图像复原 逆滤波复原与维纳滤波复原方法及比较
- 格式:pdf
- 大小:594.98 KB
- 文档页数:6
维纳维纳滤波实现模糊图像恢复维纳滤波实现模糊图像恢复摘要维纳滤波器是最小均方差准则下的最佳线性滤波器,它在图像处理中有着重要的应用。
本文主要通过介绍维纳滤波的结构原理,以及应用此方法通过MATLAB函数来完成图像的复原。
关键词:维纳函数、图像复原一、引言在人们的日常生活中,常常会接触很多的图像画面,而在景物成像的过程中有可能出现模糊,失真,混入噪声等现象,最终导致图像的质量下降,我们现在把它还原成本来的面目,这就叫做图像还原。
引起图像的模糊的原因有很多,举例来说有运动引起的,高斯噪声引起的,斑点噪声引起的,椒盐噪声引起的等等,而图像的复原也有很多,常见的例如逆滤波复原法,维纳滤波复原法,约束最小二乘滤波复原法等等。
它们算法的基本原理是,在一定的准则下,采用数学最优化的方法从退化的图像去推测图像的估计问题。
因此在不同的准则下及不同的数学最优方法下便形成了各种各样的算法。
而我接下来要介绍的算法是一种很典型的算法,维纳滤波复原法。
它假定输入信号为有用信号与噪声信号的合成,并且它们都是广义平稳过程和它们的二阶统计特性都已知。
维纳根据最小均方准则,求得了最佳线性滤波器的的参数,这种滤波器被称为维纳滤波。
二、维纳滤波器的结构维纳滤波自身为一个FIR或IIR滤波器,对于一个线性系统,如果其冲击响应为()n h,则当输入某个随机信号)(nx时,Y(n)=∑-n )()(mnxmh式(1)这里的输入)()()(n v n s n x += 式(2)式中s(n)代表信号,v(n)代表噪声。
我们希望这种线性系统的输出是尽可能地逼近s(n)的某种估计,并用s^(n)表示,即)(ˆ)(y n sn = 式(3) 因而该系统实际上也就是s(n)的一种估计器。
这种估计器的主要功能是利用当前的观测值x(n)以及一系列过去的观测值x(n-1),x(n-2),……来完成对当前信号值的某种估计。
维纳滤波属于一种最佳线性滤波或线性最优估计,是一最小均方误差作为计算准则的一种滤波。
4记录和整理实验报告。
图像降质的数学模型图像复原处理的关键问题在于建立退化模型。
输入图像f(x, y)经过某个退化系统后输出的是一幅退化的图像。
为了讨论方便, 把噪声引起的退化即噪声对图像的影响一般作为加性噪声 考虑, 这也与许多实际应用情况一致,如图像数字化时的量化 噪声、 随机噪声等就可以作为加性噪声,即使不是加性噪声而 是乘性噪声, 也可以用对数方式将其转化为相加形式。
原始图像f(x, y) 经过一个退化算子或退化系统H(x, y) 的作用, 再和噪声n(x,y)进行叠加,形成退化后的图像g(x, y)。
图2-1表示退化过程的输入和输出的关系,其中H(x, y)概括了退化系统的物理过程,就是所要寻找的退化数学模型。
图2-1 图像的退化模型数字图像的图像恢复问题可看作是: 根据退化图像g(x , y)和退化算子H(x , y)的形式,沿着反向过程去求解原始图像f(x , y), 或者说是逆向地寻找原始图像的最佳近似估计。
图像退化的过程可以用数学表达式写成如下的形式:g(x, y)=H [f(x, y)]+n(x, y) (2-1)在这里,n(x, y)是一种统计性质的信息。
在实际应用中, 往往假设噪声是白噪声,即它的频谱密度为常数,并且与图像不相关。
在图像复原处理中, 尽管非线性、 时变和空间变化的系统模型更具有普遍性和准确性,更与复杂的退化环境相接近,但它给实际处理工作带来了巨大的困难, 常常找不到解或者很难用计算机来处理。
因此,在图像复原处理中, 往往用线性系统和空间不变系统模型来加以近似。
这种近似的优点使得线性系统中的许多理论可直接用于解决图像复原问题,同时又不失可用性。
f (x , y )g (x , y )2.2匀速直线运动模糊的退化模型在所有的运动模糊中,由匀速直线运动造成图象模糊的复原问题更具有一般性和普遍意义。
因为变速的、非直线运动在某些条件下可以被分解为分段匀速直线运动。
本节只讨论由水平匀速直线运动而产生的运动模糊。
用逆滤波和维纳滤波进行图像复原在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。
由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。
为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原。
图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目。
图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像。
一、实验目的1了解图像复原模型2了解逆滤波复原和维纳滤波复原3掌握维纳滤波复原、逆滤波的Matlab实现二、实验原理1、逆滤波复原gxy,fxy,如果退化图像为,原始图像为,在不考虑噪声的情况下,其,,,,退化模型可用下式表示,,,, gxyfxydd,,,,,,,,,,,,,,,,,,,,,,,,,(12-25)由傅立叶变换的卷积定理可知有下式成立GuvHuvFuv,,,, ,,,,,,(12-26)Guv,Huv,Fuv,gxy,式中,、、分别是退化图像、点扩散函数,,,,,,,,hxy,fxy,、原始图像的傅立叶变换。
所以,,,,,,Guv,,,,,11fxyFFuvF,,,,,,,,,,,,,,Huv,,,,,(12-27)由此可见,如果已知退化图像的傅立叶变换和系统冲激响应函数(“滤被”传递函数),则可以求得原图像的傅立叶变换,经傅立叶反变换就可以求得原始fxy,Guv,Huv,图像,其中除以起到了反向滤波的作用。
这就是逆滤波复,,,,,,原的基本原理。
在有噪声的情况下,逆滤波原理可写成如下形式GuvNuv,,,,,, Fuv,,,,,HuvHuv,,,,,,(12-28)式中,Nuv,是噪声nxy,的傅立叶变换。
基于维纳滤波的图像复原基于维纳滤波的图像复原设计与实现摄影设备拍摄的图像,由于其硬件设备的限制往往造成图像的模糊、失真以及图像混杂噪声等问题。
于是,对于此类图像的复原技术就变得具有重要的实现意义。
本文将主要介绍退化模型,并分析逆滤波复原算法与维纳滤波复原算法,通过使用Matlab平台基于维纳滤波研究模糊图像的复原方法,并设计出合适的维纳滤波器进行复原仿真,对“含噪”图像进行复原。
标签:维纳滤波;逆滤波;图像复原;图像退化模型Image restoration design and implementation based on Wiener FilteringAbstract:The image taken by photographic equipment is often caused by the limitation of hardware equipment,such as image blur,distortion and image hybrid noise. Therefore,the restoration method of fuzzy images becomes of great significance. In this paper,it will mainly introduce the degradation model ,to analyze the inverse filtering algorithm and wiener filtering algorithm. The restoration method of fuzzy images is studied by using Matlab platform based on wiener filtering,and an appropriate wiener filter is designed for the restoration simulation,so as to restore these “noisy” images.Key words:Wiener filtering;inverse filtering;Image restoration;degradation model1.緒论1.1前言从摄影设备开始,图像在其形成、存储、处理和传输过程中,由于摄影设备、传输方式的不完善,例如监视器像素低等,造成的图像质量低下,称这种现象为“图像退化”。
基于维纳滤波的图像复原基于维纳滤波的图像复原设计与实现摄影设备拍摄的图像,山于其硬件设备的限制往往造成图像的模糊、失真以及图像混杂噪声等问题。
于是,对于此类图像的复原技术就变得具有重要的实现意义。
本文将主要介绍退化模型,并分析逆滤波复原算法与维纳滤波复原算法,通过使用Matlab平台基于维纳滤波研究模糊图像的复原方法,并设计出合适的维纳滤波器进行复原仿真,对“含噪”图像进行复原。
标签:维纳滤波;逆滤波;图像复原;图像退化模型Image restoration design and implementation based on Wiener FilteringAbstract:The image taken by photographic equipment is often caused by the limitation of hardware equipment, such as image blur, distortion and image hybrid noise. Therefore, the restoration method of fuzzy images becomes of great significance. In this paper, it will mainly introduce the degradation model , to analyze the inverse filtering algorithm and wiener filtering algorithm. The restoration method of fuzzy images is studied by using Matlab platform based on wiener filtering, and an appropriate wiener filter is designed for the restoration simulation, so as to restore these "noisy" images・Key words : Wiener filtering ; inverse filtering ; Image restoration ;degradation model1 •緒论1」前言从摄影设备开始,图像在其形成、存储、处理和传输过程中,由于摄影设备、传输方式的不完善,例如监视器像素低等,造成的图像质量低下,称这种现象为“图像退化程而根据建立的图像退化模型,界定噪声信号以及退化系统,从而得出“原始图像”,即是做到了对图像的复原。