计量经济学的三种检验
- 格式:ppt
- 大小:370.00 KB
- 文档页数:144
E v i e w s计量经济学三大检验作业1我们有1978-2007年我国财政收入,国内生产总值,财政支出和商品零售价格指数的年度数据。
请用Eview 进行回归分析。
(1) 根据回归结果分析模型的经济意义(包含模型的显著性,拟合优度,系数的显著性,系数的经济意义)建立模型,做OLS 估计,得结果图一,列表如下:43283175.57898859.0003271.0558.6399X X X Y ++--=∧)0636.20)(065848.0)(012559.0)(836.2132(SE )882456.2)(65061.13)(260476.0-)(000492.3-(t =997046.02=R 996705.02=R 845.2924=F模型整体显著性较高(F 检验十分显著),可决系数2R 和调整的可决系数较大,即样本回归方程对样本观测值拟合较好。
t 检验显示2X 的系数不显著(p 值>0.05,不能拒绝β=0的原假设),3X 和4X 的系数显著(p值<0.05,拒绝β=0的原假设)。
从模型的经济意义来看,财政支出、商品零售价格指数与财政收入成正相关,国内生产总值与财政收入成负相关,不符合客观经济规律,可能与模型变量的选取有关。
考虑对模型进行对数变换,结果为图二。
432ln 128427.1ln 631090.0ln 448496.0946444.6ln X X X Y +++-=∧)610249.0)(160929.0)(141418.0)(853146.2(SE)849127.1)(921549.3)(171412.3)(434662.2(t -=987673.02=R 986251.02=R 3969.694=F对数变换后模型整体显著性较高(F 检验十分显著,p 值=0.00<<0.05),可决系数2R 和调整的可决系数略有下降,模型可解释98.63%的因变量变化。
所有计量经济学检验方法
1、回归分析:回归分析是用来确定两个变量之间相关关系的一种统计方法,它能够推断出一个变量对另一个变量的影响程度。
常用的回归检验包括偏直斜率检验、R平方检验、Durbin-Watson检验、自相关检验、Box-Cox检验等。
2、主成分分析:主成分分析(PCA)是一种统计分析方法,用于消除随机变量之间的相关性,从而简化数据分析过程。
常用的方法有二元主成分分析(BPCA)、多元主成分分析(MPCA)
3、因子分析:因子分析是一种统计学方法,用于确定从多个离散观测变量中提取的隐含变量。
常用的因子分析检验包括KMO检验、Bartlett 统计量检验、条件双侧门限统计量检验等。
4、多元分析:多元分析是一种统计学方法,用于探索随机变量之间的关系,常用的多元分析检验包括多元弹性网络(MANOVA)、多元回归(MR)以及结构方程模型(SEM)。
5、聚类分析:聚类分析是一种用于探索研究数据中的结构和特征的统计学方法。
它主要是将数据集分组,以便对数据集中的每组信息单独进行分析。
常用的聚类分析检验有K均值聚类、层次聚类、嵌套聚类等。
6、特征选择:特征选择是一种数据分析技术,用于从大量可能的特征中,选择有效的特征变量。
习题9.9 a、b、两者均可能存在异方差。
C、帕克检验三种帕克检验的p值都大于0.05,因此不拒绝原假设,即没有证据表明自变量系数为0;实质上帕克检验表明的是残差的平方并不体现出所假定的变化模式,残差的平方仍然可能存在其他形式的变化模型。
所以尚不能肯定一定不存在异方差。
格莱泽检验模型:ln(ei 2)=B1+B2ln(ln(educ))+vi格莱泽检验的第三种形式:残差的绝对值和1/educ显著相关,可能存在异方差问题。
怀特检验P=0.0004,拒绝原假设,即可能存在异方差问题。
帕克检验和格莱泽检验对异方差的形式要做出特殊的假定,要对不同的函数形式进行多次尝试,即便是自变量的系数不显著,也不態断定一定不存在异方差问题,因为可能是假定的函数形式不正确。
而怀特一般异方差检验采用了最为全面的函数形式,建议采用怀特一般异方差检验。
d、使用加权最小二乘法,选择权重是首要解决的问题。
权重选择得不恰当,异方差问题仍然会存在。
事实上,加权最小二乘法在使用过程中,需要经过多次尝试,多次检验,才可能找到一个合适的权重,因此在运用中这是比较不方便的。
本题样本容量为523,是个大样本,适合用怀特异方差校正。
其结果如下:e、选择不存在异方差的模型,即双对数模型。
因为异方差的存在会导致OLS估计量不再有效,其方差通常也会出现有偏性,在这种情况下,常用的假设检验都不再可靠,有可能出现错误的结论。
f、不能,因为两个模型的因变量形式不同。
习题9.28a、回归结果表明:小轿车的最高时速每提高1个百分点,耗油量平均下降1.27个百分点;马力每提高1个百分点,耗油量平均上升0.39个百分点;车重每提高1个百分点,耗油量平均下降1.90个百分点。
b、因为这是关于轿车耗油量的截面数据,因此预计存在异方差问题。
c、p值近似等于0,则拒绝原假设,即可能存在异方差问题。
d、校正后的值与OLS的结果比较发现:两者的估计系数的值是相同的,但是他们的方差和标准误差是不同的。
一、名词解释第一章1、计量经济学:计量经济学是以经济理论和经济数据的事实为依据,运用数学、统计学的方法,借助计算机为辅助工具,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
2、虚拟变量数据:虚拟变量数据是人为构造的,通常取值为1或0的,用来表征政策等定性事实的数据。
3、计量经济学检验:计量经济学检验主要是检验模型是否符合计量经济方法的基本假定。
4、政策评价:政策评价是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟测算,从而对各种政策方案做出评价第二章1、回归平方和:回归平方和用ESS 表示,是被解释变量的样本估计值与其平均值的离差平方和。
2、拟和优度检验:拟和优度检验指检验模型对样本观测值的拟合程度,用表示,该值越接近1,模型对样本观测值拟合得越好。
3、相关关系:当一个或若干个变量X 取一定数值时,与之相对应的另一个变量Y 的值虽然不确定,但却按某种规律在一定范围内变化,变量之间的这种关系,称为不确定性的统计关系或相关关系,可表示为Y=f(X ,u),其中u 为随机变量。
4、高斯-马尔科夫定理:在古典假定条件下,O LS 估计式是其总体参数的最佳线性无偏估计式。
第三章1、偏回归系数:在多元线性回归模型中,回归系数j (j=1,2,……,k )表示的是当控制其他解释变量不变的条件下,第j 个解释变量的单位变动对被解释变量平均值的影响,这样的回归系数称为偏回归系数。
2、多重可决系数:“回归平方和”与“总离差平方和”的比值,用表示。
3、修正的可决系数:用自由度修正多重可决系数 中的残差平方和与回归平方和。
4、回归方程的显著性检验(F 检验):对模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。
5、回归参数的显著性检验(t 检验):当其他解释变量不变时,某个回归系数对应的解释变量是否对被解释变量有显著影响做出推断。
6、无多重共线性假定:假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性无关,在此条件下,解释变量观测值矩阵X 列满秩Rank(X)=k ,此时,方阵X`X 满秩, Rank(X`X)=k从而X`X 可逆,(X`X) 存在。
所有计量经济学检验方法(全)计量经济学所有检验方法一、拟合优度检验 可决系数TSSRSSTSS ESS R -==12 TSS 为总离差平方和,ESS为回归平方和,RSS 为残差平方和该统计量用来测量样本回归线对样本观测值的拟合优度。
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数)1/()1/(12----=n TSS k n RSS R 其中:n-k-1为残差平方和的自由度,n-1为总体平方和的自由度。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
二、方程的显著性检验(F 检验)方程的显著性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立作出推断。
原假设与备择假设:H 0:β1=β2=β3=…βk =0 H 1:βj 不全为0 统计量)1/(/--=k n RSS kESS F 服从自由度为(k , n-k-1)的F分布,给定显著性水平α,可得到临界值Fα(k,n-k-1),由样本求出统计量F的数值,通过F>Fα(k,n-k-1)或F≤Fα(k,n-k-1)来拒绝或接受原假设H,以判定原方程总体上的线性关系是否显著成立。
三、变量的显著性检验(t检验)对每个解释变量进行显著性检验,以决定是否作为解释变量被保留在模型中。
原假设与备择假设:H0:βi=0 (i=1,2…k);H1:βi≠0给定显著性水平α,可得到临界值tα/2(n-k-1),由样本求出统计量t的数值,通过|t|> tα/2(n-k-1) 或|t|≤tα/2(n-k-1)来拒绝或接受原假设H0,从而判定对应的解释变量是否应包括在模型中。
四、参数的置信区间参数的置信区间用来考察:在一次抽样中所估计的参数值离参数的真实值有多“近”。
统计量)1(~1ˆˆˆ----'--=k n t k n c S t iiii iiie e βββββ在(1-α)的置信水平下βi 的置信区间是( , ) ββααββi i t s t s ii-⨯+⨯22,其中,t α/2为显著性水平为α、自由度为n-k-1的临界值。