当0<a<1时,同理可得loga2.7>loga2.8.
(2)log34>log33=1,log65<log66=1,所以log34>log65.
(3)log0.37<log0.31=0,log97>log91=0,
所以log0.37<log97.
方法总结
比较两个对数值大小的方法:
(1)logab与logac型(同底数)
[变式训练2-1] 将本例(1)改为loga(x+1)>loga(1-x),求x的集合.
+ > 0,
解:当 a>1 时, - > , 得解集为(0,1).
+ > 1-
+ > 0,
当 0<a<1 时, - > , 得解集为(-1,0).
+ < 1-
方法总结
递减,
所以 f(x)在(2,+∞)上单调递增,在(-∞,- )上单调递减.
2
当 0<a<1 时,y=logat 为减函数,t=2x -3x-2 在(2,+∞)上单调递增,在(-∞,- )上单
调递减,
所以 f(x)在(2,+∞)上单调递减,在(-∞,- )上单调递增.
综上可知,当 a>1 时,f(x)的单调增区间为(2,+∞),单调减区间为(-∞,- );
(1)解:由题意得 f(-x)+f(x)=0 对定义域中的 x 都成立,
所以 log2
+
+
2
+log2