第六章 计算全息(1)
- 格式:ppt
- 大小:122.00 KB
- 文档页数:30
计算全息课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握计算全息的基本理论、方法和应用;技能目标要求学生能够运用计算全息技术解决实际问题,提高创新能力和实践能力;情感态度价值观目标要求学生树立科学精神,增强社会责任感和使命感。
通过分析课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果。
课程目标旨在培养学生的综合素质,使他们在知识、技能、情感态度价值观等方面全面发展。
二、教学内容根据课程目标,我们选择和了以下教学内容:1.计算全息基本理论:包括全息原理、全息图的制备和再现等;2.计算全息方法:包括数字全息、全息光学、计算全息图等;3.计算全息技术应用:包括全息显示、全息存储、全息测量等;4.计算全息编程实践:使用相关软件(如Holographic Python等)进行编程实践。
教学大纲将按照以上内容的顺序进行安排和讲解,确保教学内容的科学性和系统性。
三、教学方法为了激发学生的学习兴趣和主动性,我们将采用多种教学方法:1.讲授法:讲解计算全息的基本理论和方法;2.讨论法:引导学生探讨计算全息技术的应用和发展前景;3.案例分析法:分析典型的计算全息应用案例,提高学生的实践能力;4.实验法:让学生动手操作,实际操作全息设备,加深对知识的理解。
通过多样化教学方法,我们将培养学生独立思考、创新能力和实践能力。
四、教学资源为了支持教学内容和教学方法的实施,我们选择了以下教学资源:1.教材:《计算全息原理与应用》;2.参考书:国内外相关论文和专著;3.多媒体资料:教学PPT、视频资料等;4.实验设备:全息光学仪器、计算全息软件等。
教学资源将丰富学生的学习体验,提高教学效果。
五、教学评估为了全面反映学生的学习成果,我们设计了以下评估方式:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置相关计算全息的练习题,评估学生的知识掌握程度;3.考试:定期进行计算全息知识考试,评估学生的综合运用能力。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
湖北省高等教育自学考试大纲课程名称:信息光学课程代码:7076第一部分课程性质与目标一、课程性质与特点信息光学是应用光学、计算机和信息科学相结合而发展起来的一门新的光学学科,是信息科学的重要组成部分,也是现代光学的核心。
本课程主要从两个方面介绍信息光学的基本内容:一是信息光学的基础理论,包括线性系统理论、标量衍射理论、传递函数理论等;二是信息光学的主要应用,包括光学全息、计算全息、空间滤波、光学相干和非相干处理等。
二、课程目标与基本要求通过本课程的教学,使学生了解和掌握光信息科学的基本理论及基本技术,了解光信息科学的实际应用,培养学生理论联系实际,开拓学生理论用于实践的方法和创新思路,提高学生解决实际问题的能力。
三、与本专业其他课程的关系《信息光学》是光机电一体化工程专业的一门专业课,其先修课程主要包括普通物理、高等数学、傅立叶变换、光学等课程。
第二部分考核内容与考核目标第一章线性系统分析一、学习目的与要求本章基本内容为:常用数学函数,卷积与相关,傅立叶变换性质及定理,线性系统分析,二维光波场分析。
本章是本课程的基础,要求学生在解决光学问题中能熟练运用其性质和定理,线性系统与光学系统的关联,加深对空间频率、空间频谱概念的理解。
二、考核知识点与考核目标(一)(重点)识记:常用数学函数;卷积;互相关、自相关;傅立叶变换;线性系统;线性平移不变系统理解:傅立叶变换性质;线性系统分析;空间频率、空间频谱;应用:单色平面波空间频率的计算(二)(次重点)识记:卷积、相关的性质;理解:傅立叶变换基本定理第二章标量衍射理论一、学习目的与要求本章基本内容为:基尔霍夫积分定理;基尔霍夫衍射公式;菲涅耳衍射和夫朗和费衍射;透镜的傅立叶变换特性。
本章是教学的重点,是信息光学的基础,要求学生掌握标量波衍射理论,侧重利用菲涅耳衍射与卷积、夫朗和费衍射与傅立叶变换关系解决问题;掌握光波通过透镜的相位分布,透镜的傅立叶变换特性及孔径对透镜实现傅立叶变换的影响。
看看一维信号的例子对函数f (x ,y )进行傅立叶变换:(,)(,)f x y F u v →:2Bu 带宽为对抽样函数做傅立叶变换:(,)(,)s s f x y F u v →(,){(,)}(,)s s n m n mF u v f x y F u v x y ∞∞=−∞=−∞==−−ΔΔ∑∑F 函数在空间域被抽样,导致函数频谱F (u ,v )在空间频域的周期复现,频谱F (u ,v )的中心间隔为1/,1/x yΔΔ假定f (x ,y )是有限带宽函数,频谱在空间频域的一个有限区间上不为零,假设2Bx 和2B y 是这个有限区域在u ,v 方向上的宽度,即:(,){(,)}0F u v f x y ⎧=⎨⎩F ,x x y yB u B B v B −≤≤−≤≤这样就能用滤波的方法,分离出F (u ,v ),进而恢复出原函数二、函数的复原:只要抽样时满足抽样定理,其抽样后的函数fs (x,y)的频谱F s(u,v)就不会交叠,就可以选择一个合适的低通滤波器(如矩形函数),通过滤波操作、再经逆傅立叶变换复原原函数f(x,y)。
脉冲幅度调制(PAM)脉冲宽度调制(PWM)脉冲位置调制(PPM)二值化,具有很强的抗干扰和抗噪声能力。
事实上、3π/2,与复平面上的实轴和虚轴所表示的在复平面上,可用四个基矢表示一个复矢量uu vvf1、f2和f3是实非负数将每一个抽样单元沿应在小单元中用开孔大小或灰度等级来表示振幅(b) 物光波的频谱(,){(,)}=FF u v f x yα≥u6.3 计算傅立叶变换全息制作过程:6.3 计算傅立叶变换全息1 26.3.1 抽样包含对物波函数和全息图的抽样物面的抽样点数:f ( x, y ) = a ( x, y ) exp[ jφ ( x, y )],X ,Y需要:δ x ≤1 1 ,δ y ≤ 2uB 2v BF (u , v) = A(u, v) exp[ jψ (u , v)], uB , vB ; 2u B , 2vB所需抽样点数为:J K =频谱面的抽样点数:需要:δ u ≤ 1 1 ,δ v ≤ X YX Yδxδy= XY 2u B 2vB = SW所需抽样点数为:M N =(a) 物光波函数 抽样:确定物面和频谱面上的抽样点数32u B 2vB = XY 2uB 2vB = SW δu δv(b) 物光波的频谱函数F (u , v) = F { f ( x, y )}可见:都刚好满足抽样定理时,物面和谱面的抽样点数相等,都 等于空间带宽积。