最大似然估计与W、LR、LM三种检验(OVER)
- 格式:ppt
- 大小:975.50 KB
- 文档页数:48
最大似然估计概述最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。
这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。
“似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。
故而,若称之为“最大可能性估计”则更加通俗易懂。
最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。
最大似然法是一类完全基于统计的系统发生树重建方法的代表。
该方法在每组序列比对中考虑了每个核苷酸替换的概率。
最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。
通俗一点讲,就是在什么情况下最有可能发生已知的事件。
举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。
我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。
现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。
这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。
假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?我想很多人立马有答案:70%。
这个答案是正确的。
可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。
在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。
在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所在的序列之间的关系很有可能更接近。
由于被研究序列的共同祖先序列是未知的,概率的计算变得复杂;又由于可能在一个位点或多个位点发生多次替换,并且不是所有的位点都是相互独立,概率计算的复杂度进一步加大。
尽管如此,还是能用客观标准来计算每个位点的概率,计算表示序列关系的每棵可能的树的概率。
第二章 线性回归模型回顾与拓展 (12-15学时)第四节 三大检验(LR Wald LM ) 一、极大似然估计法(ML )(一)极大似然原理假设对于给定样本{},Y X ,其联合概率分布存在,(),;f Y X ξ。
将该联合概率密度函数视为未知参数ξ的函数,则(),;f Y X ξ称为似然函数(Likelihood Function )。
极大似然原理就是寻找未知参数ξ的估计ˆξ,使得似然函数达到最大,或者说寻找使得样本{},Y X 出现的概率最大ˆξ。
(二)条件似然函数VS 无条件似然函数()()(),;;;f Y X f Y X f X ξθϕ=若θ与ϕ没有关系,则最大化无条件似然函数(),;f Y X ξ等价于分别最大化条件似然函数();f Y X θ和边际似然函数();f X ϕ,从而θ的最大似然估计就是最大化条件似然函数();f Y X θ。
(三)线性回归模型最大似然估计Y X u β=+,2(0,)u N I σ→2222()()(,;,)(2)exp{}2nY X Y X L Y X βββσπσσ-'--=-对数似然函数:22()()2222n n Y X Y X l LnL Ln Ln ββπσσ'--==---于是 22241ˆ(22)0ˆˆ21ˆˆ()()0ˆˆˆ22l X Y X X l n Y X Y X βσβββσσσ∂⎧''=--+=⎪⎪∂⎨∂⎪'=-+--=⎪∂⎩得到 12ˆ()1ˆMLML X X X Y e e n βσ-⎧''=⎪⎨'=⎪⎩(三)得分(Score )和信息矩阵(Information Matrix )(;,)lf Y X θθ∂=∂称为得分; 12...k l l l l θθθθ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎢⎥∂⎢⎥∂⎢⎥=∂⎢⎥⎢⎥⎢⎥⎢⎥∂⎢⎥⎢⎥∂⎣⎦得分向量;(Gradient ) 海瑟矩阵(Hessian Matrix ):2l H θθ∂='∂∂信息矩阵:三*、带约束条件的最小二乘估计(拉格朗日估计)在计量经济分析中,通常是通过样本信息对未知参数进行估计。
第二章 线性回归模型回顾与拓展 (12-15学时)第四节 三大检验(LR Wald LM ) 一、极大似然估计法(ML )(一)极大似然原理假设对于给定样本{},Y X ,其联合概率分布存在,(),;f Y X ξ。
将该联合概率密度函数视为未知参数ξ的函数,则(),;f Y X ξ称为似然函数(Likelihood Function )。
极大似然原理就是寻找未知参数ξ的估计ˆξ,使得似然函数达到最大,或者说寻找使得样本{},Y X 出现的概率最大ˆξ。
(二)条件似然函数VS 无条件似然函数()()(),;;;f Y X f Y X f X ξθϕ=若θ与ϕ没有关系,则最大化无条件似然函数(),;f Y X ξ等价于分别最大化条件似然函数();f Y X θ和边际似然函数();f X ϕ,从而θ的最大似然估计就是最大化条件似然函数();f Y X θ。
(三)线性回归模型最大似然估计Y X u β=+,2(0,)u N I σ→2222()()(,;,)(2)exp{}2nY X Y X L Y X βββσπσσ-'--=-对数似然函数:22()()2222n n Y X Y X l LnL Ln Ln ββπσσ'--==---于是 22241ˆ(22)0ˆˆ21ˆˆ()()0ˆˆˆ22l X Y X X l n Y X Y X βσβββσσσ∂⎧''=--+=⎪⎪∂⎨∂⎪'=-+--=⎪∂⎩得到 12ˆ()1ˆMLML X X X Y e e n βσ-⎧''=⎪⎨'=⎪⎩(三)得分(Score )和信息矩阵(Information Matrix )(;,)lf Y X θθ∂=∂称为得分; 12...k l l l l θθθθ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎢⎥∂⎢⎥∂⎢⎥=∂⎢⎥⎢⎥⎢⎥⎢⎥∂⎢⎥⎢⎥∂⎣⎦得分向量;(Gradient ) 海瑟矩阵(Hessian Matrix ):2l H θθ∂='∂∂信息矩阵:三*、带约束条件的最小二乘估计(拉格朗日估计)在计量经济分析中,通常是通过样本信息对未知参数进行估计。
似然比、沃尔德及拉格朗日乘数检验法1 引子1.1 问题的提出在计量经济模型检验中,t检验和F检验是一级检验:t检验的原假设为0:0(1,2,,) jH j kb==L,检验单个回归系数是否为零;F检验的原假设为12023:0k H b b b ====L ,模型的拟合优度检验。
那么当我们希望检验023:2H b b = 023:1H b b +=023:2H b b =和241b b +=0234:0H b b b === 0234:H b b b =应该如何做呢?有三种常用的检验方法,即似然比(LR )检验,沃尔德(W)检验和拉格朗日(lagrange)乘数(LM)检验。
这三种检验所用统计量都是基于极大似然估计法计算。
LR 检验由内曼—皮尔逊(Neyman-Pearson 1928)提出,只适用于对线性约束的检验。
W检验和LM检验既适用于对线性约束条件的检验,也适用于对非线性约束条件的检验。
计量经济学中的专门软件Eviews模型的OUTPUT窗口左下角有一个统计量Log likelihood是什么,对模型的检验有何用处呢?342 似然比检验2.1 统计量的构造似然比检验,即两个似然函数值之比构成的检验: —原假设成立条件下的似然函数值与任意情况下的似然函数之比。
用统计的语言来描述为:设总体的密度函数为(,)f x θ,∈θΘ。
()1,,n X X '=X 为来自此总体的样本,对于假设0010::H H ∈↔∉θΘθΘ ,称511(,,,)(,)nn i i L X X f x ==∏θθ为其似然函数。
称011max (,)max (,)ni i ni i f x f x ∈Θ=∈Θ=Λ=∏∏θθθθ为似然比。
(1)(1)式统计量的分子是在0H 成立下参数的极大似然函数值,因此是零假设的最佳表示。
而分母则表示在θ在任意情况下的极大似然函数值。
比值的最大极限值为1。
其值靠近1,说明局部的最大和全局最大近似,零假设成立可能性就越大。
第二章 线性回归模型回顾与拓展 (12-15学时)第四节 三大检验(LR Wald LM ) 一、极大似然估计法(ML )(一)极大似然原理假设对于给定样本{},Y X ,其联合概率分布存在,(),;f Y X ξ。
将该联合概率密度函数视为未知参数ξ的函数,则(),;f Y X ξ称为似然函数(Likelihood Function )。
极大似然原理就是寻找未知参数ξ的估计ˆξ,使得似然函数达到最大,或者说寻找使得样本{},Y X 出现的概率最大ˆξ。
(二)条件似然函数VS 无条件似然函数()()(),;;;f Y X f Y X f X ξθϕ=若θ与ϕ没有关系,则最大化无条件似然函数(),;f Y X ξ等价于分别最大化条件似然函数();f Y X θ和边际似然函数();f X ϕ,从而θ的最大似然估计就是最大化条件似然函数();f Y X θ。
(三)线性回归模型最大似然估计Y X u β=+,2(0,)u N I σ→2222()()(,;,)(2)exp{}2nY X Y X L Y X βββσπσσ-'--=-对数似然函数:22()()2222n n Y X Y X l LnL Ln Ln ββπσσ'--==---于是 22241ˆ(22)0ˆˆ21ˆˆ()()0ˆˆˆ22l X Y X X l n Y X Y X βσβββσσσ∂⎧''=--+=⎪⎪∂⎨∂⎪'=-+--=⎪∂⎩得到 12ˆ()1ˆMLML X X X Y e e n βσ-⎧''=⎪⎨'=⎪⎩(三)得分(Score )和信息矩阵(Information Matrix )(;,)lf Y X θθ∂=∂称为得分; 12...k l l l l θθθθ∂⎡⎤⎢⎥∂⎢⎥∂⎢⎥⎢⎥∂⎢⎥∂⎢⎥=∂⎢⎥⎢⎥⎢⎥⎢⎥∂⎢⎥⎢⎥∂⎣⎦得分向量;(Gradient ) 海瑟矩阵(Hessian Matrix ):2l H θθ∂='∂∂信息矩阵:三*、带约束条件的最小二乘估计(拉格朗日估计)在计量经济分析中,通常是通过样本信息对未知参数进行估计。