高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式课件新人教a版选修4_5
- 格式:ppt
- 大小:713.00 KB
- 文档页数:49
二 一般形式的柯西不等式庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +∙+≥|a 1b 1+a 2b 2|; 22212221b b a a +∙+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2).定理 3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni ini ini ii ba b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=nn b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=ii ni i ib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n).变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++ >0.思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a )≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a )>1,∴11132211111++->-++-+-n n n a a a a a a a a ,故11132211111a a a a a a a a n n n -+-++-+-++ >0.方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++ )·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2]≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b+c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2.由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x b x a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2.当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xb x a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(x b x b x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=x bx a cos sin +≥(a 32+b 32)32. 于是y=xbx a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn2222121+++≤+++ .探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以na a a n 221)(+++ ≤a 12+a 22+…+a n 2,故na a a n a a a nn2222121+++≤+++ .不等式na a a na a a nn2222121+++≤+++ ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a 21≤na a a n a a a nn2222121+++≤+++ ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(cb b a -+-11)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+a c b ++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可. 探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。
一 二维形式的柯西不等式知识梳理1.维形式的柯西不等式若a,b,c,d 都是实数,则(a 2+b 2)(c 2+d 2)≥__________,当且仅当__________时,等号成立.二维形式的柯西不等式的推论:(a+b)(c+d)≥__________ (a,b,c,d 为非负实数);2222d c b a +•+≥__________ (a,b,c,d∈R );2222d c b a +•+≥__________ (a,b,c,d∈R ).2.柯西不等式的向量形式设α,β是两个向量,则|α·β|≤__________,当且仅当β是__________,或存在实数k ,使α=k β时,等号成立.3.二维形式的三角不等式22222121y x y x +++≥___________(x 1,y 1,x 2,y 2∈R )推论:232232231231)()()()(y y x x y y x x -+-+-+-≥____,(x 1,x 2,x 3,y 1,y 2,y 3∈R ). 知识导学本节学习的是经典不等式中的又一个(均值不等式已学过)柯西不等式,而二维形式的柯西不等式是柯西不等式的最简单形式.柯西不等式的几种形式间是等价的,但要注意结构形式的变化对数值的要求.柯西不等式与均值不等式作对比,柯西不等式中的字母、数较多,不容易记忆,这就要求认真理解代数推导过程和向量形式、三角形式的推导过程,从数与形两个方面来理解和记忆. 对等号“=”取到的条件要从推导过程中来理解.疑难突破1.对柯西不等式的理解柯西不等式的几种形式,都涉及对不等式的理解与记忆,因此,二维形式的柯西不等式可以理解为有四个顺序的数来对应的一种不等关系,或构造成一个不等式,如基本不等式是由两个数来构造的,但怎样构造要仔细体会.(a 2+b 2)(c 2+d 2)≥(ac+bd)2,(a 2+b 2)(d 2+c 2)≥(ad+bc)2,谁与谁组合、联系,要有一定的认识.“二维”是由向量的个数来说的,在平面上一个向量有两个量:横纵坐标,因此“二维”就要有四个量,还可以认为是四个数组合成的一种不等关系.2.“=”取到的条件柯西不等式取“=”的条件,也不易记住,我们可以多方面联系来记忆,如(a 2+b 2)(c 2+d 2)≤(ac+bd)2,取“=”的条件是“ad=bc”,有点像a,b,c,d 成等比时,ad=bc 的结论,a,b,c,d 的顺序不等式中是对应排列顺序的,柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k,使α=k β.我们可以从向量的数量积的角度来理解和记忆.典题精讲【例1】 解方程1521234=-++x x .思路分析:利用二维形式的柯西不等式把y=x x 21234-++变形后求最值,取“=”号的x 值即为要求的方程的根,即15是此时的最值.解:15=(x x 2122322-++•)2 ≤[(2)2+22][(232+x )2+(x 21-)2] =6(2x+23+1-2x)=6×25=15. 其中等号成立的充要条件是2212232x x -=+,解得x=31-. 绿色通道:利用二维形式的柯西不等式(a 2+b 2)(c 2+d 2)≥(ac+bd)2,取“=”的条件是ad=bc.因此,在解题时,对照柯西不等式,必须弄清要求的问题中哪样的数或代数式分别相当于柯西不等式中的“a,b,c,d”,否则容易出错.【变式训练】 求函数f(x)=x x -+-126的最大值及此时的x 值.思路分析:利用二维形式的柯西不等式,可以先平方,再开方.变形的目的是为了能利用柯西不等式.解:由柯西不等式,得 (x x -+-126)2≤[12+12][(6-x )2+(x -12)2]=2(x-6+12-x)=12, 即x x -+-126≤32. 故当6-x =x -12,即x=9时,函数f(x)取得最大值32.【例2】 设a,b∈R +(i=1,2,…,n),且a+b=2. 求证:bb a a -+-2222≥2. 思路分析:利用柯西不等式前,需要观察不等式的结构特点,本题可以看作求bb a a -+-2222的最小值.因而需出现(a 2+b 2)(c 2+d 2)结构.把b b a a -+-2222视为其中的一个括号内的部分,另一部分可以是(2-a )+(2-b).证明:根据柯西不等式,有[(2-a)+(2-b)](bb a a -+-2222) =[(a -2)2+(b -2)2][(a a-2)2+(bb -2)2] ≥(a -2·a a-2+b -2·bb -2)2=(a+b)2=4. ∴b b a a -+-2222≥)2()2(4b a -+-=2. ∴原不等式成立.绿色通道:利用柯西不等式证明某些不等式时,有时需要将数学表达式适当的变形.这种变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.【变式训练】 已知a>b>c,求证:ca cb b a -≥-+-411. 思路分析:原不等式可变形为(a-c)(c b b a -+-11)>4. 又a-c=(a-b)+(b-c),利用柯西不等式即可.证明:∵(a -c)(cb b a -+-11) =[(a-b)+(b-c)][c b b a -+-11] =[(b a -)2+(c b -)2][(b a -1)2+(cb -1)2] ≥(b a -b a -1+c b -cb -1)2=4. ∴原不等式成立.问题探究问题:两批货物需要从A 城市运往C 城市,途中要经过B 城市中转,从A 城市到B 城市是公路运输,两批货物的每吨运价相同,从B 城市运往C 城市需经航运,两批货物的每吨运价也相同,问总花费最少是多少?导思:可分别设两批货物分别为x 吨、y 吨.从A 到B 每吨运价是a ,从B 到C 每吨运价是b ,求(x+y)(a+b)的最小值即可.探究:设两批货物分别为x,y 吨,从A 运到B 运费每吨是a ,从B 到C 每吨是b. 则(x+y)(a+b)=[(x )2+(y )2][(a )2+(b )2] ≥(by ax +)2 (by ax +)2也就是总花费最少的值.。