分式的意义综合练习题
- 格式:doc
- 大小:78.50 KB
- 文档页数:2
分式的运算(一)、分式定义及有关题型 题型一:考查分式的定义【例1】下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义 (1)44+-x x (2)232+x x (3)122-x (4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0. (1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x-84为正;(2)当x 为何值时,分式2)1(35-+-x x 为负;(3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义: (1)3||61-x(2)1)1(32++-x x (3)x111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x(2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:MB M A M B M A B A ÷÷=⨯⨯=2.分式的变号法则:bab a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号. (1)yx yx --+- (2)ba a ---(3)ba ---题型三:化简求值题【例3】已知:511=+y x,求yxy x yxy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出yx11+. 【例4】已知:21=-xx ,求221xx +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)yx yx 5.008.02.003.0+-(2)b a ba 10141534.0-+ 2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求aab b bab a ---+232的值.4.若0106222=+-++b b a a ,求ba ba 532+-的值.5.如果21<<x ,试化简x x --2|2|xx x x |||1|1+---. (三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数; ②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分. (1)cb ac a b ab c 225,3,2--; (2)a b b b a a 22,--; (3)22,21,1222--+--x x xx xx x ; (4)aa -+21,2题型二:约分【例2】约分: (1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-;(2)22233)()()3(xy x y y x y x a +-÷-⋅+; (3)mn mn m n m n n m ---+-+22;(4)112---a a a ;(5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x 题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232zy x xzyz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a aa --的值. 题型五:求待定字母的值【例5】若111312-++=--x Nx M x x ,试求N M ,的值. 练习:1.计算(1))1(232)1(21)1(252+-++--++a a a a a a ; (2)a b abb b a a ----222; (3)ba c cb ac b c b a c b a c b a ---++-+---++-232; (4)b a b b a ++-22;(5))4)(4(ba abb a b a ab b a +-+-+-;(6)2121111x x x ++++-; (7))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x . 2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(yxx y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x Bx A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法 题型一:运用整数指数幂计算【例1】计算:(1)3132)()(---⋅bc a(2)2322123)5()3(z xy z y x ---⋅(3)24253])()()()([b a b a b a b a +--+-- (4)6223)(])()[(--+⋅-⋅+y x y x y x题型二:化简求值题【例2】已知51=+-x x ,求(1)22-+x x 的值;(2)求44-+x x 的值.题型三:科学记数法的计算【例3】计算:(1)223)102.8()103(--⨯⨯⨯;(2)3223)102()104(--⨯÷⨯. 练习:1.计算:(1)20082007024)25.0()31(|31|)51()5131(⋅-+-+-÷⋅-- (2)322231)()3(-----⋅n m n m (3)23232222)()3()()2(--⋅⋅ab b a b a ab(4)21222)]()(2[])()(4[----++-y x y x y x y x2.已知0152=+-x x ,求(1)1-+x x ,(2)22-+x x 的值. 第二讲 分式方程(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程 (1)xx 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程 (1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x 题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x mx 有增根,求m 的值. 【例5】若分式方程122-=-+x ax 的解是正数,求a 的取值范围. 提示:032>-=ax 且2≠x ,2<∴a 且4-≠a . 题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dcx b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c . 题型五:列分式方程解应用题练习:1.解下列方程: (1)021211=-++-x xx x ; (2)3423-=--x x x ; (3)22322=--+x x x ; (4)171372222--+=--+x x x x xx (5)2123524245--+=--x x x x(6)41215111+++=+++x x x x(7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程: (1)bxa211+=)2(a b ≠;(2))(11b a x b b x a a ≠+=+. 3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x kx x 的解为非负数. 5.已知关于x 的分式方程a x a =++112无解,试求a 的值. (二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法例1.解方程:231+=x x 二、化归法例2.解方程:012112=---x x 三、左边通分法例3:解方程:87178=----xx x 四、分子对等法例4.解方程:)(11b a xb b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程xmx x -=--221无解,求m 的值。
分式的概念练习题一、选择题1. 下列哪个式子是分式?A. 3x + 2B. $\frac{4}{5}$C. $\frac{x}{y+1}$D. $\sqrt{a+b}$A. $\frac{1}{x}$B. $\frac{x^2 1}{x 1}$C. $\frac{2}{x^2 + 1}$D. $\frac{x^3 + 3x^2 4x + 4}{x^2 2x + 1}$3. 分式$\frac{3}{x2}$的定义域是?A. 全体实数B. 除了2以外的全体实数C. 除了0以外的全体实数D. 除了0和2以外的全体实数二、填空题1. 分式$\frac{a}{b}$中,a叫做______,b叫做______。
2. 若分式$\frac{x3}{x+2}$的值等于2,则x的值为______。
3. 已知分式$\frac{2}{x1}+\frac{3}{x+2}=1$,则x的值为______。
三、简答题1. 请简要说明分式与整式的区别。
2. 什么情况下分式无意义?什么情况下分式有意义?3. 如何求分式的值?四、计算题1. 计算$\frac{2}{3}+\frac{1}{6}$。
2. 计算$\frac{3}{4}\frac{2}{5}$。
3. 计算$\frac{4}{5}\times\frac{3}{7}$。
4. 计算$\frac{5}{8}\div\frac{2}{3}$。
5. 简化分式$\frac{x^2 9}{x^2 + 6x + 9}$。
五、应用题1. 某班有男生x人,女生人数是男生人数的$\frac{2}{3}$,求班级总人数与男生人数的比例。
2. 甲、乙两人共同完成一项工作,甲单独完成需要5天,乙单独完成需要8天。
求甲、乙合作完成这项工作的时间。
3. 一辆汽车行驶了a千米,其速度是b千米/小时,求汽车行驶这段路程所需的时间(用分式表示)。
六、判断题1. 分式的分子和分母都是整式。
()2. 分式的值在分母不为零的情况下一定有意义。
三.分式考点一:分式的概念1. 定义:如果A 、B 表示两个整式,且B 中含有字母,0B ≠,那么式子A B叫做分式.例1.下列代数式是分式的是 ( ).31x A x + 21.2x B +-C x.aD π2. 分式有意义的条件:分式中分母的值不能为零,即A B中,0B ≠使,分式有意义,否则分式没有意义. 例2.若分式15x -有意义,则实数x 的取值范围是 .3. 分式的值的讨论: (1) 若分式0A B =,则A=0,且0B ≠,即0{A B =≠时,0A B=.(2) 若分式0A B >,则A 、B 同号,即0{0A B >>或者0{0A B <<(3) 若分式0A B<,则A 、B 异号,即0{0A B ><或者0{0A B <>例2. 分式211x x -+的值为0,则 ( ).1A x =- .1B x = .1C x =± .0D x =针对训练: 1.若分式22221x x x x --++的值为0,则x 的值等于 .考点二.分式的基本性质1. 基本性质:分式的分子、分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用符号来表示为:A A M A MB B MB M÷==÷ (M 的值不为0)2. 分式的基本性质的应用(1) 分式的约分:把一个分式的分子与分母的公共因式约去,分式的值不变,叫做约分。
说明:约分时,分子与分母不是乘积的形式,不能约分.(2) 分式的通分:把n 个异分母的分式分别化为与原来的分式相等的同分母的分式. 说明:①通分的依据是分式的基本性质, ②通分后的各分式的分母相同.③通分后的各式分式分别与原来的分式相等. ④通分的关键是确定最简公分母 ⑤分式通分的步骤:ⅰ.确定最简公分母;ⅱ.将各分式化成相同分母的分式.(3)分式的符号规则:分式的分子、分母及分式本身的符号中,改变其中任意俩个,分式的值不变.用式子表示为:,A A A A A A A BBB BBBB---==--=-==---(0B ≠).例3.(1)先化简,再求值:()2111211x x x ⎛⎫-÷+- ⎪+-⎝⎭,其中x =.(2)先化简,再求值:221211,24x x x x ++⎛⎫-÷ ⎪+-⎝⎭其中 3.x =- 针对训练:1. 化简:221211.241x x x x x x --+÷++--2. 先化简,再求值:22211.221x x x x x x x ++--÷++-其中2x =-考点三:分式的加减 1. 分式的加减,.a b a b a c ad bc ad bcc c c bd bd bd bd±±±=±=±= 2. 分式的乘除,.a c ac a c a d adb d bd b d bc bc=÷== 说明:对于分式的乘除混合运算,应先将除法运算转化为乘法运算,如分子、分母是多项式,可先将分子、分母分解因式,再相乘. 3.分式的乘方nnna ab b ⎛⎫= ⎪⎝⎭(n 为正整数) 例4.(1)化简:22221369x y x yx yx xy y+--÷--+(3) 先化简,再求值:22211(1),11m m m m m m -+-÷---+其中m =针对训练:1. 计算:2.b a ba b a b a ⎛⎫+-+ ⎪+⎝⎭2.先化简,再求值:()2211,1a a a ⎛⎫-+÷+ ⎪+⎝⎭其中 1.a =-课堂针对训练一、选择题 1.化简2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) 1.A xB. 1x - 1.x C x- D.1x x -2.若分式31x x -有意义,则x 应满足 ( ).0A x = B. 0x ≠ C. 1x = D. 1x ≠3.设22220,4,m n m n m n mn mn->>+==则( )A B. C. D.3二、填空题4.当x= 时,25x -.5.若ab=1,11,,1111a b x y abab=+=+++++则xy= .三、解答题 6.先化简,再求值:()222,a b a b a b-+-+其中2, 1.a b ==7.先化简,再求值:2242,6926a a a a a --÷+++其中 5.a =-。
分式的意义典型例题
例01.下列各式中不是分式的是( )
A .y
x x 2 B .21 C .21x D .13 x x
解答
B 说明
①分式与整式的根本区别在于分母是否含有字母; ② 是一个常数,不是一个
字母 例02.分式)
3)(2(1 x x x 有意义,则x 应满足条件() A .1 x B .2 x C .2 x 且3 x D .2 x 或3 x
分析 因为零不能作除数,所以分式要有意义,分母必不为0,即
0)3)(2( x x ,所以2 x 且3 x
解 C
说明 当分母等于零时,分式没有意义,这是学习与分式有关问题时需要特别注意的一点
例03.当x 取何值时,下列分式的值为零?
(1)212 x x ; (2)3
3 x x 分析 要使分式的值为零,不仅要使分子等于零,同时还必须使分母不等于零 解 (1)由分子012 x ,得21
x .又当21 x 时,分母02 x . 所以当21 x 时,分式2
12 x x 的值为零。
(2)由分式03 x ,得3 x .当3 x 时,分母063 x ;当3 x 时,分母03 x .所以当3 x 时,分式3
3 x x 的值为零. 例04.
932 x x 与3
1 x 是同一个分式吗? 分析 分式93
2 x x 有意义的条件是092 x ,即
3 x 和3 .而3
1 x 有意义的条件是3 x ,而当3 x 时,3
1 x 是有意义的. 解 由于93
2 x x 与31 x 有意义的条件不同,所以,它们不是同一个分式. 说明 在解分式问题时,一定要学会判断一个分式在什么条件下有意义,然后再考虑。
分式值为零及分式有意义的条件》测试题含答案1.若分式 (x-3)/(x+1) 在实数范围内有意义,则实数x的取值范围是(x≠-1且x≠3)。
2.若分式(x^2-1)/(x+1) 的值为零,那么x的值为(-1或1)。
3.使分式 (x-3)/(x+2) 有意义的x的取值范围是(x>-2)。
4.若分式 (x^2-1)/(x-1)^2 的值为2,则x的值为(-1)。
5.若分式 (x^2-9)/(x^2+x-12) = 0,则x的值是(3或-3)。
6.函数 y=(x-1)/√(x+1) 的自变量x的取值范围为(x>-1)。
7.若分式 (x^2-4)/(x-2) 的值为1,则x的值为(2)。
8.要使分式 (x+1)/(x-2) 的值为-2,那么x的值为(-2)。
9.若分式1/√(x-2) 有意义,x的取值范围是(x>2)。
10.要使式子√(x^2-1)-1/(x+1) 有意义,x的取值范围是(x≥1或x≤-1)。
11.函数 y=1/(x+1)-√(x+2)/(√3-x) 中自变量x的取值范围是(x>-1且x<-2)。
12.分式 (x+1)/(x-1) 有意义的x的取值范围是(x≠1)。
13.若分式 (x^2-1)/(x-1) 的值为零,则x的值为(-1或1)。
14.对于分式 2x^2-8/(x-2)(x+3),当x=2时,分式无意义;当x≠-3且x≠2时,分式的值为(2x-4)/(x+3)。
15.若分式 (x+3)/(2x+3) 的值为零,则x的值为(-3/2)。
16.函数y=√(x-1)/(x+1) 中自变量x的取值范围是(x>1)。
17.要使分式 (x+1)(x-2)/(x^2-1) 有意义,则x应满足的条件是(x≠-1且x≠1)。
18.当x=2时,分式 x^2-4/(x-2) 的值等于零。
19.若分式(x+1)/(√(x-2)) 有意义,则x的取值范围是(x>2)。
分式综合应用(习题)例题示范例1:已知关于x 的方程223242ax x x x +=--+无解,求a 的值. 【思路分析】分式方程无解包括两部分:第一,分式方程化为整式方程,整式方程的解是原分式方程的增根;第二,分式方程化为整式方程,整式方程无解.【过程书写】2(2)3(2)2436(1)10x ax x x ax x a x ++=-++=--=-解:(1)当a -1≠0,即a ≠1时101x a =--∵原分式方程无解 ∴101x a =--是原分式方程的增根 ∴10102211a a -=-=---或∴a =-4或a =6(2)当a -1=0,即a =1时0=-10,不成立 此时原分式方程无解综上,a 的值为1,-4或6巩固练习1. 化简下列分式.1(3)(6)x x ++++…221156712a a a a +++-+-+2. 下列关于x 的分式方程无解,求m 的值.132x x-=--;(2)33m x x=-;(3)2213m x x x+-=-.3. 若113x y -=,则2322x xy y x xy y+-=--_________.4. 若2310x x -+=,则2421x x x ++的值为_________.5. 若a 为正实数,且15a a -=,则221a a-=_________.6. 若53m n =,则222m m n m n m n m n+-=+--_________. 【思路分析】①观察已知和所求,发现已知条件为连比的形式,考虑_____________. ②设________________,∴m =____________,n =____________,∴原式=7. 分式224321x x -++的最大值是_________. 【思路分析】①由已知条件求分式最大值,考虑_____________.②原式=③取值说理:因为______________,所以___________的最小值是______;所以___________的最大值是______;所以分式2243 21xx-++的最大值是_________.8.若分式2232x xx+++的值为整数,则整数x的值为_________.【思路分析】①由已知条件求分式的值为整数,考虑_____________.②原式=③取值说理:∵分式2232x xx+++的值为整数,且x为整数,∴x+2能整除_______,∴x+2=____________,∴x=_________________.思考小结类比学习分式时,我们注意将分式与分数进行类比,通过回忆分数的有关知识来探索、发现、建立分式的新知识.鲁班由小茅草割破手发明了锯,维也纳医生奥恩布鲁格由父亲敲击酒桶判断酒的多少发明了扣诊法,仿生学利用生物的结构和功能原理来研制机械或各种新技术.这些平凡而伟大的创意都源自类比.什么是类比呢?数学家、数学教育家波利亚说过:“类比就是一种相似.”具体地说,类比是一种推理形式,当已经建立两个对象在某些性质上的类似之处以后,可能(并非必定)推出它们在其他某些性质上的类似.这种推理形式的结构可以表示如下:对象A有性质P,Q,R,…,X对象B有性质P,Q,R,…推测(猜想):B可能也有性质X就拿分数和分式来说吧.从表示形式和意义来看,分数的形式是ab(a,b是整数,b≠0),它表示两个整数的商;分式的形式是AB(A,B是整式,B≠0),它表示两个整式的商.从基本性质来看,分数的分子、分母同乘以一个不等于零的数,分数的大小不变,它是分数约分和通分的依据;分式也有类似的基本性质,它是分式约分和通分的依据.其他方面,从约分、通分到运算,甚至是最简分式与最简分数(既约分数)的概念,分式与分数都十分相似!类比是我们学习数学的一种有效方法,我们还可以举出许多例子.如学习整式时,常常可以和整数类比.两个整数的和、差、积都是整数,但两个整数的商却未必是整数,从而需要引进分数;类似地,两个整式的和、差、积都是整式,但两个整式的商未必是整式,从而需要引进分式.整式的因式分解可以与整数的因数分解类比,等等.类比能揭示自然界的奥秘,它是数学发现的重要方法.但类比不具有证明的力量.由类比得到的结论可能成立,也可能不成立,需要进一步研究,加以证明或反驳.科学家将火星与地球作了类比,发现火星有很多与地球类似之处:火星是行星,绕太阳运行,绕轴自转;火星上有大气层,空气成分很类似,一年中有四季的变更;火星上有水,大部分时间的温度适合地球上某些生物的生存.地球上有生命存在,科学家推测:火星上也可能有生命存在!但事实究竟怎样,需要进一步的科学考证.在数学学习时理解这一点也很重要.例如,学习一元一次不等式,它的解法、步骤与解一元一次方程非常相似.不等式与等式的性质也有类似的地方,但是不能全盘照搬,特别是不等式的两边同乘以一个负数时,不等号的方向要改变,在运用类比时应该引起注意.【参考答案】 巩固练习1.(1)2672 2016x x +(2)2465a a-+2.(1)m的值为1(2)m的值为0或3(3)m的值为32-或12-3.3 54.1 85.6.4116,思路分析略7.3,思路分析略8.-1,-3,-5或1,思路分析略。
2021-2022学年人教版八年级数学上册《第15章分式》单元综合练习题(附答案)1.分式有意义的条件是()A.x≠3B.x≠9C.x≠±3D.x≠﹣32.关于x的分式方程=0的解为x=2,则常数a的值为()A.a=﹣1B.a=1C.a=2D.a=53.计算(x3y2)2•,得到的结果是()A.xy B.x7y4C.x7y D.x5y64.若分式的值总是正数,a的取值范围是()A.a是正数B.a是负数C.a>D.a<0或a>5.分式可变形为()A.B.﹣C.D.﹣6.若分式的值等于0,则x的值为()A.±1B.0C.﹣1D.17.某工程公司开挖一条500米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x米,那么所列方程正确的是()A.B.C.D.8.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A.1600元B.1800元C.2000元D.2400元9.甲,乙两个工程队,甲队修路300米与乙队修路400米所用的时间相等,乙队每天比甲队多修10米.若可列方程=表示题中的等量关系,则方程中x表示()A.甲队每天修路的长度B.乙队每天修路的长度C.甲队修路300米所用天数D.乙队修路400米所用天数10.若关于x的一元一次不等式组无解,且关于y的分式方程有非负整数解,则符合条件的所有整数a的和为()A.7B.8C.14D.1511.化简:﹣=.12.计算:=.13.计算:+=.14.当x=时,分式的值为0.15.当x时,分式无意义;当x时,分式值为零.16.若分式的值是负数,则x的取值范围是.17.解分式方程:.18.某校庆为祝建国70周年举行“爱国读书日”活动,计划用500元购买某种爱国主义读书,现书店打八折,用500元购买的爱国主义读本比原计划多了5本,求该爱国主义读本原价多少元?19.某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A种书架?20.观察下列等式:①1﹣1﹣=﹣;②﹣﹣=﹣;③﹣﹣=﹣;④﹣﹣=﹣;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.21.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B种茶叶若干盒,所购B种茶叶比A种茶叶多10盒,且B种茶叶每盒进价是A种茶叶每盒进价的1.4倍.(1)A,B两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A,B两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A,B两种茶叶各多少盒?参考答案1.解:当x2﹣9≠0时,分式有意义,由x2﹣9≠0得x2≠9,则x≠±3,故选:C.2.解:方程两边都乘以x(x﹣a),得:3x﹣2(x﹣a)=0,将x=2代入,得:6﹣2(2﹣a)=0,解得a=﹣1,故选:A.3.解:(x3y2)2•=x6y4•=x7y.故选:C.4.解:由题意可知:a>0且2a﹣1>0,或a<0且2a﹣1<0,∴a>或a<0,故选:D.5.解:分式可变形为:﹣.故选:D.6.解:==x﹣1=0,∴x=1;经检验:x=1是原分式方程的解,故选:D.7.解:设原计划每天挖x米,则原计划用时为:天,实际用时为:天.所列方程为:﹣=4,故选:A.8.解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x元,根据题意得:,解得:x=2000,经检验:x=2000是原方程的解,答:原计划每间直播教室的建设费用是2000元,故选:C.9.解:方程中x表示甲队每天修路的长度,故选:A.10.解:解不等式组,得,∵不等式组无解,∴a﹣1≤6,∴a≤7.解分式方程,得y=,∵y=为非负整数,a≤7,∴a=﹣1或1或3或5或7,∵a=1时,y=1,原分式方程无解,故将a=1舍去,∴符合条件的所有整数a的和是﹣1+3+5+7=14,故选:C.11.解:原式==.故答案为:.12.解:=.故答案为:.13.解:原式===2,故答案为:214.解:∵分式的值为0,∴,解得x=﹣2.故答案为:﹣2.15.解:(1)若分式无意义,则x+2=0,故x=﹣2,(2)分式的值为0,即x2﹣4=0且x+2≠0,故x=2.16.解:∵<0,x2+1≥1>0,∴2﹣3x<0,解得:x>.故答案为:x>17.解:去分母得:72000﹣60000=24x,合并得:24x=12000,解得:x=500,经检验x=500是分式方程的根.∴x=500.18.解:设爱国主义读本原价x元,=+5,解得:x=25,经检验,x=25是分式方程的解,答:爱国主义读本原价25元19.解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.20.解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,∴第5个等式为:﹣﹣=﹣;(2)第n个等式为:﹣﹣=﹣,证明:左边==﹣,右边=﹣,∴左边=右边,∴原式成立.21.解:(1)设A种茶叶每盒进价为x元,则B种茶叶每盒进价为1.4x元,依题意,得:﹣=10,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.4x=280.答:A种茶叶每盒进价为200元,B种茶叶每盒进价为280元.(2)设第二次购进A种茶叶m盒,则购进B种茶叶(100﹣m)盒,依题意,得:(300﹣200)×+(300×0.7﹣200)×+(400﹣280)×+(400×0.7﹣280)×=5800,解得:m=40,∴100﹣m=60.答:第二次购进A种茶叶40盒,B种茶叶60盒.。
第五章 分式与分式方程5.1 认识分式(一)一、问题引入:1. 叫分式.2.对于任意一个分式,当 不为0时,分式有意义.3.当分式的 为0,而 不为0时,分式的值为0.二、课堂检测:1.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++ 2.下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x +D .2221x x +3.当x ______时,分式2134x x +-无意义. 4.当x _______时,分式2212x x x -+-的值为零. 5.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .1- D .1±6.解答题:已知123x y x-=-,x 取哪些值时: (1)y 的值是零; (2)分式无意义.7.下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.8.下列说法正确的是( )A.如果A ,B 是整式,那么BA 就叫做分式; B.只要分式的分子为零,则分式的值就为零;C.只要分式的分母为零,则分式必无意义;D.因为xx 2不是分式,而是整式.9.在x 1,21,212+x ,πxy 3,a+m 1中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 5个10.使分式12--a a a 有意义的a 取值应是( ) A. 任意实数 B. a 1-≠ C. a 1≠ D. a 0≠或111.要使分式1122+-a a 有意义,则a 取值应是( ) A .-1 B. 1 C. 1± D. 任意实数12.当x=2时,下列各式的值为0的是( ) A.2322+--x x x B. 21-x C. 942--x x D. 12-+x x 13对于分式13-+x a x 中,当x=-a 时,下列结论正确地是( ) A. 分式无意义 B. 分式值为0C. 当a 31-≠时,分式的值为0D. 当a 31≠时,分式的值为0 14.下列各式从左到右的变形不正确的是( ) A.y y 3232-=-. B. x y x y 66=-- C. y x y x 4343-=- D. yx y x 3838-=-- 15.下列各个算式中正确的是( )A .22a b a b =;B. b a b a b a +=++22;C. Y X Y Y X Y +=+22;D. xy y x xy y x 23613121-=- 16.把分式则分式的值倍都扩大中,2b ,a 2ba a +( ) A .扩大4倍 B.扩大2倍 C. 缩小2倍 D. 不变17.下列等式成立的是( )A .b a b a b a -=-+22B b a b a ba b ab a +-=-+-2222 C .a b b a b ab a -=-+-222 D ()b a a b b a --=--12 18.在-3x,52,53,8,7,32,22b a y x xy y x y x -+--中,是分式的是 . 19.要使分式321-+a a 有意义,则a 的值应是 ;要使分式142--a a 的值为零,则a 的值应为 .20.分式x x-1,当 时,其值为0;当 时,分式无意义;当 时,分式的值为正数.21,化简=abbc a 15252 . 22,当x=3时,分式44422+--x x x 的值为 . 23如果,311=-yx 试求y -2xy x 2y -3xy -2x -的值。
专训 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m中,不是分式的式子有( )个. A .1 B .2 C .3 D .42.从a -1,3+π,2,x 2+5中任选2个构成分式,共可以构成________个分式.分式有无意义的条件3.无论a 取何值,下列分式总有意义的是( )A.a +1a 2B.a -1a 2+1C.1a 2-1D.1a +14.当x =________时,分式x -1x 2-1无意义. 5.已知不论x 为何数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( ) A .x <-2 B .x <1C .x >-2且x ≠1D .x >17.若分式3x -42-x的值为负数,则x 的取值范围是________. 8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用9.下列各式正确的是( )A.a b =a 2b 2B.a b =aba +bC.a b =a +c b +cD.a b =abb 210.要使式子1x -3=x +2x 2-x -6从左到右变形成立,x 应满足的条件是() A .x >-2 B .x =-2C .x <-2D .x ≠-211.已知x 4=y 6=z 7≠0,求x +2y +3z6x -5y +4z 的值.12.已知x +y +z =0,xyz ≠0,求x |y +z|+y |z +x|+z|x +y|的值.答案1.C 点拨:4x -25,2m ,x 2π+1不是分式. 2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.B4.±15.解:x 2-6x +m =(x -3)2+(m -9).因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为已知分式的值为正数,所以x +2>0,x -1≠0.解得x >-2且x ≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b ≠±1. 9.D 10.D11.解:设x 4=y 6=z 7=k(k ≠0),则x =4k ,y =6k ,z =7k.所以x +2y +3z 6x -5y +4z=4k +2×6k +3×7k 6×4k -5×6k +4×7k =37k 22k =3722. 12.解:由x +y +z =0,xyz ≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z |-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z |-z|=1-1-1=-1.。
分式重点知识及经典例题一、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
例1.下列各式a π,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有( )个。
二、 分式有意义的条件是分母不为零;【B ≠0】分式没有意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.下列分式,当x 取何值时有意义。
(1)2132x x ++; (2)2323x x +-。
例3.下列各式中,无论x 取何值,分式都有意义的是( )。
A .121x +B .21x x +C .231x x+ D .2221x x +例4.当x______时,分式2134x x +-无意义。
当x_______时,分式2212x x x -+-的值为零。
例5.已知1x -1y=3,求5352x xy y x xy y +---的值。
三、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C )四、分式的通分和约分:关键先是分解因式。
例6.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )。
例7.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,则是(• )。
C B C A B A ⋅⋅=C B C A B A ÷÷=例8.分式434y x a +,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )。
例9.约分:(1)22699x x x ++-; (2)2232m m m m-+-例10.通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -例11.已知x 2+3x+1=0,求x 2+21x的值.例12.已知x+1x =3,求2421x x x ++的值.五、分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
专训1 分式的意义及性质的四种题型名师点金:1.从以下几个方面透彻理解分式的意义:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零;(4)分式值为正数⇔分子、分母同号;(5)分式值为负数⇔分子、分母异号.2.分式的基本性质是约分、通分的依据,而约分、通分为分式的化简求值奠定了基础.分式的识别1.在3x 4x -2,-5x 2+7,4x -25,2m ,x 2π+1,2m 2m 中,不是分式的式子有( )A .1个B .2个C .3个D .4个2.从a -1,3+π,2,x 2+5中任选2个构成分式,共有________个.分式有无意义的条件3.【 2017·武汉】若代数式1a -4在实数范围内有意义,则实数a的取值范围为( )A .a =4B .a>4C .a<4D .a ≠4 4.当x =________时,分式x -1x 2-1无意义.5.已知不论x 为何实数,分式3x +5x 2-6x +m 总有意义,试求m 的取值范围.分式值为正、负数或0的条件6.若x +2x 2-2x +1的值为正数,则x 的取值范围是( )A .x <-2B .x <1C .x >-2且x ≠1D .x >17.若分式3x -42-x 的值为负数,则x 的取值范围是________.8.已知分式a -1a 2-b 2的值为0,求a 的值及b 的取值范围.分式的基本性质及其应用 9.下列各式正确的是( )A.ab=a2b2B.ab=aba+bC.ab=a+cb+c D.ab=abb210.要使式子1x-3=x+2x2-x-6从左到右的变形成立,x应满足的条件是()A.x>-2 B.x=-2C.x<-2 D.x≠-211.已知x4=y6=z7≠0,求x+2y+3z6x-5y+4z的值.12.已知x+y+z=0,xyz≠0,求x|y+z|+y|z+x|+z|x+y|的值.答案1.C 点拨:4x -25,2m ,x 2π+1不是分式.2.6 点拨:以a -1为分母,可构成3个分式;以x 2+5为分母,可构成3个分式,所以共可构成6个分式.3.D 4.±15.解:x 2-6x +m =(x -3)2+(m -9). 因为(x -3)2≥0,所以当m -9>0,即m >9时,x 2-6x +m 始终为正数,分式总有意义.6.C 点拨:x 2-2x +1=(x -1)2.因为分式的值为正数,所以x +2>0且x -1≠0.解得x >-2且x ≠1.7.x >2或x <438.解:因为分式a -1a 2-b 2的值为0,所以a -1=0且a 2-b 2≠0.解得a =1且b ≠±1.9.D 10.D11.解:设x 4=y 6=z7=k(k ≠0),则x =4k ,y =6k ,z =7k. 所以x +2y +3z 6x -5y +4z =4k +2×6k +3×7k 6×4k -5×6k +4×7k=37k 22k =3722.12.解:由x +y +z =0,xyz ≠0可知,x ,y ,z 必为两正一负或两负一正.当x ,y ,z 为两正一负时,不妨设x >0,y >0,z <0,则原式=x |-x|+y |-y|+z|-z|=1+1-1=1;当x ,y ,z 为两负一正时,不妨设x >0,y <0,z <0,则原式=x |-x|+y |-y|+z|-z|=1-1-1=-1.综上所述,所求式子的值为1或-1. 值的分式消元求值.。
分式有无意义练习题对应知识点:1.一般的,对分式A/B都有:①分式有意义B≠0;②分式无意义③分式的值为0A=0且B≠0;④分式的值大于0分子分母同号;⑤分式的值小于0分子分母异号。
B=0;练习题:1.. 当时,分式分式值无意义.2.当x________,分式x?1值为0;x 时,这个分式值有意义,x 时,这个2x?1x?1有意义;当x_________这个分式没有意义。
x?525?x2x2?6x?53.当x为何值时,下列分式的值为零:?|x?1| x?4x24.当x为何值时,分式的值为负.?xx2?3x?185.分式,当x为何值时,分式无意义; 当x 为何值时,分式值为0. x2?96.当x为何值时,分式7.当x为何值时,分式x?2为非负数. x?34为正;?x8.当x有何值时,下列分式有意义x?413x26?x 1x?4|x|?3x?2x?1x?x19.当x取何值时,下列分式的值为0.x?1 x?3|x|?2x?4 x2?2x?3x?5x?6210.当x取何值时,下列分式有意义:1 ?x1|x|?3?11?1x2分式重点复习练习题1.分式有意义:确定字母的取值范围,使分式有意义的条件是:分式的分母不为0. B?0x2?41x:A:B: C:x?2|x|?1x?x?22. 分式无意义:确定字母的取值,使分式无意义的条件是:B=0,再解方程. A:1x?2x?B: C: x?2x?3x?2|x|?23. 分式值为0.确定字母的取值,使分式值为0的条件是:??A?0. B?0?x2?1|x|?1x?2x?1,. A:B C:22?xx?1x?x?22x?y应用性质和符号法则变化解答下列问题: 不改变分式的值,使分式?yy?y的分子,分母不含“-”号. ,,?2y?2x2x不改变值,使分式1?x分子,分母最高次项系数为正.1?3x?x不改变值,使分式0.01x?0.5y的分子,分母各项系数均为整数.0.3x?0.04y完成填??a1x2?x?112?xx?2?2空:1... ??,2?22,3x?1x?1bcbc3?xx?1:检查分式概念问题:2x是分式;3x?4x11211,a?,0,中,整式有分式在,,323bc?当x 时,代数式有.本节达标反馈练习题:A:1.在a4n?m1x?51中,整式有,分式,,,,,24a3m?nx5x?yx?1值为0;x 时,这个分式值有意义,x 时,2x?1有 .2. 当时,分式这个分式值无意义.13.把分式a的a,b都扩大3倍,则分式的值 . a?bb2?b)1b?1x?y?x?y?x?ybx?5.不改变分式值,使分式的分子,分母中各项的系数化为整数,y3x?2y4?6.不改变分式值,使分式的分子,分母中最高次项系数为正的.?3a?1.2a?1?5aB: 1.判断正误: ?xx?5m5m?.?? ?6n6n?y?xy?x11?3?x3?x??22?xx?2?2?7x?3x2?7x?3x?2. 说明下面等号右边是怎样从左边得到的:2x?62?)x2?2x?3x?11x?3?2 x?2x?x?63.不改变分式的值和它本身的符号,使下列的第二个分式的分母和第一个分式的分母相同:6a?14a?5,.a2?a?3?a2?a?3a?b4.将分式中字母a,b分别扩大2倍,则变形后的分式的值.abx25.当x 时,分式的值为负.3?xx2?3x?186.分式,当x时,分式无意义; 当x时,分式值为0.x?9四种运算与变形1.约分变形:约分是约去分式的分子与分母的最大公约式,约分过程实际是作除法,目的在于把分式化为最简分式或整式,根据是分式的基本性质.?4m3n2x2x3x2?xy?2y2例: ,,2m3n44y2x2?3xy?2y22.通分变形:通分是异分母的几个分式化为相同分母的过程,是与约分运算相反,为了加减法的运算,不惜把自身的简美化繁.其根据还是分式的基本性质.2例 .1y2xy2,?4x2.12m2?9,49?3m 1x?2,x?2. A?C?AC3.乘除运算:1)法则:BDBDACADB?D?B?C?ADBC)步骤:当分子,分母都是单项式时可直接约分;当分子,分母是多项式时,先做因式分解,然后按运算法则进行.3计算?a?a2例:3b,n?m3?m????2??,a2?8a?1616?a2?n?9?a2?9?6a?a2本节知识反馈A.1,约分①a?xa2?ab?b2x?a ② a3?b ③ ?4a2bc316abc42.通分①b32a,acb4ab ②112,. x2?1,x2?3x?2.3.计算① ?2a3b4?20a3b55cd4?3cd8ab ②16a2b3 ???4???3xy2???2222233③ x?2xy?yx?y?c2?x2?xy?y2?x3?y ④ ????ab?????a??bc??????c??a2b??, B:. 约分:1?x4a2nx3?x2?x?1,bnn?25. 计算:① ?x2?2xy?y2xy?x?yx2?2x?327?3x2x② x3?1?1?x?x24.加减运算1)同分母分式加减法则AM?BM?A?BM2)异分母分式加减法则bdbca?c?ac?adac?bc?adac运算步骤:①先确定最简公分母;②对每项通分,化为分母相同;③按同分母分式运算法则进行;④注意结果可否化简.例: ①4x?35x7y119x?2?2?x ②z6y2z?12xz2?8x2y③x?3?3?x④x?x2?y2x2?y210x?y?y ⑤a2?3a?4?a?1a?1?1 本节达标反馈 A:计算 1.1?x2.1n?1n?13.xyyx2?y2?x?y4.ca6a2b?4b2c?b3c2a5.a?2?42?a6.1x?1?11x2?1?x?1B:7.xx?61x?3?x23x?x.2xx2?9?13?x?2 x2?6x?99.5m?2?m2?2m?10.11.??a?b?4ab??a?b?????a?b?4ab?a?b??C.12.已知:4x?1A?x?5?Bx?2求A,B.13.1a?x?1a?x?2x4x38x7a2?x2?a4?x4?x8?a8分式四则混合运算例:1.a2a?2b?1a?2b?2ba?2b?a?2b 2b2.3x?2x2?x?2????1?1?x?1??????1?1?x?1??3.3?x2x?4????x?2?5?x?2??4本节反馈 A:1.x?.??11??11??a?b?????a?b??.?a2?4a2?3a???a2?1?4a24.?a?1?a?1????a2?1,???2x2x??x?y?y?x??8x??x2?y2B:.??x?2x?1??4??x2?2x?x2?4x?4?????1?x??6.??11???2?2?????1?x?y?1?x?y??? C:7.当a??12,b?2时,求 a?ba?b?a2?b2a2?b2?a?bab?a2b?ab2a2?b2的值. 两点问题;1.含字母系数的一元一次方程或可看作此问题的公式变形例;x?mxn?m?n..xa?b?3a?b?2bxa2?b2. 例2:公式变形:在公式E?I中已知E,I,R,r且E?IR,求n. 反馈:A:1.解关于x的方程;a=cx,m2?n2,2, 在y?3bx2a?x,,求x.B:3.解关于x的方程. ①xa?b?32bxa?b?a2?b25第十六章分式一、分式的要概念:一般地,如果A、B表示两个整式,,并且B中含有字母,那么式子叫作BA分式。