室内气流分布(苍松参考)
- 格式:doc
- 大小:488.50 KB
- 文档页数:18
第10章室内气流分布10、1对室内气流分布得要求与评价10、1、1概述空气分布又称为气流组织。
室内气流组织设计得任务就就是合理得组织室内空气得流动与分布,使室内工作区空气得温度、湿度、速度与洁净度能更好得满足工艺要求及人们舒适感得要求。
空调房间内得气流分布与送风口得型式、数量与位置,回风口得位置,送风参数,风口尺寸,空间得几何尺寸及污染源得位置与性质有关。
下面介绍对气流分布得主要要求与常用评价指标。
10、1、2对温度梯度得要求在空调或通风房间内,送入与房间温度不同得空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。
在舒适得范围内,按照ISO7730标准,在工作区内得地面上方1、1m与0、1m 之间得温差不应大于3C (这实质上考虑了坐着工作情况);美国ASHRAE55-9标准建议1. 8m与0. 1m之间得温差不大于3C (这就是考虑人站立工作情况)。
10、1、3工彳乍区得风速工作区得风速也就是影响热舒适得一个重要因素。
在温度较高得场所通常可以用提高风速来改善热舒适环境。
但大风速通常令人厌烦。
试验表明,风速v0、5m/s时,人没有太明显得感觉。
我国规范规定:舒适性空调冬季室内风速〉0、2m/s,夏季〉0、3m/So工艺性空调冬季室内风速〉0、3m/s,夏季宜采用0、2-0> 5m/So10、1、4吹风感与气流分布性能指标吹风感就是由于空气温度与风速(房间得湿度与辐射温度假定不变)引起人体得局部地方有冷感,从而导致不舒适得感觉。
1・有效吹风温度EDT美国ASHRAB有效吹风温度EDT(Effective Draft Temperature) 来判断就是否有吹风感,定义为EDT (txtm) 7.8(x0.15) (10-1)式中tx,t卄室内某地点得温度与室内平均温度,C; v X-室内某地点得风速,m/s。
对于办公室,当EDT=-1. 7~IC,VxV0、35m/s时,大多数人感觉就是舒适得,小于下限值时有冷吹风感。
第10章 室内气流分布10.1 对室内气流分布的要求与评价10.1.1 概述空气分布又称为气流组织。
室内气流组织设计的任务就是合理的组织室内空气的流动与分布,使室内工作区空气的温度、湿度、速度和洁净度能更好的满足工艺要求及人们舒适感的要求。
空调房间内的气流分布与送风口的型式、数量和位置,回风口的位置,送风参数,风口尺寸,空间的几何尺寸及污染源的位置和性质有关。
下面介绍对气流分布的主要要求和常用评价指标。
10.1.2 对温度梯度的要求在空调或通风房间内,送入与房间温度不同的空气,以及房间内有热源存在,在垂直方向通常有温度差异,即存在温度梯度。
在舒适的范围内,按照ISO7730标准,在工作区内的地面上方1.1m 和0.1m 之间的温差不应大于3℃(这实质上考虑了坐着工作情况);美国ASHRAE55-92标准建议1.8m 和0.1m 之间的温差不大于3℃(这是考虑人站立工作情况)。
10.1.3 工作区的风速工作区的风速也是影响热舒适的一个重要因素。
在温度较高的场所通常可以用提高风速来改善热舒适环境。
但大风速通常令人厌烦。
试验表明,风速<0.5m/s 时,人没有太明显的感觉。
我国规范规定:舒适性空调冬季室内风速≯0.2m/s ,夏季≯0.3m/s 。
工艺性空调冬季室内风速≯0.3m/s ,夏季宜采用0.2-0.5m/s 。
10.1.4 吹风感和气流分布性能指标吹风感是由于空气温度和风速(房间的湿度和辐射温度假定不变)引起人体的局部地方有冷感,从而导致不舒适的感觉。
1.有效吹风温度EDT美国ASHRAE 用有效吹风温度EDT(Effective Draft Temperature)来判断是否有吹风感,定义为)15.0(8.7)(EDT ---=x m x t t ν (10-1)式中 t x ,t m --室内某地点的温度和室内平均温度,℃;v x --室内某地点的风速,m/s 。
对于办公室,当EDT=-1.7~l ℃,v x <0.35m/s 时,大多数人感觉是舒适的,小于下限值时有冷吹风感。
EDT 用于判断工作区任何一点是否有吹风感。
2.气流分布性能指标ADPI气流分布性能指标ADPI (Air Diffusion Perfomance Index ),定义为工作区内各点满足EDT 和风速要求的点占总点数的百分比。
对整个工作区的气流分布的评价用ADPI 来判断。
对已有房间,ADPI 可以通过实测各点的空气温度和风速来确定。
在气流分布设计时,可以利用计算流体力学的办法进行预测;或参考有关文献、手册提供的数值。
10.1.5 通风效率E v通风效率E v (Ventilation efficiency)又称混合效率,定义为实际参与工作区内稀释污染物的风量与总送入风量之比,即VCV V V V V V E -= Ev 也表示通风或空调系统排出污染物的能力,因此Ev 也称为排污效率。
⑴当送入房间空气与污染物混合均匀,排风的污染物浓度等于工作区浓度时,E v =1。
⑵一般的混合通风的气流分布形式,E V <1。
若清洁空气由下部直接送到工作区时,工作区的污染物浓度可能小于排风的浓度,Ev>1。
E V 不仅与气流分布有着密切关系,而且还与污染物分布有关。
污染源位于排风口处,Ev 增大。
以转移热量为目的的通风和空调系统,通风效率中浓度可以用温度来取代,并称之为温度效率E T ,或称为能量利用系数,表达式为ss e T t t t t E --= (10-2) 式中 t e 、t 、t s --分别为排风、工作区和送风的温度,℃。
10.1.6 空气龄⑴空气质点的空气龄:简称空气龄(Age of air),是指空气质点自进入房间至到达室内某点所经历的时间。
⑵局部平均空气龄:某一微小区域中各空气质点的空气龄的平均值。
空气龄的概念比较抽象,实际测量很困难,目前都是用测量示踪气体的浓度变化来确定局部平均空气龄。
由于测量方法不同,空气龄用示踪气体的浓度表达式也不同。
如用下降法(衰减法)测量,在房间内充以示踪气体,在A 点起始时的浓度为c(0),然后对房间进行送风(示踪气体的浓度为零),每隔一段时间,测量A 点的示踪气体浓度,由此获得A 点的示踪气体浓度的变化规律c(r),于是A 点的平均空气龄(单位为s)为)0()(0c dr c A ⎰∞=ττ (10-3)⑶全室平均空气龄:全室各点的局部平均空气龄的平均值⎰=VdV V ττ1 (10-4) 式中V 为房间的容积。
如用示踪气体衰减法测量,根据排风口示踪气体浓度的变化规律确定全室平均空气龄,即⎰⎰∞∞=00)()(dr c dr c e e A ττττ (10-5)式中c e (τ)即为排风的示踪气体浓度随时间的变化规律。
⑷局部平均滞留时间(Residence time):房间内某微小区域内气体离开房间前在室内的滞留时间,用τr 表示,单位为s 。
⑸空气流出室外的时间微小区域的空气流出室外的时间:某一微小区域平均滞留时间减去空气龄。
全室平均滞留时间:全室各点的局部平均滞留时间的平均值,用于r τ表示。
全室平均滞留时间等于全室平均空气龄的2倍,即ττ2=r (10-6)理论上空气在室内的最短的滞留时间为N VV n 1== τ (10-7)式中 V 为房间体积,m 3;V 为送入房间的空气量,m 3/s ;N 为以秒计的换气次数,1/s ;τn 又称为名义时间常数(Nominal time constant)。
空气从送风口进入室内后的流动过程中,不断掺混污染物,空气的清洁程度和新鲜程度将不断下降。
空气龄短,预示着到达该处的空气可能掺混的污染物少,排除污染物的能力愈强。
显然,空气龄可用来评价空气流动状态的合理性。
10.1.7 换气效率换气效率(Air exchange e ffciency)ηa 是评价换气效果优劣的一个指标,它是气流分布的特性参数,与污染物无关。
其定义为:空气最短的滞留时间ηn 与实际全室平均滞留时间于r τ之,即ττττη2n r n a == (10-8) 式中 τ--实际全室平均空气龄,s 。
τn /2--最理想的平均空气龄。
从式(10-8)可以看到:换气效率也可定义为最理想的平均空气龄τn /2与全室平均空气龄τ之比。
τa 是基于空气龄的指标,它反映了空气流动状态合理性。
最理想的气流分布τa =1,一般的气流分布τa <l 。
1O.2 送风口和回风口1.送风口的型式⑴按安装位置分为侧送风口、顶送风口(向下送)、地面风口(向上送)。
⑵按送出气流的流动状况分为扩散型风口、轴向型风口和孔板送风口。
扩散型风口:具有较大的诱导室内空气的作用,送风温度衰减快,但射程较短;轴向型风口:诱导室内气流的作用小,空气温度、速度的衰减慢,射程远;孔板送风口:在孔板上满布小孔的送风口,速度分布均匀,衰减快。
⑶按形状分为格栅、活动百叶窗、喷口、散流器、旋流式喷口和置换送风口。
①格栅送风口叶片或空花图案的格栅,用于一般空调工程。
②活动百叶窗如图10-1所示。
通常装于侧墙上用作侧送风口。
双层百叶风口:有两层可调节角度的活动百叶,短叶片用于调节送风气流的扩散角,也可用于改变气流的方向;调节长叶片可以使送风气流贴附顶棚或下倾一定角度(当送热风时)。
单层百叶风口:只有一层可调节角度的活动百叶。
这两种风口也常用作回风口。
③喷口如图10-2所示,有固定式喷口和可调角度喷口。
用于远程送风,属于轴向型风口。
射程(末端速度0.5m/s处)一般可达到10-30m,甚至更远。
通常在大空间(如体育馆、候机大厅)中用作侧送风口;送热风时可用作顶送风口。
如风口既送冷风又送热风,应选用可调角喷口。
调角喷口的喷嘴镶嵌在球形壳中,该球形壳(与喷嘴)在风口的外壳中可转动,最大转动角度30º。
可人工调节,也可电动或气动调节。
在送冷风时,风口水平或上倾;送热风时,风口下倾。
图10-1 活动百叶风口(a)双层百叶风口 (b)单层百叶风口图10-2 喷口(a)固定式喷口 (b)可调角度喷口④散流器图10-3为三种比较典型的散流器。
直接装于顶棚上,是顶送风口。
✧平送流型的方形散流器如图(a)所示,有多层同心的平行导向叶片,使空气流出后贴附于顶棚流动。
可以做成方形,也可做成矩形;可四面出风、三面出风、两面出风或一面出风。
平送流型的圆形散流器与方形散流器相类似。
平送流型散流器适宜用于送冷风。
✧下送流型的圆形散流器图(b)所示,又称为流线型散流器。
叶片间的竖向间距是可调的。
增大叶片间的竖向间距,可以使气流边界与中心线的夹角减小。
送风气流夹角一般为20º-30º,在散流器下方形成向下的气流。
✧圆盘型散流器如图(c)所示,射流以45º夹角喷出,流型介于平送与下送之间。
适宜于送冷、热风。
各类散流器的规格都按颈部尺寸A×B或直径D来标定。
图10-3 方形和圆形散流器(a)平送流型方形散流器 (b)向下送流型的圆形散流器 (c)圆盘型散流器⑤可调式条形散流器如图10-4所示。
条缝宽19mm,长度500-3000mm,据需要选用。
调节叶片的位置,可改变出风方向或关闭;可多组组合(2、3、4组)在一起使用,如图所示。
条形散流器用作顶送风口,也可用于侧送口。
图10-4 可调式条形散流器(a)左出风 (b)下送风 (c)关闭 (d)多组左右出风 (e)多组右出风⑥固定叶片条形散流器如图10-5所示,颈宽50-150mm,长度500-3000mm。
根据叶片形状可有三种流型:直流式、单侧流和双侧流。
可以用于顶送、侧送和地板送风。
图10-5 固定叶片条形散流器(a)直流式 (b)单侧流 (c)双侧流⑦旋流式风口如图10-6所示,有顶送式风口和地板送风的旋流式风口。
✧顶送式风口如图(a),风口中有起旋器,空气通过风口后成为旋转气流,并贴附于顶棚流动。
特点:诱导室内空气能力大、温度和风速衰减快。
适宜在送风温差大、层高低的空间中应用。
旋流式风口的起旋器位置可以上下调节,当起旋器下移时,可使气流变为吹出型。
✧地板送风的旋流式风口如图(b),工作原理与顶送形式相同。
图10-6 旋流式风口1-起旋器 2-旋流叶片 3-集尘箱 4-出风格栅⑧置换送风口如图10-7所示。
风口靠墙置于地上,风口的周边开有条缝,空气以很低的速度送出,诱导室内空气的能力很低,从而形成置换送风的流型。
送风口角度:靠墙上放置时,在180º范围内送风;置于墙角处,在90º范围内送风;置于厅中央,在360º范围内送风。
图10-7所示为180º范围送风口。
图10-7 置换送风口图10-8 回风口(a)格栅式回风口 (b)为可开式百叶回风口1-铰链 2-过滤器挂钩2.回风口由于回风口的汇流流场对房间气流组织影响比较小,因此风口的形式比较简单。