2017天津市高考压轴卷 数学(理) Word版含解析
- 格式:doc
- 大小:720.44 KB
- 文档页数:13
2017年高考数学天津理1.(2017年天津理)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x≤5},则(A ∪B)∩C= ( ) A.{2}B.{1,2,4}C.{1,2,4,6}D.{ x ∈R|-1≤x≤5}1.B 【解析】 (A ∪B)∩C={1,2,4,6}∩[1,5]={1,2,4}.故选B .2. (2017年天津理)设变量x,y 满足约束条件⎩⎨⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y 的最大值为( ) A. 23B.1C. 32D.32. D 【解析】画出不等式组表示的平面区域(图略),则可行域为四边形ABCD 及其内部,其中A (0,1),B (0,3),C (-32,3),D (-23,43),易得直线y=-x+z 过点B (0,3)时,z=x+y 取最大值为3.故选D .3. (2017年天津理)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为( )A.0B.1C.2D.33. C 【解析】初始N=19,进入循环后N 的值依次为N=18,N=6,N=2,结束循环,输出N=2.故选C .4. (2017年天津理)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4. A 【解析】|θ-π12|<π12⇔0<θ<12,但θ=0时,sin θ=0<12,不满足|θ-π12|<π12,所以“|θ-π12|<π12”是“sin θ<12”的充分不必要条件.故选A.5. (2017年天津理)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A. x 24-y 24=1B. x 28-y 28=1C. x 24-y 28=1D. x 28-y 24=15. D 【解析】由题意得a=b ,4-00-(-c )=1⇒c=4,a=b=22⇒x 28-y 28=1.故选B .6. (2017年天津理)已知奇函数f(x)在R 上是增函数.g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为( ) A.a <b <cB.c <b <aC.b <a <cD.b <c <a6. C 【解析】因为f (x )是奇函数且在R 上是增函数,所以当x >0时,f (x )>0,从而g (x )=xf (x )是R 上的偶函数,且在[0,+∞)上是增函数,a=g(-log 25.1)= g(log 25.1),20.8<2,又4<5.1<8,则2<log 25.1<3,所以0<20.8<log 25.1<3,g (20.8)<g (log 25.1)<g (3),所以b <a <c.故选C.7. (2017年天津理)设函数f(x)=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π.若f(5π8)=2,f(11π8)=0,且f(x)的最小正周期大于2π,则( ) A. ω=23,φ=π12B. ω=23,φ=-11π12 C. ω=13,φ=-11π24D. ω=13,φ=7π247. A 【解析】由题意得⎩⎨⎧5ωπ8+φ=2k 1π+π2,11ωπ8+φ=k 2π,其中k 1,k 2∈Z ,所以ω=43(k 2-2k 1)-23,又T=2πω>2π,所以0<ω<1,所以ω=23,11212k ϕ=π+π,由|φ|<π得φ=π12,故选A .8. (2017年天津理)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x+3,x≤1,x+2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-4716,2]B.[-4716,3916]C. [-23,2]D. [-23,3916]8. A 【解析】不等式f (x )≥|x 2+a|可化为-f (x )≤x2+a≤f (x ),(*)当x≤1时,(*)式即-x 2+x-3≤x 2+a≤x 2-x+3,即-x 2+x 2-3≤a≤x 2-32x+3,又-x 2+x 2-3=-(x-14)2-4716≤-4716(当x=14时取等号),x 2-32+3=(x-34)2+3916≥3916(当x=34时取等号),所以-4716≤a≤3916,当x >1时,(*)式为-x-2x ≤x 2+a≤x+2x ,-32x-2x ≤a≤x 2+2x .又-32x-2x =-(32x+2x )≤23(当x=233时取等号),x 2+2x ≥2x 2·2x =2(当x=2时取等号),所以-23≤a≤2.综上,-4716≤a≤2.故选A .9. (2017年天津理)已知a ∈R ,i 为虚数单位,若a-i2+i 为实数,则a 的值为___________.9. -2 【解析】a-i 2+i =(a-i)(2-i)(2+i)(2-i)=(2a-1)-(a+2)i 5=2a-15-a+25i 为实数,则a+25=0,a=-2.10. (2017年天津理)已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.10. 9π2 【解析】设正方体的边长为a ,则6a 2=18⇒a=3,其外接球直径为2R=3a=3,故这个球的体积V=43πR 3=43π×278=9π2.11. (2017年天津理)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为___________.11. 1 【解析】直线为23x+2y+1=0,圆为x 2+(y-1)2=1,因为d=34<1,所以有两个交点.12. (2017年天津理)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为___________.12. 4 【解析】a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab+1ab≥24ab·1ab=4,前一个等号成立的条件是a 2=2b 2,后一个等号成立的条件是ab=12,两个等号可以同时成立,当且仅当a 2=22,b 2=24时取等号.13. (2017年天津理)在△ABC 中,∠A=60°,AB=3,AC=2.若→BD =2→DC ,→AE =λ→AC -→AB (λ∈R ),且→AD ·→AE=-4,则λ的值为___________. 13. 311 【解析】由题可得→AB ·→AC =3×2×cos 60°=3,→AD =13→AB +23→AC ,则→AD ·→AE =(13→AB +23→AC )(λ→AC -→AB )=λ3×3+2λ3×4-13×9-23×3=-4 λ=311.14. (2017年天津理) 用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)14. 1 080 【解析】A 4 5+C 1 4C 3 5A 44=1 080.15. (2017年天津理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a=5,c=6,sin B=35.(1)求b 和sin A 的值; (2)求sin (2A+π4)的值.15. 解:(1)在△ABC 中,因为a >b ,故由sin B=35,可得cos B=45. 由已知及余弦定理,有b2=a2+c2-2accos B=13,所以b=13. 由正弦定理a sin A =b sin B ,得sin A=asin B b =31313. 所以,b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A=21313,所以sin 2A=2sin Acos A=1213,cos 2A=1-2sin 2A=-513. 故sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=7226.16. (2017年天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 16.解:(1)随机变量X 的所有可能取值为0,1,2,3. P (X=0)=(1-12)×(1-13)×(1-14)=14,P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124, P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14, P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0)=P (Y=0)P (Z=1)+P (Y=1)P (Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.17. (2017年天津理)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC=90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.17.解:如图,以A 为原点,分别以→AB ,→AC ,→AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)易得→DE =(0,2,0),→DB =(2,0,2-). 设n =(x,y,z)为平面BDE 的法向量,则⎩⎨⎧n ·→DE =0,n ·→DB =0,即⎩⎨⎧2y=0,2x-2z=0. 不妨设z=1,可得n =(1,0,1).又→MN =(1,2,1-),可得→MN ·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)易知n 1=(1,0,0)为平面CEM 的一个法向量.设n 2=(x ,y ,z )为平面EMN 的一个法向量,则⎩⎨⎧n 2·→EM =0,n 2·→MN =0,因为→EM =(0,-2,-1),→MN =(1,2,-1),所以⎩⎨⎧-2y-z=0,x+2y-z=0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-421,于是sin<n 1,n 2>=10521.所以,二面角C-EM-N 的正弦值为10521.(3)依题意,设AH =h (0≤h≤4),则H (0,0,h ),进而可得→NH =(-1,-2,h ),→BE =(-2,2,2).由已知,得|cos<→NH ,→BE >=→NH ·→BE |→NH ||→BE |=|2h-2|h 2+5×23=721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.18. (2017年天津理)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0. 又因为q >0,解得q=2.所以b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8,① 由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n , 故T n =2×4+5×42+8×43+…+(3n-1)×4n , 4T n =2×42+5×43+8×44+…+(3n-1)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n)1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8,得T n =3n-23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n-23×4n+1+83.19. (2017年天津理)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 19.解:(1)设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34. 所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x . (2)设直线AP 的方程为x=my+1(m≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m ),故Q (-1,2m ). 将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0, 解得y=0或y=-6m3m 2+4.由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y-2m )=0, 令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0),所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为62,故12×6m 23m 2+2×2|m|=62, 整理得3m 2-26|m|+2=0,解得|m|=63,所以m=±63.所以,直线AP 的方程为3x+6y-3=0或3x-6y-3=0.20. (2017年天津理)设a ∈Z ,已知定义在R 上的函数f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为f(x)的导函数. (1)求g(x)的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p,q ,且p q ∈[1,x 0)∪(x 0,2]满足|pq-x 0|≥1Aq 4.20.解:(1)由f(x)=2x 4+3x 3-3x 2-6x+a ,可得g(x)=f′(x)=8x 3+9x 2-6x-6, 进而可得g′(x)=24x 2+18x-6.令g′(x)=0,解得x=-1或x=14.当x 变化时,g′(x), g(x)的变化情况如下表:`所以,g(x)的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1, 14). (2)由h(x)=g(x)(m-x 0)-f(m),得h(m)=g(m)(m-x 0)-f(m), h(x 0)=g(x 0)(m-x 0)-f(m).令函数H 1(x)=g(x)(x-x 0)-f(x),则H 1′(x)=g′(x)(x -x 0).由(1)知,当x ∈[1,2]时,g′(x)>0,故当x ∈[1,x 0]时,H 1′(x)<0,H 1(x)单调递减; 当x ∈(x 0,2]时,H 1′(x)>0,H 1(x)单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x)>H 1(x 0)=-f(x 0)=0,可得H 1(m)>0,即h(m)>0. 令函数H 2(x)=g(x 0)(x-x 0)-f(x),则H 2′(x)= g(x 0)-g(x).由(1)知,g(x)在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x)>0,H 2(x)单调递增; 当x ∈(x 0,2]时,H 2′(x)<0,H 2(x)单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x)<H 2(x 0)=0,可得H 2(m)<0,即h (x 0)<0. 所以,h (m )h (x 0)<0.(3)对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m=pq ,函数h(x)=g(x)(m-x 0)-f(m).由(2)知,当m ∈[1,x 0)时,h (x )的区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点,所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h(x 1)=g(x 1)(p q -x 0)-f(pq )=0.由(1)知g(x)在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2), 于是|pq -x 0|=|f (p q )g (x 1)|≥|f (pq )|g (2)=|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g(x)>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而p q ≠x 0,故f (pq )≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1,所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。
2017年高考真题天津卷理科数学第Ⅰ卷参考公式:·如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立,那么 P (A ∪B )=P (A )+P (B ). P (AB )=P (A ) P (B ). ·棱柱的体积公式V =Sh .·球的体积公式343V R =π. 其中S 表示棱柱的底面面积,其中R 表示球的半径.h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =(A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 (3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3(4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c <<(B )c b a <<(C )b a c <<(D )b c a <<(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16- (B )4739[,]1616-(C)[- (D)39[]16-所以2a -≤≤, 综上47216a -≤≤.故选A . 第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
绝密★启用前【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致。
与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点。
整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低。
纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查。
对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分。
试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性。
试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度。
在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力。
第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高。
第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养。
2016年天津理科数学试卷继续稳字当头,平凡问题考查真功夫,没有出现任何偏题怪题,有利于学生考出好成绩,也对中学数学教学回归教材、扎实基础有很好的导向作用。
【试卷解析】一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C =U I (A ){2} (B ){1,2,4} (C ){1,2,4,6} (D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-=U I I ,,,,,, ,选B. 【考点】 集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 【答案】D【考点】线性规划【名师点睛】线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1 (C )2 (D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N = ,选C. 【考点】 程序框图【名师点睛】识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合. (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A【考点】 充要条件【名师点睛】本题考查充要条件的判断,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分不必要条件,若B 是A 的真子集,则A 是B 的必要不充分条件.(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心率为2.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,22188x y a b c a b c ==-⇒===⇒-=- ,选B. 【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为2222(0)x y a b λλ-=≠,(3)等轴双曲线可设为22(0)x y λλ-=≠等,均为待定系数法求标准方程.(6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为 (A )a b c << (B )c b a <<(C )b a c <<(D )b c a <<【答案】C【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .【考点】求三角函数的解析式【名师点睛】有关sin()y A x ωϕ=+问题,一种为提供函数图象求解析式或某参数的范围,一般先根据图象的最高点或最低点确定A ,再根据周期或12周期或14周期求出ω,最后再利用最高点或最低点坐标满足解析式,求出满足条件的ϕ值,另一种时根据题目用文字形容的函数图象特点,如对称轴或曲线经过的点的坐标,根据题意自己画出图象,再寻求待定的参变量,题型很活,求ω或ϕ的值或最值或范围等.(8)已知函数23,1, ()2, 1.x x xf xx xx⎧-+≤⎪=⎨+>⎪⎩设a∈R,若关于x的不等式()||2xf x a≥+在R上恒成立,则a的取值范围是(A)47[,2]16-(B)4739[,]1616-(C)[23,2]-(D)39[23,]16-【答案】A当1x>时,(*)式为222xx a xx x--≤+≤+,32222xx ax x--≤≤+,又3232()2322x xx x--=-+≤-(当233x=时取等号),222222x xx x+≥⨯=(当2x=时取等号),所以232a-≤≤,综上47216a-≤≤.故选A.【考点】不等式、恒成立问题【名师点睛】首先满足()2xf x a≥+转化为()()22x xf x a f x--≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x的两种不同情况进行讨论,针对每种情况根据x的范围,利用极端原理,求出对应的a的范围.二. 填空题:本大题共6小题,每小题5分,共30分.(9)已知a∈R,i为虚数单位,若i2ia-+为实数,则a的值为 .【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(,)z a bi a b R =+∈, 当0b ≠时,z 为虚数, 当0b =时,z 为实数, 当0,0a b =≠时,z 为纯虚数.(10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【考点】 球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法.(11)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为23210x y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点 【考点】极坐标【名师点睛】再利用公式222cos ,sin ,x y x y ρθρθρ===+ 把极坐标方程化为直角坐标方程,再解联立方程组根据判别式判断出交点的个数,极坐标与参数方程为选修课程,要求灵活使用公式进行坐标变换及方程变换.(12)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b R a b ab ∈+≥ ,当且仅当a b =时取等号;(2),a b R +∈ ,2a b ab +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.(13)在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =u u u r u u u r ,()AE AC AB λλ∈=-R u u u r u u u r u u u r,且4AD AE ⋅=-u u u r u u u r,则λ的值为___________.【答案】311 【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+u u u r u u u r u u u r u u u r u u u r ,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=u u u r u u u r u u u r u u u r u u u r u u u r .【考点】向量的数量积【名师点睛】根据平面向量的基本定理,利用表示平面向量的一组基地可以表示平面内的任一向量,利用向量的定比分点公式表示向量,计算数量积,选取基地很重要,本题的,AB AC u u u r u u u r已知模和夹角,选作基地易于计算数量积.(14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 【答案】 1080【解析】413454541080A C C A +=【考点】计数原理、排列、组合【名师点睛】计数原理包含分类计数原理(加法)和分步计数原理(乘法),组成四位数至多有一个数字是偶数,包括四位数字有一个是偶数和四位数字全部是奇数两类,利用加法原理计数. 三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求b 和sin A 的值; (Ⅱ)求πsin(2)4A +的值. 【答案】 (1) 13b =.(2)7226【解析】试题分析:利用正弦定理“角转边”得出边的关系2a b =,再根据余弦定理求出cos A , 进而得到sin A ,由2a b =转化为sin 2sin A B =,求出sin B ,进而求出cos B ,从而求出2B 的三角函数值,利用两角差的正弦公式求出结果.学科&网(Ⅱ)由(Ⅰ)及a c <,得213cos 13A =,所以12sin 22sin cos 13A A A ==, 25cos 212sin 13A A =-=-.故πππ72sin(2)sin 2cos cos 2sin 44426A A A +=+=.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 16.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【答案】(1)1312(2)1148试题解析:(Ⅰ)随机变量X的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X==-⨯-⨯-=,11111111111 (1)(1)(1)(1)(1)(1)(1)23423423424P X==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X==⨯⨯=.所以,随机变量X的分布列为X0 1 2 3P 14112414124随机变量X的数学期望1111113 ()012342442412 E X=⨯+⨯+⨯+⨯=.(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+== 1111111142424448=⨯+⨯=.所以,这2辆车共遇到1个红灯的概率为11 48.【考点】离散型随机变量概率分布列及数学期望【名师点睛】求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可取值有那些?当随机变量取这些值时所对应的事件的概率有是多少,计算出概率值后,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望.;列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.(17)(本小题满分13分)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱P A ,P C ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【答案】 (1)证明见解析(2)10521 (3)85 或12试题解析:如图,以A 为原点,分别以AB u u u r ,AC u u u r,AP u u u r 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(Ⅰ)证明:DE u u u r =(0,2,0),DB u u u r=(2,0,2-).设(,,)x y z =n ,为平面BDE 的法向量, 则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又MN u u u u r =(1,2,1-),可得0MN ⋅=u u u u r n . 因为MN ⊄平面BDE ,所以MN //平面BDE.(Ⅲ)依题意,设AH =h (04h ≤≤),则H (0,0,h ),进而可得(1,2,)NH h =--u u u u r ,(2,2,2)BE =-u u u r.由已知,得2|||22|7|cos ,|21||||523NH BE h NH BE NH BE h ⋅-<>===+⨯u u u u r u u u ru u u u r u u u r u u u u r u u u r ,整理得2102180h h -+=,解得85h =,或12h =.所以,线段AH 的长为85或12.【考点】直线与平面平行、二面角、异面直线所成的角【名师点睛】空间向量是解决空间几何问题的锐利武器,不论是求空间角、空间距离还是证明线面关系利用空间向量都很方便,利用向量夹角公式求异面直线所成的角又快又准,特别是借助平面的法向量求线面角,二面角或点到平面的距离都很容易. 18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N .【答案】 (1)32n a n =-.2nn b =.(2)1328433n n n T +-=⨯+. 【解析】试题分析:根据等差数列和等比数列通项公式及前n 项和公式列方程求出等差数列首项1a 和公差d 及等比数列的公比q ,写出等差数列和等比孰劣的通项公式,利用错位相减法求出数列的和,要求计算要准确.(II )解:设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯L1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【考点】等差数列、等比数列、数列求和【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和方法有倒序相加法,错位相减法,裂项相消法和分组求和法等,本题考查错位相减法求和. (19)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 【答案】 (1)22413y x +=, 24y x =.(2)3630x y +-=,或3630x y --=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D的坐标,最后根据APD △的面积为62解方程求出m ,得出直线AP 的方程. 试题解析:(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12ca =,2pa =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=.所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键. (20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数.(Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈U ,函数0()()()()h x g x m x f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈U 满足 041||p x q Aq -≥. 【答案】 (1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析试题解析:(Ⅰ)由432()2336f x x x x x a =+--+,可得32()()8966g x f x x x x '==+--, 进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:x(,1)-∞-1(1,)4-1(,)4+∞ ()g x '+ - + ()g x↗↘↗所以,()g x 的单调递增区间是(,1)-∞-,1(,)4+∞,单调递减区间是1(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.令函数10()()()()H x g x x x f x =--,则10()()()H x g x x x ''=-.由(Ⅰ)知,当[1,2]x ∈时,()0g x '>,故当0[1,)x x ∈时,1()0H x '<,1()H x 单调递减;当0(,2]x x ∈时,1()0H x '>,1()H x 单调递增.因此,当00[1,)(,2]x x x ∈U 时,1100()()()0H x H x f x >=-=,可得1()0,()0H m h m >>即.令函数200()()()()H x g x x x f x =--,则20()()()H x g x g x '=-.由(Ⅰ)知,()g x 在[1,2]上单调递增,故当0[1,)x x ∈时,2()0H x '>,2()H x 单调递增;当0(,2]x x ∈时,2()0H x '<,2()H x 单调递减.因此,当00[1,)(,2]x x x ∈U 时,220()()0H x H x <=,可得20()0,()0H m h x <<即. 所以,0()()0h m h x <.所以()h x 在(1,2)内至少有一个零点,不妨设为1x ,则110()()()()0p ph g x f q x qx =--=. 由(I )知()g x 在[1,2]上单调递增,故10()()12()g x g g <<<,于是432234041()|()||2336|||||()()(2)2p pf f p p p q p q pq aq q qx q g x g g q +--+-=≥=.因为当[12],x ∈时,()0g x >,故()f x 在[1,2]上单调递增, 所以()f x 在区间[1,2]上除0x 外没有其他的零点,而0p x q≠,故()0pf q ≠.又因为p ,q ,a 均为整数,所以432234|2336|p p q p q pq aq +--+是正整数, 从而432234|2336|1p p q p q pq aq +--+≥. 所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq-≥. 【考点】导数的应用【名师点睛】判断()g x 的单调性,只需对函数求导,根据()g x '的导数的符号判断函数的单调性,求出单调区间,有关函数的零点问题,先利用函数的导数判断函数的单调性,了解函数的图象的增减情况,再对极值点作出相应的要求,可控制零点的个数.。
2017年普通高等学校招生统一考试(天津卷)理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{|15}A B C x x ===∈-≤≤R ,则()A B C = (A ){2} (B ){1,2,4}(C ){1,2,4,6}(D ){|15}x x ∈-≤≤R 【答案】B【解析】(){1246}[15]{124}A B C =-= ,,,,,, ,选B.(2)设变量,x y 满足约束条件20,220,0,3,x y x y x y +≥⎧⎪+-≥⎪⎨≤⎪⎪≤⎩则目标函数z x y =+的最大值为(A )23 (B )1(C )32(D )3 【答案】D【解析】目标函数为四边形ABCD 及其内部,其中324(0,1),(0,3),(,3),(,)233A B C D --,所以直线z x y =+过点B 时取最大值3,选D.(3)阅读右面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为(A )0 (B )1(C )2(D )3 【答案】C【解析】依次为8N = ,7,6,2N N N ===,输出2N = ,选C. (4)设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 【答案】A(5)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,离心率为.若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A )22144x y -= (B )22188x y -=(C )22148x y -=(D )22184x y -=【答案】B【解析】由题意得224,14,188x y a b c a b c ==-⇒===-=- ,选B. (6)已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 5.1)a g =-,0.8(2)b g =,(3)c g =,则a ,b ,c 的大小关系为(A )a b c << (B )c b a << (C )b a c <<(D )b c a <<【答案】C(7)设函数()2sin()f x x ωϕ=+,x ∈R ,其中0ω>,||ϕ<π.若5()28f π=,()08f 11π=,且()f x 的最小正周期大于2π,则 (A )23ω=,12ϕπ= (B )23ω=,12ϕ11π=- (C )13ω=,24ϕ11π=-(D )13ω=,24ϕ7π=【答案】A【解析】由题意125282118k k ωππϕπωπϕπ⎧+=+⎪⎪⎨⎪+=⎪⎩,其中12,k k Z ∈,所以2142(2)33k k ω=--,又22T ππω=>,所以01ω<<,所以23ω=,11212k ϕππ=+,由ϕπ<得12πϕ=,故选A .(8)已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16-【答案】A所以2a -≤≤, 综上47216a -≤≤.故选A . 二. 填空题:本大题共6小题,每小题5分,共30分. (9)已知a ∈R ,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】()(2)(21)(2)2122(2)(2)555a i a i i a a i a a i i i i -----+-+===-++-为实数, 则20,25a a +==-. (10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π 【解析】设正方体边长为,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯= (11)在极坐标系中,直线4cos()106ρθπ-+=与圆2sin ρθ=的公共点的个数为___________. 【答案】2【解析】直线为210y ++= ,圆为22(1)1x y +-= ,因为314d =< ,所以有两个交点(12)若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】【解析】442241414a b a b ab ab+++≥≥ ,当且仅当21a b ==时取等号 (13)在ABC △中,60A =︒∠,3AB =,2AC =.若2BD DC =,()AE AC AB λλ∈=-R,且4AD AE ⋅=- ,则λ的值为___________.【答案】311(14)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 【答案】 1080【解析】413454541080A C C A +=三. 解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (Ⅰ)求和sin A 的值; (Ⅱ)求πsin(2)4A +的值.【答案】 (1) b =2616.(本小题满分13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为111,,234. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【答案】 (1)1312 (2) 1148【解析】(Ⅰ)随机变量X 的所有可能取值为0,1,2,3.1111(0)(1)(1)(1)2344P X ==-⨯-⨯-=,11111111111(1)(1)(1)(1)(1)(1)(1)23423423424P X ==⨯-⨯-+-⨯⨯-+-⨯-⨯=,1111111111(2)(1)(1)(1)2342342344P X ==-⨯⨯+⨯-⨯+⨯⨯-=,1111(3)23424P X ==⨯⨯=.所以,随机变量X 的分布列为随机变量X 的数学期望()012342442412E X =⨯+⨯+⨯+⨯=. (Ⅱ)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为(1)(0,1)(1,0)(0)(1)(1)(0)P Y Z P Y Z P Y Z P Y P Z P Y P Z +====+=====+==1111111142424448=⨯+⨯=. 所以,这2辆车共遇到1个红灯的概率为1148. (17)(本小题满分13分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,90BAC ∠=︒.点D ,E ,N 分别为棱PA ,P C ,BC 的中点,M 是线段AD 的中点,PA =AC =4,AB =2. (Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C -EM -N 的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE AH 的长.【答案】 (1)证明见解析(2 (3)85 或12(Ⅰ)证明:DE =(0,2,0),DB=(2,0,2-).设(,,)x y z =n ,为平面BDE 的法向量,则0DE DB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即20220y x z =⎧⎨-=⎩.不妨设1z =,可得(1,0,1)=n .又MN =(1,2,1-),可得0MN ⋅=n.所以,线段AH 的长为或12.18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328433n n n T +-=⨯+. 【解析】(I )设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为.由262n a n =-,12124n n b --=⨯,有221(31)4n n n a b n -=-⨯, 故23245484(31)4n n T n =⨯+⨯+⨯++-⨯ ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ ,上述两式相减,得231324343434(31)4n n n T n +-=⨯+⨯+⨯++⨯--⨯1112(14)4(31)414(32)48.n n n n n ++⨯-=---⨯-=--⨯- 得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前项和为1328433n n +-⨯+. (19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线的距离为12.(I )求椭圆的方程和抛物线的方程;(II )设上两点P ,Q 关于轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与轴相交于点D .若APD △AP 的方程.【答案】 (1)22413y x +=, 24y x =.(2)330x -=,或330x -=. 【解析】(Ⅰ)解:设F 的坐标为(,0)c -.依题意,12c a =,2p a =,12a c -=,解得1a =,12c =,2p =,于是22234b ac =-=. 所以,椭圆的方程为22413y x +=,抛物线的方程为24y x =.所以,直线AP 的方程为330x -=,或330x -=. (20)(本小题满分14分)设a ∈Z ,已知定义在R 上的函数432()2336f x x x x x a =+--+在区间(1,2)内有一个零点0x ,()g x 为()f x 的导函数. (Ⅰ)求()g x 的单调区间;(Ⅱ)设00[1,)(,2]m x x ∈ ,函数0()()()()h x g x mx f m =--,求证:0()()0h m h x <;(Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数,p q ,且00[1,)(,2],px x q∈满足041||p x q Aq -≥. 【答案】(1)增区间是(,1)-∞-,1(,)4+∞,减区间是1(1,)4-.(2)(3)证明见解析 【解析】(Ⅰ)由432()2336f x xxx x a=+--+,可得32()()8966g x f x x x x '==+--,进而可得2()24186g x x x '=+-.令()0g x '=,解得1x =-,或14x =. 当x 变化时,(),()g x g x '的变化情况如下表:所以,()g x 的单调递增区间是(,1)-∞-,(,)4+∞,单调递减区间是(1,)4-. (Ⅱ)证明:由0()()()()h x g x m x f m =--,得0()()()()h m g m m x f m =--,000()()()()h x g x m x f m =--.(III )证明:对于任意的正整数 p ,,且00[1)(,],2px x q∈ , 令pm q=,函数0()()()()h g m x x x m f =--. 由(II )知,当0[1),m x ∈时,()h x 在区间0(,)m x 内有零点; 当0(,2]m x ∈时,()h x 在区间0(),x m 内有零点.- 11 - 所以041|2|()p x q g q -≥.所以,只要取()2A g =,就有041||p x q Aq -≥.。
2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1.设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞(B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞2.函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .03.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A .抽签法B .随机数法C .系统抽样法D .分层抽样法4.已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的( ) A.实轴长相等 B.虚轴长相等 C.焦距相等 D. 离心率相等5.已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③ (B) ①② (C) ②③ (D) ②③6.执行如图所示的程序框图,若输入10,n S ==则输出的A .511B .1011C .3655D .72557.某学校组织学生参加英语测试,成绩的频率分布直方图如图, 数据的分组一次为[)[)[)[)20,40,40,60,60,80,820,100. 若低于60分的人数是15人,则该班的学生人数是(A )45 (B )50 (C )55 (D )608.设函数()()()()()222,2,0,8x e e f x x f x xf x f x f x x '+==>满足则时, (A )有极大值,无极小值 (B )有极小值,无极大值 (C )既有极大值又有极小值 (D )既无极大值也无极小值 二、填空题:本大题共6小题,每小题5分,共30分.9.设m R ∈,222(1)i m m m +-+-是纯虚数,其中i 是虚数单位,则________m = 10.12.若209,Tx dx T =⎰则常数的值为11.设常数a R ∈,若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为10-,则______a =12.如图,圆O 上一点C 在直线AB 上的射影为D ,点D 在半径OC 上的射影为E 。
2017年普通高等学校招生全国统一考试(天津卷);数学(理科);;该套试卷整体上来说与往年相比,比较平稳,试题中没有偏题和怪题,在考查了基础知识的基础上,还考查了同学们灵活运用所学知识的解决问题的能力。
题目没有很多汉字的试题,都是比较简约型的。
但是不乏也有几道创新试题,像选择题的第8题,填空题的13题,解答题第20题,另外别的试题保持了往年的风格,入题简单,比较好下手,但是做出来并不是很容易。
整体上试题由梯度,由易到难,而且大部分试题适合同学们来解答体现了双基,考查了同学们的四大思想的运用,是一份比较好的试卷。
本试卷分为第I 卷(选择题〉和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟第I 卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.;; (1)i 是虚数单位,复数7=3iz i-+= (A )2i + (B)2i - (C)2i -+ (D)2i -- 1.B【命题意图】本试题主要考查了复数的概念以及复数的加、减、乘、除四则运算. 【解析】7=3i z i -+=(7)(3)(3)(3)i i i i --+-=2173110i i ---=2i -; (2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(3)阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为(A )1- (B)1 (C)3 (D)9 3.C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算.【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯. (4)函数3()=2+2x f x x -在区间(0,1)内的零点个数是(A )0 (B)1 (C)2 (D)3 4.B【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数学能力.2=8,即(0)(1)<0f f⋅且函数()f x在(0,1)内B正确..,∴103=1r-,即=3r,∴x的系数为40-.(6)在△ABC中,内角A,B,C所对的边分别是,,a b c,已知8=5b c,=2C B,则cosC=(A)725(B)725-(C)725±(D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式.考查学生分析、转化与计算等能力.【解析】∵8=5b c,由正弦定理得8sin=5sinB C,又∵=2C B,∴8s i n=5s i n2B B,所以8sin=10sin cosB B B,易知sin0B≠,∴4cos=5B,2cos=cos2=2cos1C B B-=725.(7)已知△ABC为等边三角形,=2AB,设点P,Q满足=AP ABλ,=(1)AQ ACλ-,Rλ∈,若3=2BQ CP⋅-,则=λ(A )127.A【命题意图】本试题以等边三角形为载体,主要考查了向量加减法的几何意义,平面向量基本定理,共线向量定理及其数量积的综合运用.【解析】∵=BQ AQ AB-=(1)AC ABλ--,=CP AP AC-=AB ACλ-,又∵3=2B QC P⋅-,且||=||=2A B A C,0<,>=60AB AC,0=||||cos60=2AB AC AB AC⋅⋅,∴3[(1)]()=2A C AB A B A Cλλ----,2223||+(1)+(1)||=2AB AB AC ACλλλλ--⋅-,所以234+2(1)+4(1)=2λλλλ---,解得1=2λ. C(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是(A)[1(B)(,1[1+3,+)-∞∞(C)[2-(D)(,2[2+22,+)-∞-∞8.D【命题意图】本试题主要考查了直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法,并借助于直线与圆相切的几何性质求解的能力.【解析】∵直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,∴圆心(1,1)到直线的距离为d ,所以21()2m n mn m n +=++≤,设=t m n +, 则21+14tt ≥,解得(,2[2+22,+)t ∈-∞-∞. 二、填空题:本大题共6小题,每小题5分,共30分.(9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校. 9.18,9【命题意图】本试题主要考查了统计中的分层抽样的概念以及样本获取的方法与计算. 【解析】∵分层抽样也叫按比例抽样,由题知学校总数为250所, 所以应从小学中抽取15030=18250⨯,中学中抽取7530=9250⨯. (10)―个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .10.18+9π【命题意图】本试题主要考查了简单组合体的三视图的画法与体积的计算以及空间想象能力.【解析】由三视图可该几何体为两个相切的球上方了一个长方体组成的组合体,所以其体积为:343=361+2()32V π⨯⨯⨯⨯=18+9π3m .(11)已知集合={||+2|<3A x R x ∈,集合={|()(2)<0B x R x m x ∈--,且=(1,)A B n -,则=m ,=n .11.1-,1【命题意图】本试题主要考查了集合的交集的运算及其运算性质,同时考查绝对值不等式与一元二次不等式的解法以及分类讨论思想.【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)AB n -,画数轴可知=1m -,=1n .(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2pF ,∵点M 的横坐标是3,则(3,M ,所以点(,2p E -,222=()+(06)22p pEF p - 由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p .(13)如图,已知AB 和AC 是圆的两条弦.过点B 作圆的切线与AC 的延长线相交于点D,过点C 作BD 的平行线与圆相交于点E,与AB 相交于点F ,=3AF ,=1FB ,3=2EF ,则线段CD 的长为 .13.43【命题意图】本试题主要考查了平面几何中直线与圆的位置关系,相交弦定理,切割线定理,相似三角形的概念、判定与性质.【解析】∵=3AF ,=1FB ,3=2EF ,由相交弦定理得=AF FB EF FC ⋅⋅,所以=2FC ,又∵B D ∥CE ,∴=AF FC AB BD ,4==23AB BD FC AF ⋅⨯=83,设=C D x ,则=4AD x ,再由切割线定理得2=BD CD AD ⋅,即284=()3x x ⋅,解得4=3x ,故4=3CD .(14)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 .14.(0,1)(1,4)【命题意图】本试题主要考查了函数的图像及其性质,利用函数图像确定两函数的交点,从而确定参数的取值范围.【解析】∵函数=2y kx -的图像直线恒过定点B(0,2)-,且(1,2)A -,(1,0)C -,(1,2)D ,∴2+2=410-,由图像可知(0,1)(1,4)k ∈. .2sin (2+)+sin(2)+2cos 133x x x ππ--,x R ∈.44.【命题意图】本试题主要考查了 【参考答案】 (1)2()=sin(2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ== (2)32sin(2)11()4444424x x x f x ππππππ-≤≤⇒-≤+≤⇒-≤+≤⇔-≤≤ 当2()428x x πππ+==时,()max f x =2()444x x πππ+=-=-时,min ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.(16)(本小题满分13分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率:(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率:(Ⅲ)用,X Y 分别表示这4个人中去参加甲、乙游戏的人数,记=||X Y ξ-,求随机变量ξ的分布列与数学期望E ξ.【命题意图】本试题主要考查了 【参考答案】(1)每个人参加甲游戏的概率为13p =,参加乙游戏的概率为213p -= 这4个人中恰有2人去参加甲游戏的概率为22248(1)27C p p -=(2)44(4,)()(1)(0,1,2,3,4)k kk XB p P X kC p p k -⇒==-=,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为1(3)(4)9P X P X =+== (3)ξ可取0,2,48(0)(2)2740(2)(1)(3)8117(4)(0)(4)81P P X P P X P X P P X P X ξξξ=======+=====+==随机变量ξ的分布列为8401714802427818181E ξ=⨯+⨯+⨯=【点评】应用性问题是高考命题的一个重要考点,近年来都通过概率问题来考查,且常考常新,对于此类考题,要注意认真审题,从数学与实际生活两个角度来理解问题的实质,将问题成功转化为古典概型,独立事件、互斥事件等概率模型求解,因此对概率型应用性问题,理解是基础,转化是关键.(17)(本小题满分13分)如图,在四棱锥P ABCD -中,PA 丄平面ABCD ,AC 丄AD ,AB 丄BC ,45BAC ︒∠=,==2PA AD ,=1AC .(Ⅰ)证明:PC 丄AD ;(Ⅱ)求二面角A PC D --的正弦值;CBAP(Ⅲ)设E 为棱PA 上的点,满足异面直线BE 与CD 所成的角为030, 求AE 的长.【命题意图】本试题主要考查了 【参考答案】(1)以,,AD AC AP 为,,x y z 正半轴方向,建立空间直角左边系A xyz - 则11(2,0,0),(0,1,0),(,,0),(0,0,2)22D C B P -(0,1,2),(2,0,0)0PC AD PC AD PC AD =-=⇒=⇔⊥ (2)(0,1,2),(2,1,0)PC CD =-=-,设平面PCD 的法向量(,,)n x y z =则0202200n PC y z y z x y x z n CD ⎧=-==⎧⎧⎪⇔⇔⎨⎨⎨-===⎩⎩⎪⎩ 取1(1,2,1)z n =⇒= (2,0,0)AD =是平面PAC 的法向量 630cos ,sin ,66AD n AD n AD n AD n<>==⇒<>=得:二面角A PC D --(3)设[0,2]AE h =∈;则(0,0,2)AE =,11(,,),(2,1,0)22BE h CD =-=- c o s ,B E CD BE C D B E C D<>=⇔⇔ 即AE = 【点评】试题从命题的角度来看,整体上题目与我们平时练习的试题相似,但底面是非特殊的四边形,一直线垂直于底面的四棱锥问题,那么创新的地方就是第三问中点E 的位置是不确定的,需要学生根据已知条件进行确定,如此说来就有难度,因此最好使用空间直角坐标系解决该问题为好.(18)(本小题满分13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b , 44+=27a b ,44=10S b -.(Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记112231n n n n n T a b a b a b a b --=++++;证明:+12=2+10n n n T a b -+()n N ∈.【命题意图】本试题主要考查了【参考答案】(1) 设数列{}n a 的公差为d ,数列{}n b 的公比为q ;则 34434412732322710246210a b d d q S b q a d q +==⎧++=⎧⎧⇔⇔⎨⎨⎨-==+-=⎩⎩⎩ 得:31,2n n n a n b =-= (2)1211223112112222()22n n n nn n n n n n n a a T a b a b a b a b a a a a ----=++++=+++=+++111213132352222n n n n n n n a n n n c c +-----++==-=- 12231112[()()()]2()n nn n n n T c c c c c c c c ++=-+-++-=- 1022(35)102121210nn n nn nn b a T b a =⨯-+=--⇔+=- 【点评】该试题命制比较直接,没有什么隐含的条件,就是等比与等差数列的综合应用,但方法多样,第二问可以用错位相减法求解证明,也可用数学归纳法证明,给学生思维空间留有余地,符合高考命题选拔性的原则.(19)(本小题满分14分)设椭圆2222+=1x y a b(>>0)a b 的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (Ⅱ)若||=||AP OA ,证明:直线OP 的斜率k 满足|k 【命题意图】本试题主要考查了 【参考答案】(1)取(0,)P b ,(,0),(,0)A a B a -;则221()22AP BP b b k k a b a a ⨯=⨯-=-⇔=2222122a b e e a -==⇔=(2)设(cos ,sin )(02)P a b θθθπ≤<;则线段OP 的中点(cos ,sin )22ab Q θθ ||=||A P O A 1AQ AQ OP k k ⇔⊥⇔⨯=- s i n s i nc o s 22c o sA Q A Q A Qb k b a k a k a a θθθθ=⇔-=+23A Q Q A Qa k k ⇒⇔<⇔ 【点评】(20)(本小题满分14分)已知函数()ln()f x x x a =-+的最小值为0,其中>0a . (Ⅰ)求a 的值;(Ⅱ)若对任意的[0,+)x ∈∞,有2()f x kx ≤成立,求实数k 的最小值; (Ⅲ)证明:=12ln (2+1)<221ni n i --∑*()n N ∈. 【参考答案】(1)函数()f x 的定义域为(,)a -+∞()l n ()f x x x a =-+11()101x a f x x a a x a x a+-'⇒=-==⇔=->-++ ()01,()01f x x a f x a x a ''>⇔>-<⇔-<<-得:1x a =-时,min ()(1)101f x f a a a =-⇔-=⇔=(2)设22()()ln(1)(0)g x kx f x kx x x x =-=-++≥则()0g x ≥在[0,+)x ∈∞上恒成立min ()0(0)g x g ⇔≥=(*) (1)1ln 200g k k =-+≥⇒> 1(221)()2111x kx k g x kx x x +-'=-+=++ ①当1210()2k k -<<时,0012()00()(0)02k g x x x g x g k-'≤⇔≤≤=⇒<=与(*)矛盾 ②当12k ≥时,min ()0()(0)0g x g x g '≥⇒==符合(*) 得:实数k 的最小值为12(3)由(2)得:21ln(1)2x x x -+<对任意的0x >值恒成立取2(1,2,3,,)21x i n i ==-:222[ln(21)ln(21)]21(21)i i i i -+--<-- 当1n =时,2ln 32-< 得:=12ln (2+1)<221ni n i --∑ 当2i ≥时,2211(21)2321i i i <---- 得:121[ln(21)ln(21)]2ln 3122121ni i i i n =-++-<-+-<--∑ 【点评】试题分为三问,题面比较简单,给出的函数比较常规,因此入手对于同学们来说没有难度,第二问中,解含参数的不等式时,要注意题中参数的讨论所有的限制条件,从而做到不重不漏;第三问中,证明不等式,应借助于导数证不等式的方法进行.。
2017年普通高等学校招生全国统一考试(天津卷)数学理一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=( )A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|-1≤x≤5}解析:∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},∴(A∪B)∩C={1,2,4}.答案:B2.设变量x,y满足约束条件202203x yx yxy+≥+-≥≤≤⎧⎪⎪⎨⎪⎪⎩,,,,则目标函数z=x+y的最大值为( )A.23 B.1C.3 2D.3解析:变量x,y满足约束条件202203x yx yxy+≥+-≥≤≤⎧⎪⎪⎨⎪⎪⎩,,,,的可行域如图:目标函数z=x+y结果可行域的A点时,目标函数取得最大值,由30y x =⎧⎨=⎩,可得A(0,3),目标函数z=x+y 的最大值为:3.答案:D3.阅读下面的程序框图,运行相应的程序,若输入N 的值为24,则输出N 的值为( )A.0B.1C.2D.3解析:第一次N=24,能被3整除,N=243=8≤3不成立, 第二次N=8,8不能被3整除,N=8-1=7,N=7≤3不成立, 第三次N=7,不能被3整除,N=7-1=6,N=63=2≤3成立, 输出N=2, 答案:C4.设θ∈R ,则“|θ-12π|<12π”是“sin θ<12”的( ) A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 解析:01212121212|6|ππππππθθθ-⇔--⇔<<<<<,sin θ1722266k k πππθπ⇔-++<<<,k ∈Z ,则()[7022666]k k πππππ⊂-++,,,k ∈Z , 可得“12||12ππθ-<”是“sin θ<12”的充分不必要条件. 答案:A5.已知双曲线22221x y a b-=(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A.22144x y -= B.22188x y -= C.22148x y -= D.22194x y -=解析:设双曲线的左焦点F(-c ,0),离心率e=ca=,, 则双曲线为等轴双曲线,即a=b , 双曲线的渐近线方程为by x x a=±=±, 则经过F 和P(0,4)两点的直线的斜率4040k c c-==+,则4c =1,c=4,则22188x y -=. 答案:B6.已知奇函数f(x)在R 上是增函数,g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <b <a C.b <a <c D.b <c <a解析:奇函数f(x)在R 上是增函数,当x >0,f(x)>f(0)=0,且f ′(x)>0, ∴g(x)=xf(x),则g ′(x)=f(x)+xf ′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(-log 25.1)=g(log 25.1),则2<-log 25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log 25.1)<g(3),∴b <a <c. 答案:C7.设函数f(x)=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<x.若f(58π)=2,f(118π)=0,且f(x)的最小正周期大于2π,则( )A.2312πωϕ==, B.211312πωϕ==-,C.111324πωϕ==-,D.17324πωϕ==,解析:由f(x)的最小正周期大于2π,得42T π>, 又f(58π)=2,f(118π)=0,得11534884T πππ=-=,∴T=3π,则2πω=3π,即ω=23.∴f(x)=2sin(ωx+φ)=2sin(23x+φ),由f(58π)=2sin(2538π⨯+φ)=2,得sin(φ+512π)=1.∴φ+5122ππ=+2k π,k ∈Z.取k=0,得φ=12π<π.∴2312πωϕ==,. 答案:A8.已知函数f(x)=23121x x x x xx ⎧-+≤⎪⎨+⎪⎩,,,>,设a ∈R ,若关于x 的不等式f(x)≥|2x +a|在R 上恒成立,则a 的取值范围是( )A.[4716-,2] B.[47391616-,]2] D.[3916-,]解析:当x ≤1时,关于x 的不等式f(x)≥|2x+a|在R 上恒成立, 即为-x 2+x-3≤2x +a ≤x 2-x+3,即有-x 2+12x-3≤a ≤x 2-32x+3, 由y=-x 2+12x-3的对称轴为x=14<1,可得x=14处取得最大值4716-;由y=x 2-32x+3的对称轴为x=34<1,可得x=34处取得最小值3916,则47391616a -≤≤①, 当x >1时,关于x 的不等式f(x)≥|2x+a|在R 上恒成立,即为222x x a x x x ⎛⎫ ⎪-≤+≤⎭+⎝+,即有32222x x a x x ⎛⎫-≤⎭≤ ⎪+⎝+,由322y x x ⎛⎫⎪=-+⎝-=-⎭≤当且仅当>1)取得最大值由1222y x x =+≥= (当且仅当x=2>1)取得最小值2.则a ≤2②,由①②可得,-4716≤a ≤2. 答案:A二.填空题:本大题共6小题,每小题5分,共30分.9.已知a ∈R ,i 为虚数单位,若2a ii-+为实数,则a 的值为 . 解析:a ∈R ,i 为虚数单位,()()()()()22122122224155a i i a a i a i a ai i i i ----+--+===-++-+, 由2a ii-+为实数,可得-2+a5=0,解得a=-2. 答案:-210.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 解析:设正方体的棱长为a ,∵这个正方体的表面积为18,∴6a 2=18,则a 2=3,即∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,,即R=32,则球的体积V=3439322ππ⎛⎫ ⎪=⎝⎭⋅.答案:92π11.在极坐标系中,直线4ρcos(θ-6π)+1=0与圆ρ=2sin θ的公共点的个数为 .解析:直线4ρcos(θ-π6)+1=0展开为:4ρ(1sin 2θθ+)+1=0,化为:2x+2y+1=0.圆ρ=2sin θ即ρ2=2ρsin θ,化为直角坐标方程:x 2+y 2=2y ,配方为:x 2+(y-1)2=1. ∴圆心C(0,1)到直线的距离314d ==<=R. ∴直线4ρcos(θ-6π)+1=0与圆ρ=2sin θ的公共点的个数为2. 答案:212.若a ,b ∈R ,ab >0,则4441a b ab++的最小值为 .解析:a,b∈R,ab>,∴4444224124141144a b a b a b ab ab ab ab ab ++⋅++≥==+≥=,当且仅当44414a b ab ab ⎧=⎪⎨=⎪⎩,,即2222214a b a b ⎧=⎪⎨=⎪⎩,,即4. 答案:413.在△ABC 中,∠A=60°,AB=3,AC=2.若2BD DC =,()AE AC AB R λλ=-∈,且AD AE ⋅=-4,则λ的值为 .解析:如图所示,△ABC 中,∠A=60°,AB=3,AC=2,2BD DC =, ∴()22123333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+, 又AE AC AB λ=- (λ∈R), ∴()22121212333333AD AE AB AC AC AB AB AC AB AC λλλ⋅=+⋅-=-⋅-+⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭22121232cos603243333λλ=-⨯⨯⨯⎛︒-⨯+⨯⎫ ⎝⎭=-⎪,∴1113λ=,解得λ=311. 答案:31114.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有 个. 解析:根据题意,分2种情况讨论:①四位数中没有一个偶数数字,即在1、3、5、7、9种任选4个,组成一共四位数即可,有45A =120种情况,即有120个没有一个偶数数字四位数;②四位数中只有一个偶数数字,在1、3、5、7、9种选出3个,在2、4、6、8中选出1个,有3154·C C =40种取法, 将取出的4个数字全排列,有44A =24种顺序,则有40×24=960个只有一个偶数数字的四位数;则至多有一个数字是偶数的四位数有120+960=1080个. 答案:1080三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知a >b ,a=5,c=6,sinB=35. (Ⅰ)求b 和sinA 的值;(Ⅱ)求sin(2A+4π)的值. 解析:(Ⅰ)由已知结合同角三角函数基本关系式求得cosB ,再由余弦定理求得b ,利用正弦定理求得sinA ;(Ⅱ)由同角三角函数基本关系式求得cosA ,再由倍角公式求得sin2A ,cos2A ,展开两角和的正弦得答案.答案:(Ⅰ)在△ABC 中,∵a >b , 故由sinB=35,可得cosB=45.由已知及余弦定理,有b 2=a 2+c 2-2accosB=25+36-2×5×6×45=13,∴.由正弦定理sin sin a b A B =,得sinA=sin a B b =.∴;(Ⅱ)由(Ⅰ)及a <c ,得,∴sin2A=2sinAcosA=1213,225cos 12sin 13A A =-=-.故125sin 2sin 2coscos 2sin44413213226()A A A πππ+=+=⨯-⨯=.16.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14. (Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 解析:(Ⅰ)随机变量X 的所有可能取值为0,1,2,3,求出对应的概率值, 写出它的分布列,计算数学期望值;(Ⅱ)利用相互独立事件同时发生的概率公式计算所求事件的概率值. 答案:(Ⅰ)随机变量X 的所有可能取值为0,1,2,3; 则()111101112344P X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭==-⨯--=, ()11111111111111111123423423424P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==⨯-⨯-+-⨯⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⨯=⎭⎝⎭, ()111111111121112342342344P X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭==-⨯⨯+⨯⎝⎭⎝⎭-⨯+⨯⨯-=,()1111323424P X ==⨯⨯=; 所以,随机变量X 的分布列为随机变量X的数学期望为()1111113 012342442412E X=⨯+⨯+⨯+⨯=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)·P(Z=1)+P(Y=1)·P(Z=0)=11111111 42424448⨯+⨯=;所以,这2辆车共遇到1个红灯的概率为11 48.17.如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC 的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C-EM-N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE,求线段AH的长.解析:(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z 轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C-EM-N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出NH、BE的坐标,结合直线NH与直线BE所成角的余AH的长.答案:(Ⅰ)取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE. ∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则MN=(1,2,-1),ME=(0,2,1),设平面MEN的一个法向量为m=(x,y,z),由m MNm ME⎧⋅=⎪⎨⋅=⎪⎩,,得2020x y zy z+-=⎧⎨+=⎩,,取z=2,得m=(4,-1,2).由图可得平面CME的一个法向量为n=(1,0,0).∴cos21m n m n m n=⋅==<,>.∴二面角C-EM-N的余弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),NH=(-1,-2,t),BE=(-2,2,2).∵直线NH与直线BE,∴cos||5NH BENH BENH BE⋅===<,>t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为21,此时线段AH的长为4.18.已知{a n }为等差数列,前n 项和为S n (n ∈N*),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)求数列{a 2n b 2n-1}的前n 项和(n ∈N+).解析:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.通过b 2+b 3=12,求出q ,得到b n =2n .然后求出公差d ,推出a n =3n-2.(Ⅱ)化简数列的通项公式,利用错位相减法求解数列的和即可.答案:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q >0,解得q=2.所以,b n =2n .由b 3=a 4-2a 1,可得3d-a 1=8.由S 11=11b 4,可得a 1+5d=16,联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,{a n }的通项公式为a n =3n-2,{b n }的通项公式为b n =2n .(II)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=12×4n ,有a 2n b 2n-1=(3n-1)4n , 故T n =2×4+5×42+8×43+…+(3n-1)4n ,4T n =2×42+5×43+8×44+…+(3n-1)4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)4n+1=()121414n ⨯---4-(3n-1)4n+1=-(3n-2)4n+1-8, 得T n =1328433n n +-⨯+. 所以,数列{a 2n b 2n-1}的前n 项和为1328433n n +-⨯+.19.设椭圆22221x y a b+=(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px(p >0)的焦点,F 到抛物线的准线l 的距离为12. (I)求椭圆的方程和抛物线的方程;(II)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B(B 异于A),直线BQ 与x 轴相交于点D.若△APDAP 的方程. 解析:(I)根据椭圆和抛物线的定义、性质列方程组求出a ,b ,p 即可得出方程;(II)设AP 方程为x=my+1,联立方程组得出B ,P ,Q 三点坐标,从而得出直线BQ 的方程,解出D 点坐标,根据三角形的面积列方程解出m 即可得出答案.答案:(Ⅰ)设F 的坐标为(-c ,0).依题意可得12212c a p a a c ⎧=⎪⎪⎪=⎨⎪⎪-=⎪⎩,,,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34. 所以,椭圆的方程为22413y x +=,抛物线的方程为y 2=4x. (Ⅱ)直线l 的方程为x=-1,设直线AP 的方程为x=my+1(m ≠0),联立方程组11x x my =-⎧⎨=+⎩,,解得点P(-1,-2m ),故Q(-1,2m ). 联立方程组x=my+1,x 2+4y 23=1,消去x ,整理得(3m 2+4)y 2+6my=0,解得y=0,或y=2634m m -+. ∴B(223434m m -++,2634m m -+). ∴直线BQ 的方程为()222623*********m m x y m m m m ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭--+⎛⎫-+-+-= ⎪++⎝⎭, 令y=0,解得222332m x m -=+,故D(222332m m -+,0).∴|AD|=1-22222363232m m m m -=++. 又∵△APD∴22162232m m m ⨯⨯=+,整理得3m 2|m|+2=0,解得|m|=m=∴直线AP 的方程为,或20.设a ∈Z ,已知定义在R 上的函数f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m ∈[1,x 0)∪(x 0,2],函数h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0; (Ⅲ)求证:存在大于0的常数A ,使得对于任意的正整数p ,q ,且p q∈[1,x 0)∪(x 0,2],满足041p x q Aq-≥.解析:(Ⅰ)求出函数的导函数g(x)=f ′(x)=8x 3+9x 2-6x-6,求出极值点,通过列表判断函数的单调性求出单调区间即可.(Ⅱ)由h(x)=g(x)(m-x 0)-f(m),推出h(m)=g(m)(m-x 0)-f(m),令函数H1(x)=g(x)(x-x 0)-f(x),求出导函数H ′1(x)利用(Ⅰ)知,推出h(m)h(x 0)<0. (Ⅲ)对于任意的正整数p ,q ,且p q ∈[1,x0)∪(x0,2],令m=p q,函数h(x)=g(x)(m-x 0)-f(m). 由(Ⅱ)知,当m ∈[1,x 0)时,当m ∈(x 0,2]时,通过h(x)的零点.转化推出 ()()()432234041233622p p f f p p q p q pq aq q q p x q g x g g q +--+-=≥=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.推出|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1.然后推出结果.答案:(Ⅰ)由f(x)=2x 4+3x3-3x 2-6x+a ,可得g(x)=f ′(x)=8x 3+9x 2-6x-6,进而可得g ′(x)=24x 2+18x-6.令g ′(x)=0,解得x=-1,或x=14. 当x 变化时,g ′(x),g(x)的变化情况如下表:所以,g(x)的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1,14). (Ⅱ)由h(x)=g(x)(m-x 0)-f(m),得h(m)=g(m)(m-x 0)-f(m),h(x 0)=g(x 0)(m-x 0)-f(m). 令函数H 1(x)=g(x)(x-x 0)-f(x),则H ′1(x)=g ′(x)(x-x 0).由(Ⅰ)知,当x ∈[1,2]时,g ′(x)>0,故当x ∈[1,x 0)时,H ′1(x)<0,H 1(x)单调递减;当x ∈(x 0,2]时,H ′1(x)>0,H 1(x)单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H1(x)>H 1(x 0)=-f(x 0)=0,可得H 1(m)>0即h(m)>0, 令函数H 2(x)=g(x 0)(x-x 0)-f(x),则H ′2(x)=g ′(x 0)-g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x ∈[1,x 0)时,H ′2(x)>0,H 2(x)单调递增;当x ∈(x 0,2]时,H ′2(x)<0,H 2(x)单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x)>H 2(x 0)=0,可得得H 2(m)<0即h(x 0)<0,所以,h(m)h(x 0)<0.(Ⅲ)对于任意的正整数p ,q ,且p q∈[1,x 0)∪(x 0,2], 令m=p q,函数h(x)=g(x)(m-x 0)-f(m). 由(Ⅱ)知,当m ∈[1,x 0)时,h(x)在区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h(x)在区间(x 0,m)内有零点.所以h(x)在(1,2)内至少有一个零点,不妨设为x 1,则h(x 1)=g(x 1)(p q -x 0)-f(p q )=0. 由(Ⅰ)知g(x)在[1,2]上单调递增,故0<g(1)<g(x 1)<g(2), 于是()()()432234041233622p p f f p p q p q pq aq q q p x q g x g g q +--+-=≥=⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭.因为当x ∈[1,2]时,g(x)>0,故f(x)在[1,2]上单调递增,所以f(x)在区间[1,2]上除x 0外没有其他的零点,而pq ≠x 0,故f(pq )≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数,从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1. 所以()0412p x q g q -≥.所以,只要取A=g(2),就有041px q Aq -≥.。
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然绝密★启用前2017年普通高等学校招生全国统一考试数学试题 理天津卷【试卷点评】2017年天津高考数学试卷考点变化不大,题型结构与2016年相同,从知识结构角度看,试卷考查内容覆盖面广,与往年基本一致。
与此同时,试卷命题中出现的综合与创新,体现了能力立意的命题思路与稳中求变的命题特点。
整卷难度分布合理,具有较好的区分度,整体难度与去年相比稍有降低。
纵观整篇试卷,命题严格按照《考试说明》与课程标准,双基内容占了相当大的比例,体现了命题人回归教材、突出主干的思路,重视对考生基本数学素养的考查。
对于此部分题目,只要考生熟练掌握基本概念和定理,就可以轻松得分。
试卷在知识点选择上与去年相比略有改变,考验学生基础知识掌握的全面性。
试卷命题风格稳定,试题布局合理,利于考生发挥自身真实水平,具有较好的信度和效度。
在注重基础和应用的同时,今年天津高考试卷也加强了综合性与创新性的考查,以提高试卷区分度,如第8题,主要考查基本初等函数的图象和性质,设问综合了分段函数单调性、函数零点以及图象变换等典型考点,充分考查了考生的数形结合思想与转化化归思想,考验学生的知识理解深度与分析问题解决问题的能力。
第19题总的来说需要考生熟练掌握解析几何中常见几何图形性质的代数表达并合理选择参数简化运算,对考生的运算和解题技巧要求较高。
第20题设问较为新颖,命题具有一定的抽象性与综合性,需要学生基于三次函数单调性与极值最值的关系进行探索分析,考查函数与方程、分类讨论、转化等数学思想,问题思路环环相扣,逻辑严密,难度较大,充分考验学生的心理素质,具有较好的区分度,体现了高考的选拔性,另外也给优秀学生提供了展示自身能力的平台,也引导我们数学教学工作需注重数学能力与创新意识的培养。
2017年高考数学天津理1.(2017年天津理)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x≤5},则(A ∪B)∩C= ( ) A.{2}B.{1,2,4}C.{1,2,4,6}D.{ x ∈R|-1≤x≤5}1.B 【解析】 (A ∪B)∩C={1,2,4,6}∩[1,5]={1,2,4}.故选B .2. (2017年天津理)设变量x,y 满足约束条件⎩⎨⎧2x+y≥0,x+2y-2≥0,x≤0,y≤3,则目标函数z=x+y 的最大值为( ) A. 23B.1C. 32D.32. D 【解析】画出不等式组表示的平面区域(图略),则可行域为四边形ABCD 及其内部,其中A (0,1),B (0,3),C (-32,3),D (-23,43),易得直线y=-x+z 过点B (0,3)时,z=x+y 取最大值为3.故选D .3. (2017年天津理)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为( )A.0B.1C.2D.33. C 【解析】初始N=19,进入循环后N 的值依次为N=18,N=6,N=2,结束循环,输出N=2.故选C .4. (2017年天津理)设θ∈R ,则“|θ-π12|<π12”是“sin θ<12”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4. A 【解析】|θ-π12|<π12⇔0<θ<12,但θ=0时,sin θ=0<12,不满足|θ-π12|<π12,所以“|θ-π12|<π12”是“sin θ<12”的充分不必要条件.故选A.5. (2017年天津理)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,离心率为2.若经过F 和P (0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) A. x 24-y 24=1B. x 28-y 28=1C. x 24-y 28=1D. x 28-y 24=15. D 【解析】由题意得a=b ,4-00-(-c )=1⇒c=4,a=b=22⇒x 28-y 28=1.故选B .6. (2017年天津理)已知奇函数f(x)在R 上是增函数.g(x)=xf(x).若a=g(-log 25.1),b=g(20.8),c=g(3),则a,b,c 的大小关系为( ) A.a <b <cB.c <b <aC.b <a <cD.b <c <a6. C 【解析】因为f (x )是奇函数且在R 上是增函数,所以当x >0时,f (x )>0,从而g (x )=xf (x )是R 上的偶函数,且在[0,+∞)上是增函数,a=g(-log 25.1)= g(log 25.1),20.8<2,又4<5.1<8,则2<log 25.1<3,所以0<20.8<log 25.1<3,g (20.8)<g (log 25.1)<g (3),所以b <a <c.故选C.7. (2017年天津理)设函数f(x)=2sin(ωx+φ),x ∈R ,其中ω>0,|φ|<π.若f(5π8)=2,f(11π8)=0,且f(x)的最小正周期大于2π,则( ) A. ω=23,φ=π12B. ω=23,φ=-11π12 C. ω=13,φ=-11π24D. ω=13,φ=7π247. A 【解析】由题意得⎩⎨⎧5ωπ8+φ=2k 1π+π2,11ωπ8+φ=k 2π,其中k 1,k 2∈Z ,所以ω=43(k 2-2k 1)-23,又T=2πω>2π,所以0<ω<1,所以ω=23,11212k ϕ=π+π,由|φ|<π得φ=π12,故选A .8. (2017年天津理)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x+3,x≤1,x+2x ,x >1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是( ) A.[-4716,2]B.[-4716,3916]C. [-23,2]D. [-23,3916]8. A 【解析】不等式f (x )≥|x 2+a|可化为-f (x )≤x2+a≤f (x ),(*)当x≤1时,(*)式即-x 2+x-3≤x 2+a≤x 2-x+3,即-x 2+x 2-3≤a≤x 2-32x+3,又-x 2+x 2-3=-(x-14)2-4716≤-4716(当x=14时取等号),x 2-32+3=(x-34)2+3916≥3916(当x=34时取等号),所以-4716≤a≤3916,当x >1时,(*)式为-x-2x ≤x 2+a≤x+2x ,-32x-2x ≤a≤x 2+2x .又-32x-2x =-(32x+2x )≤23(当x=233时取等号),x 2+2x ≥2x 2·2x =2(当x=2时取等号),所以-23≤a≤2.综上,-4716≤a≤2.故选A .9. (2017年天津理)已知a ∈R ,i 为虚数单位,若a-i2+i 为实数,则a 的值为___________.9. -2 【解析】a-i 2+i =(a-i)(2-i)(2+i)(2-i)=(2a-1)-(a+2)i 5=2a-15-a+25i 为实数,则a+25=0,a=-2.10. (2017年天津理)已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.10. 9π2 【解析】设正方体的边长为a ,则6a 2=18⇒a=3,其外接球直径为2R=3a=3,故这个球的体积V=43πR 3=43π×278=9π2.11. (2017年天津理)在极坐标系中,直线4ρcos (θ-π6)+1=0与圆ρ=2sin θ的公共点的个数为___________.11. 1 【解析】直线为23x+2y+1=0,圆为x 2+(y-1)2=1,因为d=34<1,所以有两个交点.12. (2017年天津理)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为___________.12. 4 【解析】a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab+1ab≥24ab·1ab=4,前一个等号成立的条件是a 2=2b 2,后一个等号成立的条件是ab=12,两个等号可以同时成立,当且仅当a 2=22,b 2=24时取等号.13. (2017年天津理)在△ABC 中,∠A=60°,AB=3,AC=2.若→BD =2→DC ,→AE =λ→AC -→AB (λ∈R ),且→AD ·→AE =-4,则λ的值为___________.13. 311 【解析】由题可得→AB ·→AC =3×2×cos 60°=3,→AD =13→AB +23→AC ,则→AD ·→AE =(13→AB +23→AC )(λ→AC -→AB )=λ3×3+2λ3×4-13×9-23×3=-4 λ=311.14. (2017年天津理) 用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答) 14. 1 080 【解析】A4 5+C1 4C3 5A4 4=1 080.15. (2017年天津理)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a=5,c=6,sin B=35.(1)求b 和sin A 的值; (2)求sin (2A+π4)的值.15. 解:(1)在△ABC 中,因为a >b ,故由sin B=35,可得cos B=45. 由已知及余弦定理,有b2=a2+c2-2accos B=13,所以b=13. 由正弦定理a sin A =b sin B ,得sin A=asin B b =31313. 所以,b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A=21313,所以sin 2A=2sin Acos A=1213,cos 2A=1-2sin 2A=-513. 故sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=7226.16. (2017年天津理)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 16.解:(1)随机变量X 的所有可能取值为0,1,2,3. P (X=0)=(1-12)×(1-13)×(1-14)=14,P (X=1)=12×(1-13)×(1-14)+(1-12)×13×(1-14)+(1-12)×(1-13)×14=1124, P (X=2)=(1-12)×13×14+12×(1-13)×14+12×13×(1-14)=14, P (X=3)=12×13×14=124. 所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第1辆车遇到红灯的个数,Z 表示第2辆车遇到红灯的个数, 则所求事件的概率为P (Y+Z=1)=P (Y=0,Z=1)+P (Y=1,Z=0)=P (Y=0)P (Z=1)+P (Y=1)P (Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.17. (2017年天津理)如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,∠BAC=90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2. (1)求证:MN ∥平面BDE ; (2)求二面角C -EM -N 的正弦值;(3)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长.17.解:如图,以A 为原点,分别以→AB ,→AC ,→AP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)易得→DE =(0,2,0),→DB =(2,0,2-).设n =(x,y,z)为平面BDE 的法向量,则⎩⎨⎧n ·→DE =0,n ·→DB =0,即⎩⎨⎧2y=0,2x-2z=0. 不妨设z=1,可得n =(1,0,1).又→MN =(1,2,1-),可得→MN ·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)易知n 1=(1,0,0)为平面CEM 的一个法向量. 设n 2=(x ,y ,z )为平面EMN 的一个法向量,则⎩⎨⎧n 2·→EM =0,n 2·→MN =0,因为→EM =(0,-2,-1),→MN =(1,2,-1),所以⎩⎨⎧-2y-z=0,x+2y-z=0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos<n 1,n 2>=n 1·n 2|n 1||n 2|=-421,于是sin<n 1,n 2>=10521.所以,二面角C-EM-N 的正弦值为10521.(3)依题意,设AH =h (0≤h≤4),则H (0,0,h ),进而可得→NH =(-1,-2,h ),→BE =(-2,2,2).由已知,得|cos<→NH ,→BE >=→NH ·→BE |→NH ||→BE |=|2h-2|h 2+5×23=721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.18. (2017年天津理)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q. 由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0. 又因为q >0,解得q=2.所以b n =2n . 由b 3=a 4-2a 1,可得3d-a 1=8,① 由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n .(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n , 故T n =2×4+5×42+8×43+…+(3n-1)×4n , 4T n =2×42+5×43+8×44+…+(3n-1)×4n +(3n-1)×4n+1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8,得T n =3n-23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n-23×4n+1+83.19. (2017年天津理)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程. 19.解:(1)设F 的坐标为(-c ,0).依题意,c a =12,p 2=a ,a-c=12,解得a=1,c=12,p=2,于是b 2=a 2-c 2=34. 所以,椭圆的方程为x 2+4y 23=1,抛物线的方程为y 2=4x . (2)设直线AP 的方程为x=my+1(m≠0),与直线l 的方程x=-1联立,可得点P (-1,-2m ),故Q (-1,2m ). 将x=my+1与x 2+4y 23=1联立,消去x ,整理得(3m 2+4)y 2+6my=0, 解得y=0或y=-6m3m 2+4.由点B 异于点A ,可得点B (-3m 2+43m 2+4,-6m 3m 2+4).由Q (-1,2m ),可得直线BQ 的方程为(-6m 3m 2+4-2m )(x+1)-(-3m 2+43m 2+4+1)(y-2m )=0, 令y=0,解得x=2-3m 23m 2+2,故D (2-3m 23m 2+2,0),所以|AD|=1-2-3m 23m 2+2=6m 23m 2+2. 又因为△APD 的面积为62,故12×6m 23m 2+2×2|m|=62, 整理得3m 2-26|m|+2=0,解得|m|=63,所以m=±63.所以,直线AP 的方程为3x+6y-3=0或3x-6y-3=0.20. (2017年天津理)设a ∈Z ,已知定义在R 上的函数f(x)=2x 4+3x 3-3x 2-6x+a 在区间(1,2)内有一个零点x 0,g(x)为f(x)的导函数. (1)求g(x)的单调区间;(2)设m ∈[1,x 0)∪(x 0,2],函数h(x)=g(x)(m-x 0)-f(m),求证:h(m)h(x 0)<0;(3)求证:存在大于0的常数A ,使得对于任意的正整数p,q ,且p q ∈[1,x 0)∪(x 0,2]满足|pq-x 0|≥1Aq 4.20.解:(1)由f(x)=2x 4+3x 3-3x 2-6x+a ,可得g(x)=f′(x)=8x 3+9x 2-6x-6, 进而可得g′(x)=24x 2+18x-6.令g′(x)=0,解得x=-1或x=14.当x 变化时,g′(x), g(x)的变化情况如下表:`所以,g(x)的单调递增区间是(-∞,-1),(14,+∞),单调递减区间是(-1, 14). (2)由h(x)=g(x)(m-x 0)-f(m),得h(m)=g(m)(m-x 0)-f(m), h(x 0)=g(x 0)(m-x 0)-f(m).令函数H 1(x)=g(x)(x-x 0)-f(x),则H 1′(x)=g′(x)(x -x 0).由(1)知,当x ∈[1,2]时,g′(x)>0,故当x ∈[1,x 0]时,H 1′(x)<0,H 1(x)单调递减; 当x ∈(x 0,2]时,H 1′(x)>0,H 1(x)单调递增.因此,当x ∈[1,x 0)∪(x 0,2]时,H 1(x)>H 1(x 0)=-f(x 0)=0,可得H 1(m)>0,即h(m)>0. 令函数H 2(x)=g(x 0)(x-x 0)-f(x),则H 2′(x)= g(x 0)-g(x).由(1)知,g(x)在[1,2]上单调递增,故当x ∈[1,x 0)时,H 2′(x)>0,H 2(x)单调递增; 当x ∈(x 0,2]时,H 2′(x)<0,H 2(x)单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x)<H 2(x 0)=0,可得H 2(m)<0,即h (x 0)<0. 所以,h (m )h (x 0)<0.(3)对于任意的正整数p ,q ,且pq ∈[1,x 0)∪(x 0,2], 令m=pq ,函数h(x)=g(x)(m-x 0)-f(m).由(2)知,当m ∈[1,x 0)时,h (x )的区间(m ,x 0)内有零点;当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点,所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h(x 1)=g(x 1)(p q -x 0)-f(pq )=0.由(1)知g(x)在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2), 于是|pq -x 0|=|f (p q )g (x 1)|≥|f (pq )|g (2)=|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|g (2)q 4.因为当x ∈[1,2]时,g(x)>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而p q ≠x 0,故f (pq )≠0. 又因为p ,q ,a 均为整数,所以|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q-3p 2q 2-6pq 3+aq 4|≥1,所以|p q -x 0|≥1g (2)q 4.所以,只要取A=g (2),就有|p q -x 0|≥1Aq 4.。
KS5U2017天津市高考压轴卷理科数学一、选择题(每小题5分,共40分)1. 已知集合2{|1}M x x=<,{|N y y =,则()R C M N =( )A.(0,2]B.[0,2]C.∅D.[1,2]2. 函数错误!未找到引用源。
()f x =)A .错误!未找到引用源。
[0,+∞)B .错误!未找到引用源。
(-∞,2] C.错误!未找到引用源。
[0,2] D .错误!未找到引用源。
[0,2)3. 平行四边形错误!未找到引用源。
中,错误!未找到引用源。
,点错误!未找到引用源。
在边错误!未找到引用源。
上,则错误!未找到引用源。
的最大值为A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4. 某几何体的三视图如图所示,在该几何体的体积是( )A .B .C .D .5. (x 3+x )3(﹣7+)的展开式x 3中的系数为( )A .3B .﹣4C .4D .﹣76. 已知椭圆+=1(m >0)与双曲线=1(n >0)有相同的焦点,则m+n 的最大值是( ) A .3B .6C .18D .367. 已知数列{a n }中,前n 项和为S n ,且n n a 32n S +=,则1n n a a -的最大值为( )A .﹣3B .﹣1C .3D .18. 我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc(a ,b ,c ,*d N ∈),则b da c++是x 的更为精确的不足近似值或过剩近似值.我们知道 3.14159π=…,若令31491015π<<,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为( ) A .227 B .6320 C .7825D .10935 二、填空题:本大题共6小题,每小题5分,共30分.9.若复数z 满足(1﹣i )z=1﹣5i ,则复数z 的虚部为 .10. 阅读程序框图,如果输出的函数值y 在区间内,则输入的实数x 的取值范围是 .11设变量x 、y 满足约束条件:则z =x 2+y 2的最大值是__ __.12在平面直角坐标系xOy 中,点F 为抛物线x 2=8y 的焦点,则点F 到双曲线x 2﹣=1的渐近线的距离为 .13. 在平面直角坐标系中,已知直线l 的参数方程为11x s y s=+⎧⎨=-⎩,(s 为参数),曲线C 的参数方程为22x t y t=+⎧⎨=⎩,(t 为参数),若直线l 与曲线C 相交于A B ,两点,则AB =____. 14.设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___。
三、解答题:本大题共6小题,共80分.15.(本小题满分13分)在ABC ∆中,A B C ∠∠∠、、所对边长分别为a b c 、、, 已知(sin ,sin cos )m C B A =,(,2)n b c =且0m n ⋅=.(1)求A ∠的大小;(2)若a =,sin sin 1B C +=,求ABC ∆的面积S .16. (本小题满分13分)已知直三棱柱ABC ﹣A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC=90°,且AB=AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点. (1)求证:直线DE ∥平面ABC ; (2)求锐二面角B 1﹣AE ﹣F 的余弦值.17. (本小题满分13分)甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.(Ⅰ)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;(Ⅱ)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望EX.18. (本小题满分13分)已知函数f(x)=x3﹣alnx﹣(a∈R,a≠0)(1)当a=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若对任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范围.19. (本小题满分14分)已知左、右焦点分别为F1(﹣c,0),F2(c,0)的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.(I)求椭圆C的离心率和标准方程.(II)圆与椭圆C交于A,B两点,R为线段AB 上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围.20.(本小题满分14分)已知数列{}n a 中,,11=a 且点*1(,)()n n P a a n N +∈在直线01=+-y x 上。
(1)求数列{}n a 的通项公式; (2)若函数(),2,321)(321≥∈++++++++=n N n a n na n a n a n n f n且 求函数)(n f 的最小值; (3)设n nn S a b ,1=表示数列{}n b 的前项和.试问:是否存在关于n 的整式()n g ,使得 ()()n g S S S S S n n ⋅-=++++-11321 对于一切不小于2的自然数n 恒成立?若存在,写出()n g 的解析式,并加以证明;若不存在,试说明理由。
试卷答案1【答案】B2【答案】D【解析】3【答案】A【解析】本题主要考查平面向量的数量积,考查了学生对公式的应用与计算能力.因为错误!未找到引用源。
,所以错误!未找到引用源。
,令错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
,由二次函数的性质可知,当t=0时,错误!未找到引用源。
的最大值为错误!未找到引用源。
4【答案】B【解析】如图所示,该几何体为四棱锥,其中PA⊥底面ABCD,作BE⊥CD,垂足为E点,底面由直角梯形ABED与直角三角形BCE组成.则V==.故选:B.5【答案】B【解析】(x3+x)3(﹣7+)=(x9+3x7+3x5+x3)(﹣7+)的展开式x3中的系数=﹣7+3=﹣4.故选:B.6【答案】B【解析】根据题意,椭圆+=1(m>0)与双曲线=1(n>0)有相同的焦点,则有25﹣m2=7+n2,变形可得:m2+n2=18,又由≥()2,则有()2≤9,即m+n≤6,则m+n的最大值是6;故选:B.7【答案】C【解析】∵,∴n≥2时,a n=S n﹣S n﹣1=a n﹣a n﹣1,化为:==1+,由于数列单调递减,可得:n=2时,取得最大值2.∴的最大值为3.故选:C.8【答案】A【解析】由题意:第一次用“调日法”后得165是π的更为精确的过剩近似值,即3116105π<<,第二次用“调日法”后得4715是π的更为精确的过剩近似值,即4716155π<<,第三次用“调日法”后得6320是π的更为精确的过剩近似值,即47631520π<<,第四次用“调日法”后得11022=357是π的更为精确的过剩近似值,即3122107π<<,故选A.9【答案】﹣2【解析】由(1﹣i)z=1﹣5i,得,则复数z的虚部为:﹣2.故答案为:﹣2.10【答案】[﹣2,0]【解析】由程序框图可得分段函数:y=,∴令2x∈[,1],则x∈[﹣2,0],满足题意;∴输入的实数x的取值范围是[﹣2,0].故答案为:[﹣2,0].11【答案】8【解析】作出约束条件所对应的可行域(如图△ABC),而z=x2+y2表示可行域内的点到原点距离的平方,数形结合可得最大距离为OC或OA=2,故答案为:8.12【答案】【解析】抛物线x2=8y的焦点F(0,2),双曲线的渐近线方程为y=±3x,则F 到双曲线的渐近线的距离为d==.故答案为:. 13【答案】【解析】因为,联立得得,得故答案为:15【答案】解:(1)0m n ⋅=, (sin ,sin cos )(,2)0C B A b c ∴⋅=sin 2sin cos 0b C c B A ∴+=………2分 由正弦定理得2cos 0bc cb A +=………4分 0,0b c ≠≠1cos 2A ∴=-………5分 0A π<<23A π∴=………6分 (2)由(1)及余弦定理得222a b c bc =++, 得222sin sin sin sin sin A B C B C =++即223sin sin sin sin 4B C B C ++=………8分 又sin sin 1B C +=,解得1sin sin 2B C ==………9分 23a =2b c ==………11分ABC ∴∆的面积11sin 2222S bc A ==⨯⨯=12分16【解答】解:(1)方法一:设AB 的中点为G ,连接DG ,CG ,则,四边形DGCE 为平行四边形,∴DE ∥GC ,又DE ⊄ABC ,GC ⊄ABC ∴DE ∥平面ABC .…(6分) 方法二:(空间向量法)如图建立空间直角坐标系O ﹣xyz ,令AB=AA 1=4, 则A (0,0,0),E (0,4,2),F (2,2,0),B (4,0,0),B1(4,0,4),D(2,0,2).…(2分),平面ABC的法向量为.∵,∴,又∵DE⊄ABC,∴DE∥平面ABC.…(6分)(2)∵,,,∴,∴,∵AF∩EF=F∴B1F⊥平面AEF.∴平面AEF的一个法向量为.…(8分)设平面 B1AE的法向量为,则由,即.令x=2,则z=﹣2,y=1∴.∴…(12分)∴二面角B1﹣AE﹣F的余弦值为.17【解答】解:(Ⅰ)记“甲达标”为事件A,则×;(Ⅱ)X的所有可能取值为2,3,4.,××,,所以X的分布列为:.18【解答】解:(1)当a=3时,f(x)=x3﹣3lnx﹣,f(1)=0,∴f′(x)=x2﹣,∴f′(1)=﹣2,切点为(1,0),∴曲线y=f(x)在点(1,f(1))处的切线方程为:y﹣0=(﹣2)•(x﹣1),即2x+y﹣2=0.(2)对任意的x∈[1,+∞),使f(x)≥0恒成立,只需对任意的x∈[1,+∞),f(x)min≥0,∴f′(x)=,(x>0),当a<0时,f′(x)>0恒成立,∴函数f(x)的递增区间为(0,+∞);当a>0时,令f′(x)=0,解得:x=或x=﹣(舍),x,f′(x),f(x)的变化情况如下表:)∴函数f(x)的递增区间为(,+∞),递减区间为(0,),①当a<0时,函数f(x)在(1,+∞)上是增函数,∴f(x)min=f(1)=﹣aln1﹣=0,∴a<0满足题意;②当0<a≤1时,0<≤1,函数f(x)在(1,+∞)上是增函数,∴f(x)min=f(1)=﹣aln1﹣=0,∴0<a≤1满足题意;③当a>1时,>1,函数f(x)在(1,)上是减函数,在(,+∞)上是增函数,∴f(x)min=f()=<f(1)=0,∴a>1不满足题意.综上,a的取值范围为(﹣∞,0)∪(0,1].19【解答】(Ⅰ)解:∵椭圆C过点,∴,①∵椭圆C关于直线x=c对称的图形过坐标原点,∴a=2c,∵a2=b2+c2,∴,②由①②得a2=4,b2=3,a=2,c=1,∴椭圆C的离心率,标准方程为.…(Ⅱ)因为AB为圆P1的直径,所以点P1为线段AB的中点,设A(x1,y1),B(x2,y2),则,,又,所以,则(x1﹣x2)﹣(y1﹣y2)=0,故,则直线AB的方程为,即.…(8分)代入椭圆C的方程并整理得,则,故直线F1R的斜率.设F1R:y=k(x+1),由,得(3+4k2)x2+8k2x+4k2﹣12=0,设P (x 3,y 3),Q (x 4,y 4),则有,.又,,所以|PF 1||QF 1|=(1+k 2)|x 3x 4+(x 3+x 4)+1|=,因为,所以,即|PF 1||QF 1|的取值范围是.20【答案】解: (1)∵点()1,n n P a a +在直线x-y-1=0上,即11n n a a +-=,且1a =1 ∴数列{}n a 是以1为首项1为公差的等差数列.∴1(n 1)1(2)n a n n =+-⋅=≥,1a =1也满足,∴n a n =(2)由(1)知,()111,12f n n n n n=++++++则 11111(1)2322122f n n n n n n +=+++++++++, ∴()()1111110212212122f n f n n n n n n +==+-=->+++++ ∴()f n 是*2,n n N ≥∈的增函数,∴函数)(n f 的最小值是()7212f =; (3)∵1111123n n b S n n =⇒=++++,∴11(2)n n S S n n--=≥ 即11(1)1n n n nS n S S ----=+,∴()()122121n n n n S n S S ------=+,2111S S S -=+ ∴11211n n nS S S S S n --=++++- ∴()()12112n n n S S S nS n S n n -+++=-=-⋅≥,∴()g n n =.故存在关于n 的整式()g n n =使等式对于一切不小于2 的自然数n 恒成立. 法二:先由n=2,n=3的情况,猜想出g(n)=n ,再用数学归纳法证明.。