2017年秋季新版华东师大版九年级数学上学期22.2.1、直接开平方和因式分解法学案1
- 格式:doc
- 大小:80.00 KB
- 文档页数:5
华师大新版九年级上学期《22.2.1 直接开平方法和因式分解法》同步练习卷一.解答题(共26小题)1.解方程:(x+1)2=64.2.阅读下列解答过程,在横线上填入恰当内容.解方程:(x﹣1)2=4解:∵(x﹣1)2=4 (1)∴x﹣1=2,(2)∴x=3.(3)上述过程中有没有错误?若有,错在步骤(填序号)原因是请写出正确的解答过程.3.解方程:(1)3(x﹣5)2﹣48=0(2)﹣1=4.解方程:(1)2(x﹣3)2﹣18=0(2)﹣2=5.解方程:(4x﹣1)2﹣9=06.用适当的方法解下列方程:(1)(x﹣1)2﹣9=0(2)5x2+2x﹣1=0.7.解方程:(2x﹣1)2=3.8.已知2x2+3与2x2﹣4互为相反数,求x的值.9.解方程:(1)4x2﹣25=0(2)49(x+1)2=64.10.解方程:5(x﹣1)2=125.11.解方程或不等式组(1)(4x﹣1)2﹣9=0(2)解方程:x2﹣3x﹣2=0.12.解方程:(1)25x2﹣36=0(2)4(2x﹣1)2=36.13.解方程:2(3x﹣1)2=8.14.x﹣2x2=(x﹣3)(x+4)15.解方程:(1)x2﹣6x+5=0(2)x(x﹣4)+5(x﹣4)=0 16.解下列方程:(1)x2﹣2x﹣3=0;(2)3x2﹣4x﹣1=0.(3)(x+1)2﹣9=0(4)(x﹣4)2+2(x﹣4)=0 17.用适当的方法解下列方程:(1)x2﹣6x=7(2)x﹣2=x(x﹣2)(3)2x2﹣3x﹣1=018.解下列方程(1)x2﹣2x=0(2)(x﹣2)2=9(3)x2+2x﹣3=0(4)2x2+5x﹣1=019.用适当的方法解下列方程:(1)9x2﹣121=0;(2)x(x﹣1)=5(x﹣1);(3)(x﹣2)(x﹣6)=﹣4;(4)3x2﹣4x﹣1=0.20.解方程(1)x2﹣4x=0(2)2x2+3=7x21.解方程:(1)x2+x﹣2=0(2)2(x﹣3)=3x(x﹣3).22.解下列方程:(1)4x2﹣1=0;(2)x2﹣4x+3=0;(3)2x2﹣5x+2=0;(4)x+3﹣x(x+3)=0 23.解下列方程:(1)(4y﹣1)2﹣4=0(2)x(x+4)=﹣3(x+4)24.解方程(1)x2﹣x=0(2)2x2﹣3x=425.解方程:①x(x﹣14)=0;②x(5x+4)=5x+4.26.解方程(1)﹣2x2+13x﹣15=0(2)2(x+5)2=x(x+5)华师大新版九年级上学期《22.2.1 直接开平方法和因式分解法》同步练习卷参考答案与试题解析一.解答题(共26小题)1.解方程:(x+1)2=64.【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x+1)2=64,开方得:x+1=±8,解得:x1=7,x2=﹣9.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.2.阅读下列解答过程,在横线上填入恰当内容.解方程:(x﹣1)2=4解:∵(x﹣1)2=4 (1)∴x﹣1=2,(2)∴x=3.(3)上述过程中有没有错误?若有,错在步骤(2)(填序号)原因是正数的平方根有两个,它们互为相反数请写出正确的解答过程.【分析】本题考查了解一元二次方程,能选择适当的方程解一元二次方程是解此题的关键.【解答】解:上述过程中有没有错误?若有,错在步骤(2),原因是正数的平方根有两个,它们互为相反数,正确大的解答过程为:(x﹣1)2=4,x﹣1=±2,x1=3,x2=﹣1,故答案为:(2),正数的平方根有两个,它们互为相反数.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.3.解方程:(1)3(x﹣5)2﹣48=0(2)﹣1=【分析】(1)先变形得到(x﹣5)2=16,然后利用直接开平方法解方程;(2)先把方程化为整式方程2x2﹣2x(x﹣3)=x﹣3,然后解整式方程后进行检验确定原方程的解.【解答】解:(1)(x﹣5)2=16,x﹣5=±4,所以x1=9,x2=1;(2)去分母得2x2﹣2x(x﹣3)=x﹣3,解得x=﹣,经检验x=﹣为原方程的解.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.也考查了解分式方程.4.解方程:(1)2(x﹣3)2﹣18=0(2)﹣2=【分析】(1)移项、系数化成1,开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把分式方程化成整式方程,求出方程的解,再进行检验即可.【解答】解:(1)2(x﹣3)2﹣18=0,2(x﹣3)2=18,(x﹣3)2=9,开方得:x﹣3=±3,解得:x1=6,x2=0;(2)原方程化为:﹣2=,方程两边都乘以2(x﹣2)得:6x﹣4(x﹣2)=5,解得:x=﹣,检验:当x=﹣时,2(x﹣2)≠0,所以x=﹣是原方程的解,即原方程的解为:x=﹣.【点评】本题考查了解分式方程和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.5.解方程:(4x﹣1)2﹣9=0【分析】先移项,然后利用直接开平方法解方程.【解答】解:由原方程,得(4x﹣1)2=94x﹣1=±34x=±3+1x1=1,x2=﹣.【点评】考查了直接开平方法解方程.形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.用适当的方法解下列方程:(1)(x﹣1)2﹣9=0(2)5x2+2x﹣1=0.【分析】(1)根据因式分解,可得答案;(2)根据公式法,可得答案.【解答】解(1)因式分解,得(x﹣1+3)(x﹣1﹣3)=0于是,得x+2=0或x﹣4=0,解得x1=﹣2,x2=4;(2)a=5,b=2,c=﹣1,△=b2﹣4ac=4﹣4×5×(﹣1)=24>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,因式分解是解题关键.7.解方程:(2x﹣1)2=3.【分析】两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:开方得:2x﹣1=±,解得:x1=,x2=.【点评】本题考查了解一元二次方程的应用,主要考查学生的计算能力.8.已知2x2+3与2x2﹣4互为相反数,求x的值.【分析】根据相反数的性质列出关于x的方程,移项后将二次项系数化为1,再利用直接开平方法求解可得.【解答】解:根据题意知2x2+3+2x2﹣4=0,整理可得:4x2﹣1=0,∴4x2=1,x2=,解得:x=±.【点评】本题主要考查解一元二次方程的能力和相反数的性质,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.解方程:(1)4x2﹣25=0(2)49(x+1)2=64.【分析】(1)根据直接开平方,可得答案;(2)根据直接开平方,可得答案.【解答】解:(1)移项,得4x2=25,系数化为1,得x2=x1=,x2=﹣;(2)系数化为1,得(x+1)2=,开方,得x+1=,x1=,x2=﹣.【点评】本题考查了解一元二次方程,开平方是解题关键.10.解方程:5(x﹣1)2=125.【分析】先方程两边除以5,再开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:两边都除以5,得(x﹣1)2=25,开方,得x﹣1=±5,即x1=6,x2=﹣4.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.11.解方程或不等式组(1)(4x﹣1)2﹣9=0(2)解方程:x2﹣3x﹣2=0.【分析】(1)根据直接开平方法,可得方程的解;(2)根据公式法,可得方程的解.【解答】解:(1)(4x﹣1)2﹣9=0,移项,得(4x﹣1)2=9,开方,得4x﹣1=±3,x1=1,x2=﹣(2)x2﹣3x﹣2=0,△=b2﹣4ac=9+8=17>0,x1=,x2=.【点评】本题考查了解一元二次方程,熟记公式是解题关键,要利用根的判别式.12.解方程:(1)25x2﹣36=0(2)4(2x﹣1)2=36.【分析】(1)先移项,然后方程的两边同时除以25,利用直接开平方法解方程即可;(2)方程的两边同时除以4,然后利用直接开平方法解方程即可.【解答】解:(1)由原方程,得x2=,则x=±.(2)由原方程,得(2x﹣1)2=9,所以2x﹣1=±3,所以x1=2,x2=﹣1.【点评】本题考查了直接开平方法解一元二次方程.形如x2=p或(nx+m)2=p (p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.13.解方程:2(3x﹣1)2=8.【分析】方程两边同时除以2,即可得出(3x﹣1)2=4,同时开方后再解一元一次方程即可得出结论.【解答】解:方程两边同时除以2,得(3x﹣1)2=4,方程两边同时开方,得3x﹣1=±2,移项、两边同时除以3,得x1=1,x2=﹣.【点评】本题考查了平方根以及直接开方法解一元二次方程,熟练掌握开方法解一元二次方程的方法及步骤是解题的关键.14.x﹣2x2=(x﹣3)(x+4)【分析】先将方程化简整理为3x2=12,再两边除以3,得出x2=4,然后利用直接开平方法求解.【解答】解:x﹣2x2=(x﹣3)(x+4),展开,得x﹣2x2=x2+x﹣12,整理,得3x2=12,两边除以3,得x2=4,解得x1=2,x2=﹣2.【点评】本题考查了解一元二次方程﹣直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.15.解方程:(1)x2﹣6x+5=0(2)x(x﹣4)+5(x﹣4)=0【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x+5=0,(x﹣5)(x﹣1)=0,x﹣5=0,x﹣1=0,x1=5,x2=1;(2)x(x﹣4)+5(x﹣4)=0,(x﹣4)(x+5)=0,x﹣4=0,x+5=0,x1=4,x2=﹣5.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.16.解下列方程:(1)x2﹣2x﹣3=0;(2)3x2﹣4x﹣1=0.(3)(x+1)2﹣9=0(4)(x﹣4)2+2(x﹣4)=0【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)求出b2﹣4ac的值,再代入公式求出即可;(3)移项后开方,即可得出两个一元一次方程,求出方程的解即可;(4)分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1;(2)3x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×3×(﹣1)=28,x=,x1=,x2=;(3)(x+1)2﹣9=0,(x+1)2=9,x+1=±3,x1=2,x2=﹣4;(4)(x﹣4)2+2(x﹣4)=0,(x﹣4)(x﹣4+2)=0,x﹣4=0,x﹣4+2=0,x1=4,x2=2.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,公式法,配方法,因式分解法等.17.用适当的方法解下列方程:(1)x2﹣6x=7(2)x﹣2=x(x﹣2)(3)2x2﹣3x﹣1=0【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)先变形得到x﹣2﹣x(x﹣2)=0,然后利用因式分解法解方程;(3)利用求根公式法解方程.【解答】解:(1)x2﹣6x﹣7=0,(x﹣7)(x+1)=0,所以x1=7,x2=﹣1;(2)x﹣2﹣x(x﹣2)=0,(x﹣2)(1﹣x)=0,所以x1=2,x2=1;(3)△=(﹣3)2﹣4×2×(﹣1)=17,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.解下列方程(1)x2﹣2x=0(2)(x﹣2)2=9(3)x2+2x﹣3=0(4)2x2+5x﹣1=0【分析】(1)利用因式分解法解方程;(2)利用直接开平方法解方程;(3)利用因式分解法解方程;(4)利用公式法解方程.【解答】解:(1)x(x﹣2)=0,所以x1=0,x2=2;(2)x﹣2=±3,所以x1=5,x2=﹣1;(3)(x﹣3)(x+1)=0,所以x1=3,x2=﹣1;(3)△=52﹣4×2×(﹣1)=33,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.19.用适当的方法解下列方程:(1)9x2﹣121=0;(2)x(x﹣1)=5(x﹣1);(3)(x﹣2)(x﹣6)=﹣4;(4)3x2﹣4x﹣1=0.【分析】(1)根据因式分解法解答即可;(2)根据因式分解法解答即可;(3)整理后根据因式分解法解答即可;(4)根据公式法解答即可;【解答】解:(1)9x2﹣121=0,(3x+11)(3x﹣11)=0,∴3x+11=0或3x﹣11=0,∴x1=﹣,x2=;(2)x(x﹣1)=5(x﹣1),x(x﹣1)﹣5(x﹣1)=0,(x﹣1)(x﹣5)=0,∴x﹣1=0或x﹣5=0,∴x1=1,x2=5;(3)(x﹣2)(x﹣6)=﹣4,整理得,x2﹣8x+16=0,(x﹣4)2=0,∴x1=x2=4;(4)3x2﹣4x﹣1=0,∴a=3,b=﹣4,c=﹣1,△=(﹣4)2﹣4×3×(﹣1)=28,∴x==,∴x1=,x2=.【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键.20.解方程(1)x2﹣4x=0(2)2x2+3=7x【分析】(1)利用因式分解法解方程;(2)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)x(x﹣4)=0,x=0或x﹣4=0,所以x1=0,x2=4;(2)2x2﹣7x+3=0,(2x﹣1)(x﹣3)=0,2x﹣1=0或x﹣3=0,所以x1=,x2=3.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).21.解方程:(1)x2+x﹣2=0(2)2(x﹣3)=3x(x﹣3).【分析】(1)根据十字相乘法分解因式,转化为两个一元一次方程,再解方程即可;(2)移项,提取公因式对等式的左边进行因式分解,转化为两个一元一次方程,再解方程即可.【解答】解:(1)x2+x﹣2=0,(x+2)(x﹣1)=0,∴x﹣1=0或x+2=0,∴x1=1,x2=﹣2.(2)2(x﹣3)=3x(x﹣3),2(x﹣3)﹣3x(x﹣3)=0,(x﹣3)(2﹣3x)=0,∴x﹣3=0或2﹣3x=0,∴x1=3,x2=.【点评】本题考查了解一元二次方程,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.22.解下列方程:(1)4x2﹣1=0;(2)x2﹣4x+3=0;(3)2x2﹣5x+2=0;(4)x+3﹣x(x+3)=0【分析】(1)根据平方差公式,转化为两个一元一次方程,再解方程即可;(2)利用十字相乘法分解因式,转化为两个一元一次方程,再解方程即可;(3)利用十字相乘法分解因式,转化为两个一元一次方程,再解方程即可;(4)提公因式x+3,转化为两个一元一次方程,再解方程即可.【解答】解:(1)4x2﹣1=0,(2x+1)(2x﹣1)=0,∴2x+1=0或2x﹣1=0,∴x1=﹣,x2=;(2)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,∴x﹣3=0或x﹣1=0,∴x1=3,x2=1;(3)2x2﹣5x+2=0,(2x﹣1)(x﹣2)=0,∴2x﹣1=0或x﹣2=0,∴x1=,x2=2;(4)x+3﹣x(x+3)=0,(x+3)(1﹣x)=0,∴x+3=0或1﹣x=0,∴x1=﹣3,x2=1.【点评】本题考查了用因式分解法解一元二次方程,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.23.解下列方程:(1)(4y﹣1)2﹣4=0(2)x(x+4)=﹣3(x+4)【分析】(1)利用直接开平方法解方程进而得出答案;(2)直接利用提取公因式法分解因式进而得出答案.【解答】解:(1)(4y﹣1)2﹣4=0(4y﹣1)2=4,则4y﹣1=±2,解得:y1=,y2=﹣;(2)x(x+4)=﹣3(x+4)(x+4)(x+3)=0,解得:x1=﹣3,x2=﹣4.【点评】此题主要考查了因式分解法解方程,正确分解因式是解题关键.24.解方程(1)x2﹣x=0(2)2x2﹣3x=4【分析】(1)利用提取公因式法分解因式进而解方程得出答案;(2)直接利用公式法解方程得出答案.【解答】解:(1)x2﹣x=0x(x﹣1)=0,解得:x1=0,x2=1;(2)2x2﹣3x=42x2﹣3x﹣4=0,则b2﹣4ac=9﹣4×2×(﹣4)=41,故x=,解得:x1=,x2=.【点评】此题主要考查了公式法以及因式分解法解方程,正确掌握解方程的方法是解题关键.25.解方程:①x(x﹣14)=0;②x(5x+4)=5x+4.【分析】①利用因式分解法求解可得;②利用因式分解法求解可得.【解答】解:①∵x(x﹣14)=0,∴x=0或x﹣14=0,解得:x1=0,x2=14;②∵x(5x+4)﹣(5x+4)=0,∴(5x+4)(x﹣1)=0,则5x+4=0或x﹣1=0,解得:x1=﹣0.8,x2=1.【点评】本题主要考查解一元二次方程﹣因式分解法,因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.26.解方程(1)﹣2x2+13x﹣15=0(2)2(x+5)2=x(x+5)【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出一次方程的解得到原方程的解;(2)移项后分解因式,即可得出两个一元一次方程,求出一次方程的解得到原方程的解.【解答】解:(1)﹣2x2+13x﹣15=0,2x2﹣13x+15=0,(2x﹣3)(x﹣5)=0,2x﹣3=0或,x﹣5=0,解得,x1=,x2=5;(2)2(x+5)2=x(x+5),2(x+5)2﹣x(x+5)=0,(x+5)[2(x+5)﹣x]=0,x+5=0或2(x+5)﹣x=0,解得,x1=﹣5,x2=﹣10.【点评】本题考查了解一元二次方程的应用,主要考查学生的计算能力,题目比较好,难度适中.。
22.2.1 直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
教学目标
理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题. 提出问题,列出缺一次项的一元二次方程ax 2
+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程.
重难点关键
1.重点:运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x 2=n ,知识迁移到根据平方根的意义解形如(x+m )2=n (n ≥0)的方程.
教学过程
一、复习引入
学生活动:请同学们完成下列各题
问题1.填空
(1)x 2-8x+______=(x-______)2;(2)9x 2+12x+_____=(3x+_____)2;(3)x 2+px+_____=(x+______)2.
问题2.如图,在△ABC 中,∠B=90°,点P 从点B 开始,沿AB 边向点B 以1cm/s•的速度移动,点Q 从点B 开始,沿BC 边向点C 以2cm/s 的速度移动,如果AB=6cm ,BC=12cm ,•P 、Q 都从B 点同时出发,几秒后△PBQ 的面积等于8cm 2? B
C
A
Q
P 老师点评:
问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(
2p )2 2p . 问题2:设x 秒后△PBQ 的面积等于8cm
2 则PB=x ,BQ=2x
依题意,得:
12
x ²2x=8 x 2=8
根据平方根的意义,得x=±
即x 1x 2
可以验证,12
x ²2x=8的两根,但是移动时间不能是负值.
所以PBQ 的面积等于8cm 2.
二、探索新知
上面我们已经讲了x 2
=8,根据平方根的意义,直接开平方得x=±x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±
即
方程的两根为t 112,t 212
例1:解方程:x 2+4x+4=1 分析:很清楚,x 2
+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
解:由已知,得:(x+2)2=1
直接开平方,得:x+2=±1
即x+2=1,x+2=-1
所以,方程的两根x 1=-1,x 2=-3
例2.市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )
2 解:设每年人均住房面积增长率为x ,
则:10(1+x )2=14.4
(1+x )2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x 1=0.2=20%,x 2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.•我们把这种思想
称为“降次转化思想”.
三、巩固练习
教材P36练习.
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
分析:设该公司二、三月份营业额平均增长率为x,•那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)当成一个数,配方得:
(1+x+1
2
)2=2.56,即(x+
3
2
)2=2.56
x+3
2
=±1.6,即x+
3
2
=1.6,x+
3
2
=-1.6
方程的根为x1=10%,x2=-3.1
因为增长率为正数,
所以该公司二、三月份营业额平均增长率为10%.
五、归纳小结
本节课应掌握:
由应用直接开平方法解形如x2=p(p≥0),那么x=
如(mx+n)2=p(p≥0),那么mx+n=
六、布置作业
1.教材P45复习巩固1、2.
2.选用作业设计:
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是().
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为().
A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-2
3
x+1=0正确的解法是().
A.(x-1
3
)2=
8
9
,x=
1
3
±
3
B.(x-1
3
)2=-
8
9
,原方程无解
C.(x-2
3
)2=
5
9
,x1=
2
3
x2
D.(x-2
3
)2=1,x1=
5
3
,x2=-
1
3
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b2-12b+36=0,那么ab的值是_______.
三、综合提高题
1.解关于x的方程(x+m)2=n.
2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),•另三边用木栏围成,木栏长40m.
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,•并说明你制作的理由吗?
答案:
一、1.B 2.D 3.B
二、1.9或-3 3.-8
三、1.当n≥0时,x+m=x1,x2.当n<0时,无解
2.(1)都能达到.设宽为x,则长为40-2x,
依题意,得:x(40-2x)=180
整理,•得:•x2-20x+90=0,x1x2
同理x(40-2x)=200,x1=x2=10,长为40-20=20.
(2)不能达到.同理x(40-2x)=210,x2-20x+105=0,b2-4ac=400-410=-10<0,无解,即不能达到.3.因要制矩形方框,面积尽可能大,
所以,应是正方形,即每边长为1米的正方形.。