图像处理-维纳滤波复原【PPT】
- 格式:ppt
- 大小:3.10 MB
- 文档页数:11
维纳滤波7.2 维纳滤波从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。
根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。
滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。
所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。
20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。
即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。
在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。
实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。
因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。
维纳滤波理论用于解决最小均方误差下的线性滤波问题。
设接收到(或观测到)的信号为随机信号(7-1)其中s(t)是未知的实随机信号,n(t)是噪声。
要设计的线性滤波器,其冲击响应为h(t, τ),输入为x(t),输出为,即(7-2)令为估计误差。
冲击响应h(t, τ)按最小均方误差准则确定,即h(t, τ)必须满足使(7-3)达到最小。
根据最小均方误差估计的正交条件,有以下关系成立(7-4)令(7-5)(7-6)则有(7-7)上述方程通常称为非平稳随机过程条件下的维纳-霍甫(Wiener-Kolmogorov)积分方程。
特别当x(t),s(t)均为广义(或宽)平稳随机信号,而滤波器是线性时不变系统的情况下,x(t)与s(t)必为联合平稳,式(7-7)可写为(7-8)令,,则有(7-9)此处,“*”号表示卷积,对上式两边取Fourier变换,可得(7-10)(7-11)对于因果线性系统,有(7-12)采用完全相同的分析方法,推得因果平稳维纳-霍甫积分方程如下(7-13)(7-14)其中,表示的零、极点位于,表示的零、极点位于。
维纳滤波器及其在图像处理中的应用摘要图像由于受到如模糊、失真、噪声等的影响,会造成图像质量的下降,形成退化的数字图像。
退化的数字图像会造成图像中的目标很难识别或者图像中的特征无法提取,必须对其进行恢复。
所谓图像复原就是指从所退化图像中复原出原始清晰图像的过程。
维纳波是一种常见的图像复原方法,该方法的思想是使复原的图像与原图像的均方误差最小原则恢复原图像。
本文进行了对退化图像进行图像复原的仿真实验,分别对加入了噪声的退化图像、运动模糊图像进行了维纳滤波复原,并给出了仿真实验效果以及结果分析。
实验表明退化图像在有噪声时必须考虑图像的信噪比进行图像恢复,才能取得较好的复原效果。
关键词:维纳滤波;图像复原;运动模糊;退化图像AbstractDue to factors such as blurring distorting and noising, image quality deteriorated and led to degenerated digital images which is getting harder to discern the target image or extract the image features. Wiener Filter is often used to recover the degraded image. The principle of the method expects to minimize the mean square error between the recovered image and original image. This paper carried out a restoration simulation experiments on degraded image,restoration of motion blurred images, and the result shows, SNR noise of the autocorrelation function for image restoration must be taken into consideration when restoring degraded images in a noise. Key words:Wiener Filter; motion blurred;degraded image;image restoration概述图像在形成、传输和记录的过程中都会受到诸多因素的影响,所获得的图像一般会有所下降,这种现象称为图像“退化”。
维纳维纳滤波实现模糊图像恢复维纳滤波实现模糊图像恢复摘要维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。
本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MATLAB函数来完成图像的复原。
关键词:维纳函数、图像复原一、引言在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。
引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。
它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。
因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。
而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。
它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。
维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。
二、维纳滤波器的结构维纳滤波自身为一个FIR或IIR滤波器,对于一个线性系统,如果其冲击响应为()n h,则当输入某个随机信号)(nx时,Y(n)=∑-n )()(mnxmh式(1)这里的输入)()()(n v n s n x += 式(2)式中s(n)代表信号,v(n)代表噪声。
我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即)(ˆ)(y n sn = 式(3) 因而该系统实际上也就是s(n)的一种估计器。
这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。
维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。
用逆滤波和维纳滤波进行图像复原在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。
为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。
图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目。
图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。
一、实验目的1了解图像复原模型2了解逆滤波复原和维纳滤波复原3掌握维纳滤波复原、逆滤波的Matlab实现二、实验原理1、逆滤波复原gxy,fxy,如果退化图像为,原始图像为,在不考虑噪声的情况下,其,,,,退化模型可用下式表示,,,, gxyfxydd,,,,,,,,,,,,,,,,,,,,,,,,,(12-25)由傅立叶变换的卷积定理可知有下式成立GuvHuvFuv,,,, ,,,,,,(12-26)Guv,Huv,Fuv,gxy,式中,、、分别是退化图像、点扩散函数,,,,,,,,hxy,fxy,、原始图像的傅立叶变换。
所以,,,,,,Guv,,,,,11fxyFFuvF,,,,,,,,,,,,,,Huv,,,,,(12-27)由此可见,如果已知退化图像的傅立叶变换和系统冲激响应函数(“滤被”传递函数),则可以求得原图像的傅立叶变换,经傅立叶反变换就可以求得原始fxy,Guv,Huv,图像,其中除以起到了反向滤波的作用。
这就是逆滤波复,,,,,,原的基本原理。
在有噪声的情况下,逆滤波原理可写成如下形式GuvNuv,,,,,, Fuv,,,,,HuvHuv,,,,,,(12-28)式中,Nuv,是噪声nxy,的傅立叶变换。