染色体组型分析
- 格式:ppt
- 大小:2.19 MB
- 文档页数:41
染色体组型分析李昱静生物工程三班 2009343014 E2组一、染色体组型定义:各种生物染色体的形态、结构和数目都是相对稳定的。
每一细胞内特定的染色体组成叫染色体组型。
二、染色体组型分析定义:又叫核型分析。
对生物某一个体或某一分类单位(亚种、种等)的体细胞的染色体按一定特征排列起来的图象(染色体组型)的分析。
一般有四种方法。
不同物种的染色体都有各自特定的形态结构(包括染色体的长度、着丝点位置、臂比、随体大小等)特征,而且这种形态特征是相对稳定的。
因此,染色体核型分析是植物种质资源遗传性研究的重要内容。
三、染色体组型分析方法:(1)常规的形态分析。
选用分裂旺盛细胞的有丝分裂中期的染色体制成染色体组型图,以测定各染色体的长度(微米)或相对长度(%),着丝粒位置及染色体两臂长的比例(臂比),鉴别随体及副缢痕的有无作为分析的依据。
(2)带型分析。
显带技术是通过特殊的染色方法使染色体的不同区域着色,使染色体在光镜下呈现出明暗相间的带纹。
每个染色体都有特定的带纹,甚至每个染色体的长臂和短臂都有特异性。
根据染色体的不同带型,可以更细致而可靠地识别染色体的个性。
(3)着色区段分析。
染色体经低温、KCl和酶解,HCl或HCl与醋酸混合液体等处理后制片,能使染色体出现异固缩反应,使异染色质区段着色可见。
在同源染色体之间着色区段基本相同,而在非同源染色体之间则有差别。
因此用着色区段可以帮助识别染色体,作为分析染色体组型的一种方法。
(4)定量细胞化学方法。
即根据细胞核、染色体组或每一个染色体的DNA含量以及其他化学特性去鉴别染色体。
如DNA含量的差别,一般能反映染色体大小的差异,因此可作为组型分析的内容。
染色体组型分析有助于探明染色体组的演化和生物种属间的亲缘关系,对于遗传研究与人类染色体疾病的临床诊断也非常重要。
四、染色体组型分析计算:(1)染色体组型分析主要包括染色体长度、染色体臂比、着丝点位置、次缢痕等。
染色体的长度差异有两种,一种是不同种、属间染色体组间相对应的染色体的绝对长度差异,一种是同一套染色体组内不同染色体的相对长度差异。
染色体组型分析名词解释染色体组型分析是一种用于分析基因遗传变异情况的方法,可以指导个体和家系临床检测、疾病分析和对病患进行治疗。
它是一种利用现代分子生物学技术,通过宏大的DNA序列组装技术,进行基因组结构研究、基因之间关系研究以及遗传学研究的一种分析方法。
染色体组型分析的核心步骤是将DNA识别为染色体组型。
其中的染色体组型可以通过扩增和测序技术进行鉴定,这是一种利用抗原-抗体反应原理奠定的免疫原理。
扩增技术包括聚合酶链反应(PCR)、环复制(RM)和可编程DNAR,可以根据指定的基因片断来扩增DNA序列。
DNA测序技术则可以根据基因序列全部或部分序列来进行测试,它的原理是:将检测的片断元素特异性加标,再利用平台上的特定识别条件,对DNA片断进行精确定位,最终根据检测到的DNA序列,确定染色体的组型。
染色体组型分析的结果可以转化为遗传图谱,来证明个体与家系中不同染色体位点型的情况。
染色体组型分析具有诊断精度高、可靠性强等优点,因此,已经广泛应用在早期遗传疾病筛查、分子病理学诊断以及肿瘤治疗方面,并得到了广泛应用。
例如,染色体组型分析可以用于早期遗传病筛查。
通过比较与疾病相关的染色体组型,可以发现最有可能的遗传性病因,从而促进早期诊断和治疗。
此外,染色体组型分析还可以用于分子病理学诊断。
可以根据病变部位的染色体组型,与正常组织的染色体组型进行比较,从而判断病变的病理学类型。
此外,染色体组型分析还可以用于肿瘤治疗,可以根据染色体组型,挑选出最佳的治疗方案,从而提高患者治疗效果。
染色体组型分析对于认识遗传学及肿瘤、先天性疾病以及疾病的病理发生机制有着重要的意义。
它有助于提高对基因的认识和遗传变异的认识,为肿瘤的恶性程度和治疗方法提供基础,为遗传预防和家系基因检测提供依据等。
总之,染色体组型分析是一种新兴的基因分析方法,其优势在于准确性高,并可以在短时间内得到结果,因此受到科学界和检测机构的重视与推广。
它可以为临床检测、肿瘤分析及疾病的治疗提供参考,为科学研究提供指导,是一种非常具有意义的分析方法。
染色体组分析染色体组分析是对生物某一个体或某一分类单位(亚种、种等)的体细胞的染色体按一定特征排列起来的图象(染色体组型)的分析。
[拼音]:ransetizu fenxi[外文]:genome analysis扩展:对异源多倍体植物的染色体组来源进行的分析。
方法主要是将异源多倍体植物与假定的基本种杂交,然后观察杂交子代在减数分裂过程中染色体的配对行为。
在减数分裂中,同源染色体通过配对(联会)形成二倍体,非同源染色体因不能联会而呈单倍体状态。
如果异源多倍体植物和基本种的杂交子代的减数分裂过程中出现相当于基本种染色体基数的二倍体,便说明异源多倍体的一个染色体组来源于这一基本种。
某些基因能干扰染色体的配对,从而给二倍体分析带来困难或错误。
英国细胞遗传学家R.赖利等在60年代中发现小麦5B染色体的长臂上有一个基因ph,它使部分同源染色体的联会受到阻碍。
在拟山羊草(Aegilops speltoides)中还有阻碍作用更大的基因。
在玉米和小麦中发现的不联会基因可以使同源染色体在减数分裂中以单价体形式出现。
因此,在染色体组分析中还常采用一些辅助的方法,包括解剖学、组织学、形态学、生物化学(特别是同工酶分析)的方法。
染色体组分析有助于对物种起源的了解,也可以为倍性育种提供参考资料。
美国细胞遗传学家T.H.古得斯皮德和R.E.克劳森在1928年首先用二倍体分析方法研究了具有48个染色体的栽培烟草(Nicotiana tabacum)的起源。
最初根据形态特征认为它的祖先是两种二倍体野生烟草:林烟草(N.sylvestris,2n=24)和绒毛烟草(N.tomentosa,2n=24)。
染色体组分析结果说明栽培烟草与二者分别杂交得到的子代在减数分裂中都只出现12个二倍体,说明栽培烟草与这两个二倍体物种间都有一个染色体组是相同的。
但是林烟草与绒毛烟草的杂交子代在减数分裂中却出现24个单价体,说明它们的染色体组是完全不同的。
人类染色体组型分析
人类染色体组型分析是一项针对人类染色体的研究和分析。
染色体是一种体细胞内的结构,其中包含了人类遗传信息的大部分。
人类的染色体通常是成对存在的,每个细胞核中有23对染色体,其中包括22对常染色体和1对性染色体。
核型分析是一种通过显微镜观察和分析细胞核中染色体的形态和数量来确定染色体组型的方法。
通过染色体的显带图谱可以确定染色体的编号和结构异常,如染色体数目增加或减少、片段缺失、断裂、重排等。
FISH技术是一种利用荧光探针结合到特定区域的染色体上来分析染色体组型的方法。
这种技术可以用于检测染色体数目异常、结构重排、小片段缺失和重复序列等。
SNP分析是一种通过检测单核苷酸多态性位点来分析染色体组型的方法。
SNP是一种常见的基因变异形式,可以用于研究染色体间的基因关联性、种群遗传学研究和个体基因型的检测。
DNA测序技术是一种通过测定DNA序列来分析染色体组型的方法。
这种技术可以帮助确定染色体上的基因组结构、变异位点以及其对基因功能和疾病风险的影响。
此外,人类染色体组型分析还可以用于进化学研究、种群遗传学研究和个体基因型的检测。
通过对不同人群之间及个体间染色体组型的比较分析,我们可以了解人类种群间的遗传关系、进化历史和变异特征。
总结来说,人类染色体组型分析是一项研究和分析人类染色体的重要技术。
它在医学、生物学和人类遗传学等领域具有广泛的应用价值,为我们进一步了解和探索人类遗传信息的传递和变异提供了有力的工具。