软件定义仪器
- 格式:doc
- 大小:8.31 KB
- 文档页数:3
PLX Express总线标准1. PXI总线概述PXI(PCI extensions for Instrumentation,面向仪器系统的PCI扩展)平台是基于成熟的PCI总线技术,随着PCI发展到PCI-Express,PCI Express技术也被引入到PXI的标准中,2005年,PXISA官方组织推出了新一代基于高速差分信号和交换式结构的PXI-Express的软硬件标准。
与PXI相比,PXI-Express具有以下几个方面的突出特点:1) 数据吞吐量高:由于采用了高速串行差分信号和交换式结构(Switched Fabrics),PXI-Express能够将传统并行总线的带宽提高约45倍,从原来PXI的132MB/s突发传输速率提高到6GB/s,突破了传统PXI总线传输速率的瓶颈;2) 除了保持PXI现有的定时和同步功能,PXI-Express还提供了附加的定时和触发总线,包括:100MHz差分系统时钟、差分星形触发信号,以及槽间菊花链式差分信号等;3) 通过使用差分时钟和触发信号,PXI-Express系统提高了对仪器时钟信号的抗噪声能力,确保可靠同步和触发。
除了上述性能上的提升,PXI-Express同时还保持了和原来PXI软件上的完全兼容性。
PCI-Express的软件兼容性使得PXI提供的标准软件框架同样适用于PXI-Express。
传统的PXI总线仪器用户可以“无妨碍”地过渡到先进的PXI-Express总线仪器。
2 .PXI-Express总线的技术优势PXI-了混合兼容的插槽,使得PXI与PXI-Express模块可以协同工作于同一系统。
故PXI与PXI-Express系统均有面向自动化测试应用的三个关键技术优势。
这些技术优势包括:(1)灵活的、软件定义的仪器。
(2)模块化仪器的集成。
(3)高数据吞吐量。
软件定义的仪器系统所具备的灵活性,使得用户可以为各种不同的测量重新配置测试系统。
EM9118B系列产品虚拟仪器软件使用指南●前言NI LabVIEW是一款专为帮助用户快速开发强大的测试软件而进行优化且适用于自动化测试的领先系统设计软件。
本虚拟仪器软件是将LabVIEW开发平台编写的程序在开发电脑上编译生成后发布到Windows操作系统上的独立可执行程序(exe)。
用户只需将可执行程序移植到目标电脑上运行即可。
移植方法是:将生成的exe拷贝到目标电脑上,然后在目标电脑上单独安装LabVIEW运行引擎(Run-Time Engine)和需要的驱动以及工具包等,这种方法移植程序比较简单,是最常用的方法。
关于LabVIEW运行引擎任何电脑,只要你想在上面运行LabVIEW生成的独立可执行程序(exe),你都需要在目标电脑上安装LabVIEW运行引擎。
LabVIEW运行引擎包含了:1.运行LabVIEW生成的可执行程序所需要的库和文件2.使用浏览器远程访问前面板所需的浏览器插件3.应用程序中生成LabVIEW报表所需要的一些组件4.一些3D图表的支持等运行引擎本身就是支持多语言的,不需要安装特定语言版本的运行引擎。
另外需要确保目标电脑上安装的运行引擎版本与开发应用程序时使用的LabVIEW版本一致。
如果你想在一台电脑上运行多个版本的LabVIEW生成的可执行程序,那你的电脑必须安装与这些LabVIEW版本一一对应的多个版本的运行引擎。
●虚拟仪器软件运行引擎介绍1.首选通过购买产品的光盘中,安装虚拟仪器软件引擎文件。
文件名:LVRTE2011f3std.exe语言:中文(简体)软件类型:LabVIEW2011运行引擎操作系统:Windows Server2008R264-bit;Windows Vista32-bit;Windows Vista64-bit;Windows732-bit;Windows764-bit;Windows XP32-bit; Windows Server2003R232-bit光盘路径:G:\中泰研创虚拟仪器软件赠送版\运行引擎\2.网盘下载链接/s/1c2IktHI虚拟仪器软件引擎的安装1.双击安装文件出现如下图所示:2.点击“确定”按钮,出现如下图所示:3.点击“UnZip”按钮。
Thermo ScientificSkanIt™微孔板读数仪软件用户手册软件版本7.0Cat.No. N16707 Rev. 4.0 2021© 2021 Thermo Fisher Scientific Inc. 保留所有权利。
Varioskan、Fluoroskan、Multiskan和SkanIt是Thermo Fisher Scientific Inc.及其子公司的注册商标。
Excel、Microsoft和Windows是微软公司的注册商标。
其他所有商标和注册商标归其各自所有者所有。
Thermo Fisher Scientific Inc.向购买产品的客户提供本文档,以供其在产品操作过程中使用。
本文档受版权保护,未经Thermo Fisher Scientific Inc.书面授权,严禁复制本文档全文或任何部分。
本文档中的内容如有变更,恕不另行通知。
本文档中的所有技术信息仅供参考。
本文档中的系统配置和规格可替代购买者之前收到的所有信息。
Thermo Fisher Scientific Inc.对本文档的完整性、准确性和正确性不作任何担保,并对可能因使用本文档而造成的任何错误、遗漏、损坏或损失不承担任何责任,即使文档中的信息被严格遵循。
本文档并不属于Thermo Fisher Scientific Inc.与购买者签订的任何销售合同的组成部分。
本文档决不应以任何方式约束或修改任何销售条款和条件,销售条款和条件应约束两份文本之间所有互相冲突的信息。
以下为原始说明。
仅供研究使用。
不可用于诊断程序。
前前言关于本指南Thermo Scientific SkanIt™ 微孔板读数仪软件用于控制微孔板读数仪。
本指南概括介绍了软件安装步骤和操作说明。
相关文档除本指南外,Thermo Fisher Scientific还提供以下用于SkanIt软件的电子文档:•Thermo Scientific™ SkanIt™ Software for Microplate Readers Technical Manual (Cat. No. N16046)•Thermo Scientific™ SkanIt™ Automation Interface User Manual (Cat. No. N19215)SkanIt软件分发时包含发布说明。
虚拟仪器(VI,Virtual Instrumentation):是一种以计算机和测试模块的硬件为基础、以计算机软件为核心所构成的,并且在计算机显示屏幕上虚拟的仪器面板,以及由计算机所完成的仪器功能,都可由用户软件来定义的计算机仪器。
从虚拟仪器的组成结构上来看:(1)虚拟仪器的硬件是通用的(包括通用计算机硬件平台和通用的测量功能硬件);(2)良好的人机界面。
虚拟仪器的面板(或称软面板)是虚拟的(通过“控件”虚拟出面板);(3)功能强。
虚拟仪器的功能是由用户软件定义的;(4)虚拟仪器之“虚拟”含义:虚拟仪器面板;软件实现仪器功能。
如:基于高速数据采集硬件,通过计算机软件编程可实现“虚拟示波器”、“虚拟频谱仪”、“虚拟交流数字电压表”、“虚拟频率计”、“虚拟相位计”等不同仪器。
(5)因此,软件是虚拟仪器的核心,NI 提出“软件即仪器”(The software is the instrument)。
与传统仪器相比,虚拟仪器技术特点:1)功能强、性价比高、开放性(可扩充性)好;充分利用计算机丰富的软硬资源。
仪器功能可通过软件灵活设计(基于相同的硬件,通过软件设计可实现不同的虚拟仪器)。
仪器升级方便,性价比高(一机多用)。
基于计算机网络技术,可实现“网络化虚拟仪器”。
(2)操作方便;通过图形用户界面(GUI)操作虚拟仪器面板。
(3)硬件模块化、系列化;基于仪器总线技术,设计出模块化、系列化硬件。
1. 虚拟仪器系统组成及各部分基本功能虚拟仪器的系统构成硬件和软件两大部分构成。
硬件是基础,软件是核心。
各部分基本功能虚拟仪器的内部功能,可划分为信号调理与采集、数据分析和处理、参数设置和结果表达三大功能模块。
信号采集与控制主要由虚拟仪器的通用硬件平台,并配合仪器驱动程序共同完成,而数据分析与处理、结果表达与输出则主要由用户应用软件完成。
第二章LabVIEW 概述LabVIEW的特点-图形化的仪器编程环境提供显示和控制对象,如表头、旋钮、图表等。
PLX Express总线标准1. PXI总线概述PXI(PCI extensions for Instrumentation,面向仪器系统的PCI扩展)平台是基于成熟的PCI总线技术,随着PCI发展到PCI-Express,PCI Express技术也被引入到PXI的标准中,2005年,PXISA官方组织推出了新一代基于高速差分信号和交换式结构的PXI-Express的软硬件标准。
与PXI相比,PXI-Express具有以下几个方面的突出特点:1) 数据吞吐量高:由于采用了高速串行差分信号和交换式结构(Switched Fabrics),PXI-Express能够将传统并行总线的带宽提高约45倍,从原来PXI的132MB/s突发传输速率提高到6GB/s,突破了传统PXI总线传输速率的瓶颈;2) 除了保持PXI现有的定时和同步功能,PXI-Express还提供了附加的定时和触发总线,包括:100MHz差分系统时钟、差分星形触发信号,以及槽间菊花链式差分信号等;3) 通过使用差分时钟和触发信号,PXI-Express系统提高了对仪器时钟信号的抗噪声能力,确保可靠同步和触发。
除了上述性能上的提升,PXI-Express同时还保持了和原来PXI软件上的完全兼容性。
PCI-Express的软件兼容性使得PXI提供的标准软件框架同样适用于PXI-Express。
传统的PXI总线仪器用户可以“无妨碍”地过渡到先进的PXI-Express总线仪器。
2 .PXI-Express总线的技术优势PXI-了混合兼容的插槽,使得PXI与PXI-Express模块可以协同工作于同一系统。
故PXI与PXI-Express系统均有面向自动化测试应用的三个关键技术优势。
这些技术优势包括:(1)灵活的、软件定义的仪器。
(2)模块化仪器的集成。
(3)高数据吞吐量。
软件定义的仪器系统所具备的灵活性,使得用户可以为各种不同的测量重新配置测试系统。
摘要:为了加速新型仪器研发,提出了“软件定义仪器”的方法并讨论了其体系和可行性。
关键词:软件定义仪器;微处理器;信号调理;模数转换器;数字信号处理引言仪器,作为人类感官的延伸,在人类的文明和社会发展中起作不可替代的、极其重要的作用。
在科学技术成爆炸状发展的当代,仪器所起的作用几乎无所不在,离开了仪器现代人们的生活就一刻也不能继续:医院对患者的抢救、发电厂的运行、交通工具的运行……。
实际上,近代科学技术的发展史几乎就是仪器仪表的发展史,即使到科学技术高度发达的今天,仪器仪表也在科学研究中同样起作不可替代的、极其重要的作用。
仪器科学与技术本身也在迅速地发展,但这种发展主要体现在专门领域应用的仪器科学技术的研究上,对仪器仪表带共性的问题研究较少。
本文借助软件定义无线电(SDR)、虚拟仪器(Virtual Instrument,VI)和组态软件(Con-figuration Software,CS)的思想,提出软件定义仪器(Software Defined Instrumentation,SDI)的概念和系统。
软件无线电的由来1992年5月,Joe Mitola在美国电信系统会议上首次提出了软件无线电SR(SoftWareRadio)(又称为软件定义无线电,Software De-fined Radio,SDR)的概念,它的基本思想是将硬件做为其通用的基本平台,而把尽可能多的无线及个人通信功能用软件来实现,从而将无线通信新系统、新产品的开发过程逐步转移到软件上来。
它被称之为是继模拟通信到数字通信、定通信到移动通信之后,无线通信领域的第三次革命,即从硬件定义的无线电通信到软件定义的无线电通信。
软件无线电可定义为:“软件无线电是一种可用软件进行重配置和重编程的、灵活的、多业务、多标准、多频段无线电系统的新兴技术。
”为了更清晰地说明软件无线电与传统无线电的区别,分别给出软件(数字)化程度不同的无线电结构。
所谓的软件无线电,从硬件上来看,就是要使ADC和DAC尽可能靠近天线,省却高频模拟的放大、变频、调制与解调等环节。
ADC和DAC越靠近天线,说明软件(数字)化程度越高。
显然,软件无线电将为所有远程通信市场的参与者、制造商、经营商和用户带来巨大的利益。
制造商可以把研究与开发重点集中到简单的硬件平台设备上,这些设备可应用到每一个蜂窝系统和市场,而不仅仅是一个国家或地区范围的蜂窝系统和市场。
因此,可进行大批量生产以降低成本。
另一个优点是可以不断地改进软件,以及纠正在工作中发现的软件错误和故障。
经营商能够快速拓展适合每个用户并区别于其他经营商的新业务;同样的终端能够提供所有服务,即使这些服务用不同的通信标准支持。
另外,还可以实现多标准基站。
对用户来说,软件无线电的优点是能将他们的通信漫游到其他蜂窝系统,并利用全球移动和覆盖盖范围的优势(即只要有一个蜂窝网络覆盖某地区就可以提供服务)。
而且,用户可以根据其偏爱配置他们的终端。
[!--empirenews.page--] 另外,软件无线电技术延长了硬件(基站和用户终端的)的使用寿命,降低了过时落伍的风险。
系统可重编程能力使硬件可重复使用,直到可以利用新一代硬件平台。
但这并不意味着用户终端的寿命可以无限延长,因为在PC机市场,运行功能越来越强大的程序需要功能更强大的PC机。
在不久的将来,移动终端也可能出现同样的现象。
虽然软件无线电能够为研发、生产、运营和使用等各方带来巨大的利益,但存在和面临天线、前端电路、高速模数转换器、处理器电路、算法等很大的问题和挑战。
对比之下,现代仪器仪表的一般结构。
在仪器仪表的研发中,模拟电路部分(传感器接口电路+放大滤波)和数字部分(μP或μC)是最为重要的两个部分,又是各个整机厂“各自”研发、投入最大、重复最多的两个部分。
与“无线电”可以有以下对比:传感器、天线;传感器接口电路+放大滤波、高频放大、变频、调制与解调;μP或μC、DSP……因此,我们完全可以借鉴“软件无线电”的概念,构成图5所示的“软件定义仪器”(Software Defined Instrument,SDI)或软件仪器(Software Instrument,SI)(为简便起见,以下均简称软件仪器)。
这样使得一方面A/DC尽可能地靠近传感器,减少或避免模拟电路,同时采用具有API(Application Programming In-terface,应用编程接口)、仪器接口协议栈的μP或μC平台;可以把分散、重复而且最耗费人力、财力的“个体”或“小作坊”式的研发行为变成专业化的“规模”开发和生产,而整机生产企业和仪器仪表的用户则较容易地根据自己的需要重新“定义”仪器仪表的功能、以最小的代价更新、升级或维护已有仪器仪表。
与虚拟仪器的异同虚拟仪器的出现是测试仪器领域的一场新的革命,是测试仪器与计算机深层次的结合。
虚拟仪器的主要组成就是用一套通用的数据采集系统通过不同的接口接人计算机,在计算机上实现各种测量功能。
虚拟仪器与传统仪器相比,具有以下几个特点。
(1)传统仪器的面板只有一个,其上布置着种类繁多的显示与操作元件,由此导致[1][2]下一页许多认读与操作错误。
而虚拟仪器面板上的显示元件和操作元件的种类与形式不受标准件和加工工艺的限制,而由编程来实现,设计者可以根据用户的认知要求和操作要求设计仪器面板,可以通过在几个分面板上的操作来实现比较复杂的功能。
这样,在每个分面板上就可以实现功能操作的单纯化与面板布置的简洁化,从而提高操作的正确性与便捷性。
(2)通用硬件平台确定后,由软件取代传统仪器中的硬件来完成仪器的功能。
(3)仪器的功能是用户根据需要由软件来定义的,而不是事先由厂家定义好的。
(4)仪器的改进和功能扩展只需相关软件设计更新,而不需购买新的仪器。
可以说,软件仪器具有上述虚拟仪器的优点,但软件仪器是“实实在在”的仪器,是建立在嵌入式系统,如单片机、ARM、DSP等之上,而不是建立在普通PC机上。
软件仪器有比虚拟仪器大得多的适应性、可靠性和灵活性。
[!--empirenews.page--] 软件仪器的主要研究内容软件仪器有四个主要研究内容。
1 软件仪器的理论体系与系统结构结合仪器的特点,研究软件仪器的理论体系与系统结构。
根据多数种类的仪器及其测量要求,软件仪器有三个关键技术:传感器数字化接口、软件仪器处理引擎和仪器接口(两个虚线框之外的部份)。
2 数字化传感器接口模块以数字电路和算法取代模拟电路是软件仪器的关键和核心。
这部分的研究是要在保证测量精度的条件下尽可能地采用数字电路来实现传感器的模拟输出信号转换成数字信号,或者说尽量使ADC靠近传感器。
在该部分内容中,重点研究过采样技术:结合数字信号处理和FPGA技术,采用中、高速中分辨率的ADC实现高分辨率的数据转换,即Z-A型ADC 技术。
另外,还要研究过采样与调制,解调(锁相检测)相结合的技术。
3 软件仪器处理引擎根据仪器检测信息的复杂程度、数据量大小等不同要求选择若干硬件平台(ARM、DSP、FPGA、MCU等)和实时操作系统、驻留编译器,研发相应的API。
4 仪器接口根据不同种类的应用,优选和研发软件仪器的硬件接口。
下面分别就软件仪器中的“传感器数字化接口”和“信号处理核心模块”两个核心问题进行说明。
传感器数字化接口讨论传感器的接口电路时,可以采用图9所示的方式对传感器进行分类。
各类传感器的数字化接口的可能性分析如下。
(1)电阻:可以直接采用24位Z ∑-△型ADC(比例法)转换得到数字信号,或具有R/CF型转换集成电路与单片机直接将电阻阻值转换成数字。
(2)电容:现有电容数字转换器的分辨率可达24bit,5aF√Hz的噪声。
(3)电感:给出了一种便于集成化的直接转换方法。
(4)比例、(5)差动和(6)桥式差动:集成化的数字转换器已有很多品种,如美国ADI公司的AD2S930、美信公司的MAXl452、MAXl457等。
(7)和(10)电压:直接采用ADC转换为数字信号,没有采用放大器所带来的动态范围损失在后面讨论。
(8)和(11)电流:很容易转换成电压信号后再直接采用ADC转换为数字信号。
(12)和(13)数字输出:传感器本身是数字信号输出。
综上所述,在较低频率的测量中,对几乎所有传感器接口都可以实现数字化。
在传感器接口数字化的一个关键技术是高分辨率、高速度的ADC问题。
一般说来,仪器中的ADC速度远比软件无线电中要求低(特殊的高速示波器等仪器除外),但对精度要求较高。
近年来,微电子技术的发展为解决软件仪器中的ADC问题提供了很好的条件:分辨率高达24位的ADC已经商品化,而且价格很低;高速ADC已经达到2G的采样速度,12-16bit的ADC已经达到几百KSPS-几百MSPS。
而利用过采样技术可以将ADC的数据通过率充分发挥出来,即可以在采样速度和分辨率中进行平衡,在不需要ADC所具备的高采样率时,可以用其速度换取精度(分辨率),从而达到直接数字化的目的。
下面讨论模拟信号处理中若干关键技术在直接数字化后的影响。
[!--empirenews.page--] 模拟放大直接采用高分辨率的ADC,如24 bit的ADC在输入范围为2.5V时的可分辨0.15lμV。
足以满足绝大多数的测量应用。
利用过采样技术,如200 KSPS/16bit的ADC下抽样至200SPS时相当于21bit的分辨率。
在输入范围为2.5V 时的可分辨1.2lμY。
滤波除非干扰超出ADC的输入范围,在可得到足够分辨率的条件下,数字信号处理可以比模拟信号处理优异得多的多的结果。
即使干扰可能超出ADC的输入范围,在过采样(目前比较容易做到)时所需的滤波器也比较容易实现(对滤波器参数及其元件的要求低)。
调制/解调一般说来,仪器中调制,解调使用的载波频率远较无线电中使用的频率要低,因而实现起来更为容易。
校准/补偿微处理器的高速度、大容量的非易失性存储器、在线下载等微电子学的进展为仪器的校准/补偿提供了基础。
综上所述,传感器数字化接口的信号处理流程,其中最主要的研究内容是“高数据通过率的ADC”。
而这部分内容的实现方式。
信号处理核心模块借鉴已有的嵌入式系统和根据仪器检测信息的复杂程度、数据量大小等不同要求选择或研发若干硬件平台(ARM、DSP、FPGA、MCU等,或他们的组合)和实时操作系统、驻留编译器,研发相应的API、传感器数字化接口等等。
结语本文借鉴软件无线电和虚拟仪器的思想,提出软件仪器的构想,认证了软件仪器的理论架构和体系、实现的必要性和可能性。
软件仪器概念的确立,将为未来的仪器研发提供理论指导和平台,有助于仪器的研发和生产及其应用进入高效益、高速度的新时代。