奥数专题 假设法解应用题(20180909)
- 格式:pdf
- 大小:230.03 KB
- 文档页数:10
小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。
根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。
2.设冰箱数量为x,则洗衣机数量为126-x。
根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。
3.设上学期男同学数量为x,则女同学数量为750-x。
本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。
根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。
4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。
根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。
5.设甲队挖了x米,则乙队挖了300-x米。
根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。
6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。
根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。
最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。
7.设去年初中招生人数为x,则高中招生人数为4752-x。
今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。
根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。
假设法解应用题运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。
(一)把题中出现的两个量假设成一个量例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。
问鸡、兔各有多少只?分析与解答:鸡兔同笼问题往往用假设法来解答,即假设全是鸡或全是兔,脚的总数必然与条件矛盾,根据数量上出现的矛盾适当调整,从而找到正确答案。
假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。
减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。
所以兔有24÷2=12只,鸡有35-12=23只。
练习:1、笼里有鸡和兔共30只,总共有70条腿,问鸡和兔各有多少只?2、鸡兔同笼,头共46只,脚共128,鸡兔各几只?3、一队猎手一队狗,两队并着一起走。
数头一共一百六,数脚一共三百九。
则猎手和狗各有多少?例2:面值是2元、5元的人民币共27X,全计99元。
面值是2元、5元的人民币各有多少X?分析与解答:这道题类似于“鸡兔同笼”问题。
假设全是面值2元的人民币,那么27X人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一X面值2元的人民币当作一X面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15X,面值2元的人民币有27-15=12X。
练习:1、某学校有30间宿舍,大宿舍每间住6人,小宿舍每间住4人,已知这些宿舍中共住了l68人,且所有的宿舍都住满了人。
那么有多少间大宿舍?2、希望小学六年级师生100人外出郊游,共乘坐大客车和小客车10辆,每辆大客车可以乘坐8人,每辆小客车可乘坐6人,且所有的大客车和小客车都坐满了。
有多少辆大客车?例题3:一次数学竞赛有20道题,每答对一道题得5分,每答错一道题(包括不答)倒扣1分,一位同学在这次数学竞赛中得了88分,他答对了多少题?分析:题中有答对和答错(不答)的题两个量,且也知道总数量20道题。
三年级奥数训练——用假设法解题姓名:思路导航:“假设”是数学中思考问题的一种常见的方法,有些应用题看上去很难求出答案,但是如果我们合理地进行“假设”,往往会使问题得到解决。
“假设法”的一般步骤是,先假设一种情况,再依照已知条件进行推算,根据数量上出现的矛盾,作适当的调整,从而找到正确答案。
我国的古代趣题“鸡兔同笼”,就是运用“假设法”解决问题的经典范例。
经典例题:例题1 鸡、兔共30只,共有脚84只。
鸡、兔各有多少只?练习一鸡、兔共100只,共有脚280只。
鸡、兔各多少只?例题2鸡、兔共笼,鸡比兔多30只,一共有脚168只,鸡、兔各多少只?练习二鸡兔共笼,鸡比兔多25只,一共有脚170只。
鸡、兔各几只?例题3 某学校举行数学竞赛,每做对一题得9分,做错一题倒扣3分。
共有12道题,王刚得了84分。
王刚做错了几题?练习三某小学进行英语竞赛,每答对一题得10分,答错一题倒扣2分,共15题,小华得了102分。
小华答对几题?例题4 水果糖的块数是巧克力糖的3倍,如果小红每天吃2块水果糖,1块巧克力糖,若干天后,水果糖还剩下7块,巧克力糖正好吃完。
原来水果糖有几块?练习四小英家有些梨和苹果,苹果的个数是梨的3倍,爸爸和小英每天各吃1个苹果,妈妈每天吃1个梨。
若干天后,苹果还剩9个,而梨恰巧吃完。
原来苹果有多少个?例题5学校买来8张办公桌和6把椅子,共花去1650元。
每张办公桌的价钱是每把椅子的2倍,每张办公桌和每把椅子各多少元?练习五买4张办公桌9把椅子共用252元,1张桌子和3把椅子的价钱正好相等。
桌、椅单价各多少元?课堂练习1、鸡、兔共45只,鸡的脚比兔的脚多60只。
鸡、兔各多少只?2、鸡兔共有脚48只,如果将鸡的只数与兔的只数互换则共有脚42只。
鸡、兔各几只?3、某车间生产一批服装共250件,生产1件可得25元,如果有1件不符合要求,则倒扣20元。
生产后得到费用5350元,有几件不符合要求?4、四(3)班有彩色粉笔和白粉笔若干盒,白粉笔是彩色粉笔的7倍。
一批零件,甲独做8天完成,乙独做10天完成,现在由两人一起做这批零件,中途甲因事请假一天。
完成这批零件共需少天?讲解题:1.一件工作,甲独做15天完成,乙独做10天完成,两人一起做若干天后甲休息了几天,结果共用8天才完成了任务。
甲休息了几天?2.一项工程,甲、乙两人一起做12天可以完成。
中途甲因事停工5天,因此用了15天完成。
甲独做这项工程要用多少天?学校阅览室有文艺书和科技书一共125本,如果文艺书借出7,比科技书还多5本。
原来文艺书和科技书各有多少本?讲解题:1,还比妹妹多10只。
姐姐和妹妹各1.姐妹俩共养兔120只,如果姐姐卖掉7养了多少只兔?1后,比足球少1个。
原来篮球和足球2.学校有篮球和足球共21个,篮球借出3各有多少个?假设法解题(3)思考题:甲、乙两数的和是300,甲数的52比乙数41多55。
甲、乙两数各是多少?讲解题:1.畜牧场有绵羊、山羊共800只,山羊数量的52比绵羊数量的21多50只。
这个畜牧场有山羊、绵羊各多少只?2.师傅和徒弟共加工零件840个,师傅加工零件的85比徒弟加工零件的32多60个。
师傅和徒弟各加工零件多少个?假设法解题(4)思考题:育红小学上学期共有学生750名,本学期男生增加61,女生减少51,现在一共有 学生710名。
本学期男、女生各有多少名?讲解题:1.袋子里原有红球和黄球共119个。
将红球的数量增加83,黄球的数量减少52后,红球与黄球的总数量变为121个。
原来袋子里有红球和黄球各多少个?2.01课后练习1、一项工程,甲、乙一起做4天后,再由乙单独做5天完成,已知甲比乙每天多完成1。
甲、乙单独做这项工程各需多少天?这项工程的301,还比鸭多17只。
小明家2、小明家养的鸡和鸭共有100只,如果将鸡卖掉20原来养的鸡和鸭各有多少只?1。
比甲班种树数量的3、某校六年级甲、乙两个班共种了100棵树,乙班种树数量的101少16棵。
两个班各种了多少棵树?31;银放在水里称重,量具显示的质量会4、金放在水里称重,量具显示的质量会减少191。
四年级奥数:用假设法解题练习30道(附答案)假设法解题1、鸡兔共50只,兔的脚比鸡的脚少40只,鸡兔各有多少只?兔:40÷4=10只,鸡:50-10=40只2、鸡兔共45只,鸡的脚比兔的脚多60只,鸡兔各有多少只?60÷2=30 45-30=15 兔:15÷(2+1)=5 只鸡:15-5=40只3、共有鸡兔的脚48只,如果将鸡的只数与兔的只数互换一下则共有脚42只,鸡兔各有多少只?48÷2=24 兔(48-24)÷4=6 互换鸡变6只兔:(48-6×2)÷4=9只4、一辆自行车有2个轮子,一辆三轮车有3个轮子,车棚里放着自行车和三轮车共10辆,共25个轮子。
自行车(5)辆,三轮车(5)辆。
5、一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。
每辆大车比小车多装4吨,这批水泥有多少吨?4×36=144吨,45-36=9辆,144÷9=16吨,16×45=720吨。
6、一批货物用大卡车装要16辆,如果用小卡车装要48辆。
已知大卡车比小卡车每辆多装4吨,问这批货物有多少吨?4×16=64吨,48-16=32辆,64÷32=2吨,2×48=96吨7、有甲、乙、丙三种练习簿,价钱分别为7角、3角和2角,三种练习簿一共买了47本,付了21元2角。
买乙种练习簿的本数是丙种练习簿的2倍,三种练习簿各买了多少本?7×47=329(角),329-212=117(角),因为把3角和2角的练习簿都看成了7角,117÷(7×3-3×2-2)=9(本)1×9=9(本),2×9=18(本),47-18-9=20(本)8、甲乙两桶油各有若干千克,如果要从甲桶中倒出和乙桶同样多的油放入乙桶,再从乙桶倒出和甲桶同样多的油放入甲桶,这时两桶油恰好都是36千克。
六年级奥数第6讲:假设法解应用题[例1] 学校有排球和足球共58个,排球借出个,排球借出 16后,还比足球多8个。
原来排球和足球各有多少个?球和足球各有多少个?点拨:先画出线段图,从图中可以看出,假设足球增加8个,就和排球借出就和排球借出 16后剩下的同样多。
以排球原有的个数为单位“剩下的同样多。
以排球原有的个数为单位“11”,足球增加8个后,相当于排球个数的(1- 16 ),排球原来有(58+858+8))÷(1+1- 16 ),足球原来有(58-3658-36))个。
解答:(58+858+8)÷()÷()÷(1+1- 1+1- 16 )=36=36(个)(个)(个)58-36=22(个)(个)答:原来排球有36个,原来足球有22个。
个。
[试一试1] 姐妹俩养兔120只,如果姐姐卖掉只,如果姐姐卖掉 17 ,还比妹妹多,还比妹妹多10只,姐姐和妹妹各养了多少只兔?妹妹各养了多少只兔? (答案:姐姐70只,妹妹50只)[例2] 六年级一班和二班共有学生96人,现在抽一班人数的34 与二班人数的与二班人数的 35,组成66人的鼓号队。
六年级一班和二班各有学生多少人?人的鼓号队。
六年级一班和二班各有学生多少人?点拨:假设二班也抽出假设二班也抽出 34 ,就和条件“抽一班人数的,就和条件“抽一班人数的 34 与二班人数的与二班人数的 35,组成66人的鼓号队”产生差异。
如果两个班都抽出34 ,就抽出了(,就抽出了(969696××34)人,比实际多抽出(72-6672-66))人,这6人就是二班人数的34 与二班人数的35 相差的人数。
这样就可以求出原来二班有6÷(34 - 35 )=40=40(人)(人),原来一班有96-40=5696-40=56(人)(人)。
解答:(9696××34 -66)÷()÷(34 - 35 )=40=40(人)(人)(人)96-40=56(人)(人)答:六年级一班有学生56人,二班有学生40人 。
小学数学奥林匹克辅导及练习用假设法解应用题(一)(含答案) .小学数学奥林匹克辅导及练习用假设法解应用题(一)(含答案)-.用假设方法解决应用问题(一)有些应用题按照一般的解题思路不易找到正确的解答方法。
题中要求两个或两个以上的未知数量,解题时可以先假设要求的两个或两个以上的未知量相等或先假设要求的一个未知量与题目中的某一已知数量相等,使题意明朗化、简单化。
再按照题里的已知条件进行推算,把假定的加以纠正和调整,从而得到正确答案。
(一)示例指导:例1.小红有1角、5角的硬币共35枚,一共是9元5角,问两种硬币各多少枚?分析与解:9元5角=95角假设这35件都是一角硬币,那么总金额应该是35角,比实际95角少了60美分。
这是因为所有的5美分都被视为1角。
如果有一枚5角的硬币,它就少了4角。
如果在60角以下有几个这样的4角,那么就有几个5角的硬币。
(角)(件)(件)答:5角硬币有15枚,1角硬币有20枚。
如果我们假设它们都是50美分,怎么解决呢?学生们,试一试。
例2.某玻璃杯厂要为商店运送1000个玻璃杯,双方商定每个运费为1元,如果打碎一个,这一个不但不给运费,而且要赔偿4元。
结果运到目的地结算时,玻璃杯厂共得运费895元,求打碎了几个玻璃杯?分析与解:假设所有1000个玻璃杯均已交付且完好无损,则应支付的运费为:(元)(元)5元,一共扣除105元,所以实际上运费更低:这说明在运输过程中打碎了玻璃杯,每打碎1个,不但不给1元的运费,还要赔偿4元,即打碎一个玻璃杯要从总钱数1000元中扣除打碎的玻璃杯数为:综合算式:A:打碎了21个玻璃杯。
(个)(件)例3.小张、小李两进行射击比赛,约定每中一发记20分,脱靶一发则扣12分,两人各打了10发,共得208分,其中小张比小李多得64分,问小张、小李两人各中几发?分析与解:两人共得208分,其中小张比小李多得64分。
根据这两个条件可以求出小张和小李各得多少分。
奥数专题 ---假设法解应用题
明白三个东西:
1.什么是假设法?为什么不用方程法?
2.假设谁?假设哪个量?(KEY)
3.经典(常用)方法有那几个?
4.自己会用假设法出几道生活中常用的应用题(加深理解)
1.什么是假设法?为什么不用方程法?
假设法定义:假设法是一种常用的解题方法。
“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。
用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。
有些用一般方法能解答的应用题,用假设法解答可能更简捷。
但是较复杂的问题最好还是用方程法。
2.假设谁?假设哪个量?
运用假设法的思路解应用题,先要根据题意(主要类型有)
第一类:假设情节(加啊减啊倒出啊等等的)变化
第二类:假设两个(或几个)数量相等
第三类:假设两个分率(或两个倍数)相同
第四类:假设某个数量不比其他数量多或不比其他数量少
第五类:假设某个数量增加了或减少了
第六类:假设某个数量扩大了或缩小了
不管哪一类,再设好后,都要要根据所作的假设,推算到数量关系发生了什么变化,是否出现了矛盾,找出出现矛盾的原因,并作出适当的调整,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法得到答案。
三、方法与总结
为了让自己掌握这个方法,建议每个题固定用假设法+二元一次方程组法+一元一次法这3种方法作答,这样我可以加深理解。
部分题目可能更加让你理解假设哪个量更加适合。
(第一类)假设情节(加啊减啊倒出啊等等的)变化
解:假设篮球没有借出,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,
两种球的总份数是:3+2=5(份)
原来篮球的个数是:
原来足球的个数是: 21-12=9(个)。
方法2:设篮球X,足球21-X,
X*(1-1/3)=(21-X)-1(二元的方程组自己列出来)
例2 甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。
两场原来各存煤多少吨?
解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4
甲场原来存煤:92-50=42(吨)答略。
(第二类)假设两个(或几个)数量相等
例1有两块地,平均亩产粮食185千克。
其中第一块地5亩,平均亩产粮食203千克。
如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)
解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)
5亩地要多产:33×5=165(千克)
两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)
因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)
第二块地的亩数是:11-5=6(亩)答略。
解:此题可以有三种答案。
答:剩下的两根绳子一样长。
答:甲绳剩下的部分比乙绳剩下的部分长。
(3)假设两根绳子都比1米长。
任意假定为1.5米,则甲绳剪去
答:乙绳剩下的部分比甲绳剩下的部分长。
例3一项工作,甲、乙两队单独做各需要10天完成,丙队单独做需要7.5天完成。
在三队合做的过程中,甲队外出1天,丙队外出半天。
问三队合做完成这项工作实际用了几天?
解:假设甲没有外出,丙也未外出,也就是说,甲、乙、丙三个队的工作天数一样多,则三队合做的工作量可达到:
三队合做这项工作,实际用的天数是:
答略。
*例4 一项工程,甲、乙两队合做80天完成。
如果先由甲队单独做72天,再由乙队单独做90天,可以完成全部工程。
甲、乙两队单独完成全部工程各需要用多少天?(适于六年级程度)
解:假设甲队做72天后,乙队也做72天,则剩下的工程是:
乙队还需要做的时间是:90-72=18(天)
乙队单独完成全部工程的时间是:
甲队单独完成全部工程的时间是:
(第三类)假设两个分率(或两个倍数)相同
例1某商店上月购进的蓝墨水瓶数是黑墨水瓶数的3倍,每天平均卖出黑墨水45瓶,蓝墨水120瓶。
过了一段时间,黑墨水卖完了,蓝墨水还剩300瓶。
这个商店上月购进蓝墨水和黑墨水各多少瓶?
解:根据购进的蓝墨水是黑墨水的3倍,假设每天卖出的蓝墨水也是黑墨水的3倍,则每天卖出蓝墨水:45×3=135(瓶)
这样,过些日子当黑墨水卖完时蓝墨水也会卖完。
实际上,蓝墨水剩下300瓶,这是因为实际比假设每天卖出的瓶数少:135-120=15(瓶)
卖的天数:300÷15=20(天)
购进黑墨水:45×20=900(瓶)
购进蓝墨水:900×3=2700(瓶)
答略。
*例2 甲、乙两个机床厂今年一月份都超额完成了生产计划,甲厂完成计划的112%,乙厂完成计划的110%。
两厂共生产机床400台,比原计划超产40台。
两厂原计划各生产多少台机床?(适于六年级程度)
解:假设两个厂一月份都完成计划的110%,则两个厂一月份共生产机床:
(400-40)×110%=396(台)
甲厂计划生产:(400-396)÷(112%-110%)
=4÷2%
=200(台)
乙厂计划生产:400-40-200=160(台)答略。
(第四类)假设某个数量不比其他数量多或不比其他数量少
例1 某校三、四年级学生去植树。
三年级去150人,四年级去的人数比三年级人数的2倍少20人。
两个年级一共去了多少人?(适于三年级程度)
解:假设四年级去的人数正好是三年级的2倍,而不是比三年级的2倍少20人,则两个年级去的人数正好是三年级人数的3倍。
两个年级去的人数是:150×3=450(人)
因为实际上,四年级去的人数比三年级2倍少20人,所以两个年级去的实际人数是:450-20=430(人)。
答略。
*例2 甲、乙、丙三个乡都拿出同样多的钱买一批化肥。
买好后,甲、丙两个乡都比乙乡多18吨,因此甲乡和丙乡各给乙乡1800元。
问每吨化肥的价格是多少元?(适于高年级程度)
解:假设甲、丙两个乡买的化肥不比乙乡多18吨,而是与乙乡买的同样多,则应把多出来的2个18吨平均分。
平均分时每个乡多得:
18×2÷3=12(吨)
因为甲、丙两个乡都比乙乡多得18吨,而平均分时每个乡得12吨,所以乙乡实际比甲、丙两个乡都少:
18-12=6(吨)
每吨化肥的价格:1800÷6=300(元)。
答略。
(第五类)假设某个数量增加了或减少了
6-4=2(人)
全班人数是:
女生人数是:
答略。
*例2 学校运来红砖和青砖共9750块。
红砖用去20%,青砖用去1650块后,剩下的红砖和青砖的块数正好相等。
学校运来红砖、青砖各多少块?(适于六年级程度)
解:假设少运来1650块青砖,则一共运来砖:9750-1650=8100(块)
以运来的红砖的块数为标准量1,则剩下的红砖的分率是:1-20%=80%
因为剩下的红砖的块数与青砖的块数正好相等,所以青砖的分率也是80%。
因为8100块中包括全部红砖和红砖的(1-20%)(青砖),所以8100块的对应分率是(1+1-20%)。
运来的红砖是:
(9750-1650)÷(1+1-20%)
=8100÷1.8=4500(块)
运来的青砖是:9750-4500=5250(块)答:运来红砖4500块,运来青砖5250块。
(第六类)假设某个数量扩大了或缩小了
例1 把鸡和兔放在一起共有48个头、114只爪和脚。
鸡和兔各有多少只?
解:假设把鸡爪和兔子脚的只数都缩小2倍,则鸡爪数和鸡的头数一样多,兔的脚数是兔头数的2倍。
这样就可以认为,114÷2所得商中含有全部鸡的头数,也含有兔子头数2倍的数,而48中包含全部鸡的头数和兔子头数1倍的数。
所以兔的只数是:114÷2-48=9(只)
鸡的只数是:48-9=39(只)答略。
解:假设把从甲、乙两堆煤里取出的煤的数量扩大4倍,则从两堆煤取出的总数量比原来的两堆煤多:708×4-2268=2832-2268=564(千克)
甲堆煤的重量是:
乙堆煤的重量是:2268-940=1328(千克)。