=
π。
D
C
A
E
B
2019年高考数学按章节分类汇编(人教
A 必修四)
第一章三角函数
一、选择题1 .(2019年高考(浙江文理))把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的
2
倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是
2 .(2019年高考(天津文))将函数
()sin (0)f x x 的图像向右平移
4
个单位长度,所得图像经过点3(
,0)4
,则
的最小值是
(
)
A .
13
B .1
C .
53
D .2
3 .(2019年高考(四川文))如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE ,连接
EC 、ED 则sin
CED
(
)
A .
31010
B .
1010
C .510
D .
515
4 .(2019年高考(山东文))函数2sin
(0
9)6
3x y
x
的最大值与最小
值之和为()A .2
3
B .0
C .-1
D .135 .(2019年高考(辽宁文))已知
sin cos
2,
(0,π),则sin 2
= (
)
A .
1
B .
22
C .22
D .1
6 .(2019年高考(课标文))已知
>0,0
,直线x =
4
和
x =
54
是函数()
sin()f x x 图像的两条相邻的对称轴
,则
=
(
)
A .
π
4
B .
π3
C .
π2
D .
3π
4
7.(2019年高考(福建文))函数()
sin()4
f x x
的图像的一条对称轴是
()
A .4x
B .2
x
C .4x
D .2
x
8.(2019年高考(大纲文))若函数()
sin (
0,2
)3
x f x 是偶函数,则
(
)。