X荧光光谱仪原理结构及应用
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
x射线荧光光谱仪工作原理
X射线荧光光谱仪的工作原理主要包括两个部分:激发源和探测系统。
首先,X射线管是该仪器的主要组成部分之一。
它可以产生X射线,也被称为一次X射线,这些X射线被用来激发被测样品。
其次,当一次X射线(也被称为入射X射线)照射到被测样品时,样品中的原子会吸收这些X射线,然后从它们的内层电子中释放出内层电子,此时外层电子会跳入这个能级,产生特征的X射线(也被称为二次X射线),其波长或能量是特定元素的标识。
这些特征的X射线接着会被探测系统测量和收集。
最后,仪器软件将这些信息转换成样品中各种元素的种类及含量。
这种转换是基于荧光X射线的波长或能量与元素种类之间的特定关系。
只要测出荧光X射线的波长或者能量,就可以知道元素的种类。
同时,由于元素含量和荧光X射线的强度之间有一定的关系,所以可以根据强度进行元素的定量分析。
x-射线荧光光谱仪工作原理
X-射线荧光光谱仪是一种利用物质表面被入射X-射线激发产
生的荧光辐射来分析物质成分的仪器。
其工作原理如下:
1. 产生X-射线:通过加速电子的方式产生较高能量的X-射线。
通常采用电子加速器或X-射线管产生X-射线。
2. 入射X-射线:产生的X-射线经过透镜或全反射镜聚焦,使
其成为一束准直的X-射线入射到待分析的样品上。
3. X-射线激发:入射的X-射线与样品中的原子相互作用,使
得样品中的原子内部产生电离和激发。
4. 荧光辐射:被激发的原子内部的电子重新排布,从高能级跃迁到低能级时,会发出特定波长的荧光辐射。
这些荧光辐射的波长与样品中的元素种类和原子结构相关。
5. 信号检测与分析:荧光辐射被光学系统收集,并经过光电倍增管或固态探测器(如硅PIN二极管)转换为电信号。
电信
号经放大和转换后,可以通过计数器、频谱仪等设备进行信号的检测和分析。
6. 数据处理和结果展示:通过对荧光光谱中特定峰位的识别和曲线拟合,可以得到样品中的元素种类和含量信息。
这些数据
可以进一步进行数据处理和结果展示,为分析者提供详细的样品组成分析结果。
x射线荧光光谱引言x射线荧光光谱(X-ray Fluorescence Spectroscopy, XRF)是一种常用的非破坏性分析技术,广泛应用于材料科学、地质学、环境科学、金属检测等领域。
它基于材料在受到x射线激发后产生的荧光辐射,通过测量荧光光子的能谱信息,可以确定材料中的元素种类和含量。
本文将介绍x射线荧光光谱的基本原理、仪器设备以及应用案例。
一、基本原理x射线荧光光谱的基本原理是基于光电效应和荧光效应。
当材料受到x射线束辐射时,束中的x射线光子与材料的原子相互作用,发生光电效应,即x射线光子被原子内的电子吸收,并激发出内层电子,从而使原子处于激发态或离激态。
随后,这些激发态或离激态的原子通过辐射跃迁返回基态,释放出能量较低的荧光光子,产生荧光辐射。
不同化学元素的原子所产生的荧光光子具有不同的能量,因此可以通过测量荧光光子的能谱信息来确定样品中的元素种类和含量。
二、仪器设备x射线荧光光谱需要使用专门的仪器设备来实现荧光光谱的测量。
常见的x射线荧光光谱测量装置包括x射线源、样品支架、能谱仪、数据分析系统等。
1. x射线源x射线源是产生x射线束的设备。
常见的x射线源包括x射线管和同步辐射光源。
x射线管通常采用钨靶或铜靶,通过高压电流的激发产生x射线束,具有较低的能量,并适用于常见元素的测量。
而同步辐射光源通过加速电子在环形加速器中高速运动产生的x射线,具有较高的能量,适用于测量高原子序数的元素。
2. 样品支架样品支架是用于固定和放置待测样品的装置。
样品支架可以有多种形式,如样品盒、样品台、样品架等,不同形式的样品支架可用于不同类型和尺寸的样品。
3. 能谱仪能谱仪是用于测量荧光光子能谱信息的装置。
通常采用的能谱仪包括固态能谱仪和闪烁能谱仪。
固态能谱仪采用固态探测器,如硅探测器或硒探测器,可提供高能量分辨率和较高的计数速率。
而闪烁能谱仪则采用闪烁晶体,如钠碘化物晶体或锗探测器,可提供较高的灵敏度和较低的本底计数。
X荧光光谱仪的原理及应用X荧光光谱仪的原理是基于激发态和基态之间的能量转移过程。
当样品受到特定波长的激发光照射时,部分激发光能将样品中的原子或分子从基态激发到激发态。
此时,激发态的物质会经历自发辐射或受到外界环境的影响而发生非辐射能量传递,将激发态的能量以光的形式释放出来,形成荧光信号。
通过检测和分析这种荧光信号,可以得到样品的荧光强度和荧光光谱。
1.生物医学研究:X荧光光谱仪可以用于分析细胞内的荧光标记物、药物的分子鉴定、蛋白质结构研究等。
它可以帮助研究人员了解生物分子的结构特征、相互作用和功能。
2.环境监测:X荧光光谱仪可以用于监测水、大气和土壤中的污染物。
通过测量样品的荧光强度和荧光光谱,可以快速检测和定量分析有害物质的存在和浓度,对环境污染进行监测和评估。
3.食品安全:X荧光光谱仪可以用于检测食品中的添加剂、残留农药和重金属等有害物质。
它可以高效地进行食品检测和质量控制,保障食品安全。
4.化学分析:X荧光光谱仪可以用于分析和鉴定有机物和无机物。
它可以测定样品中的元素含量、结构确定和化学反应动力学研究等。
除了以上应用,X荧光光谱仪还可以用于材料科学研究、生化分析、药物研发等领域。
它具有灵敏度高、快速分析、非破坏性检测等优点,并且能够分析复杂样品,得到可靠的分析结果。
总之,X荧光光谱仪的原理是基于激发态和基态之间的能量转移过程,通过测量荧光信号的强度和光谱,可以实现对样品的定性和定量分析。
它的应用涵盖了生物医学、环境监测、食品安全、化学分析等多个领域,对科学研究和工业生产具有重要意义。
x荧光光谱仪的检测原理x荧光光谱仪的检测原理引言:在现代科技领域,荧光光谱技术的应用越来越广泛。
x荧光光谱仪作为一种常见的荧光光谱分析仪器,其检测原理是如何实现的呢?一、激发光源的选择:x荧光光谱仪的检测原理首先涉及到激发光源的选择。
常见的激发光源包括氙灯、汞灯和钨灯等。
其中,氙灯具有较高的光强和较宽的光谱范围,可以适用于多种荧光分析实验。
二、样品的激发与发射:在荧光光谱分析中,样品受到激发光源的照射后,产生荧光发射。
激发光与荧光发射光的波长有明显的差异,这是实现检测的基础。
通过选择适当的激发光源和检测波长,可以最大程度上提高检测的准确性。
三、荧光信号的收集:荧光信号的收集是x荧光光谱仪的重要环节。
一种常见的收集方式是利用反射镜和聚光镜对发射光进行收集。
反射镜将发射光反射到检测器上,聚光镜则可以提高收集率。
四、荧光光谱的分析与解读:x荧光光谱仪的检测原理不仅仅是收集荧光信号,还包括对光谱信号的分析和解读。
光谱信号可以通过计算机进行数字化处理,利用光强变化的特点,对样品中的化学成分进行分析和定量。
五、应用领域与前景展望:x荧光光谱仪的检测原理在许多领域都有广泛的应用。
它可以应用于生物医学、环境监测、食品安全等多个领域。
随着科技的不断发展,x荧光光谱仪的性能和精确度得到了提升,其应用前景也变得更加广阔。
结论:x荧光光谱仪的检测原理是一种基于荧光信号收集和解析的技术。
通过选择适当的激发光源和检测波长,荧光光谱仪能够对样品中的化学成分进行快速、精确的检测。
随着科技的不断进步,x荧光光谱仪的应用前景将更加广阔,为各个领域的科学研究和实践提供强大的支持。
XRF检测的原理和应用1. 引言X射线荧光光谱仪(X-Ray Fluorescence Spectrometer,简称XRF)是一种用于元素分析的仪器。
它能够通过射入样品的X射线,激发样品中的原子产生特定的荧光辐射,并通过测量荧光辐射来确定样品中各种元素的含量。
本文将介绍XRF 检测的原理和应用。
2. 原理XRF检测的原理基于元素的特征X射线发射和吸收。
当样品受到高能X射线束的照射时,样品中的原子会发生内层电子的跃迁,从而产生特定的X射线发射。
每种元素都有特定的能量和强度的特征X射线发射谱。
通过测量样品荧光辐射的能谱,可以确定样品中各种元素的存在及其含量。
XRF检测可以分为荧光光谱测量和荧光辐射谱峰分析两个步骤。
在荧光光谱测量中,X射线荧光光谱仪测量样品放射出的荧光光谱,获得荧光峰。
然后,在荧光辐射谱峰分析中,根据荧光峰的能量和强度,通过谱峰拟合算法计算出样品中各种元素的含量。
3. 应用3.1 金属材料分析XRF检测在金属材料分析中有广泛的应用。
它可以用于检测金属材料中的成分和杂质元素,以确定其质量和合格性。
通过XRF检测,可以快速准确地确定金属材料中各种元素的含量,并对材料进行分类和鉴定。
3.2 地质和矿石分析XRF检测在地质和矿石分析中也具有重要的应用价值。
地质样品中的元素含量是研究地壳构造和地质过程的重要依据。
XRF检测可以用于测量岩石、矿石、矿物和土壤中各种元素的含量,用于地质勘探、矿产资源评价和环境监测等领域。
3.3 环境监测XRF检测在环境监测中起着重要的作用。
它可以检测土壤、水和空气中的有毒元素和污染物,如重金属、有机污染物等。
通过对环境样品的XRF检测,可以快速获得样品中各种元素的含量,评估环境污染程度,并为环境保护提供科学依据。
3.4 文物保护XRF检测在文物保护中也有广泛应用。
文物材料中的元素含量可以提供文物起源、制作工艺和保存状态等信息。
通过对文物样品的XRF检测,可以非破坏地分析元素的含量,判定文物的真伪和年代,并为文物的保护修复提供科学指导。
x射线荧光光谱仪测镀层厚度摘要:1.X 射线荧光光谱仪的概念与原理2.X 射线荧光光谱仪在测镀层厚度中的应用3.X 射线荧光光谱仪的优势与局限性4.结论正文:一、X 射线荧光光谱仪的概念与原理X 射线荧光光谱仪(X-ray Fluorescence Spectrometer,简称:XRF 光谱仪)是一种非破坏性的物质测量方法,可以用于检测样品中的元素组成和含量。
它利用高能量X 射线或伽玛射线轰击材料时激发出的次级X 射线进行分析。
当材料暴露在短波长X 光或伽马射线中,其组成原子可能发生电离,随后回补过程会释放出多余的能量,这些能量以光子形式释放。
X 射线荧光光谱仪通过分析样品中不同元素产生的特征荧光X 射线波长(或能量)和强度,可以获得样品中的元素组成与含量信息,达到定性定量分析的目的。
二、X 射线荧光光谱仪在测镀层厚度中的应用X 射线荧光光谱仪在测镀层厚度方面具有广泛应用。
在测镀层厚度时,X 射线荧光光谱仪可以分析从轻元素的钠(Z11)到铀(Z92)等各个元素。
测镀层厚度的方法主要有两种:直接法和间接法。
直接法是将X 射线照射到待测镀层上,通过测量产生的特征X 射线的强度来确定镀层厚度。
间接法则是通过测量镀层中的元素含量,结合该元素在镀层中的分布规律,推算出镀层厚度。
三、X 射线荧光光谱仪的优势与局限性X 射线荧光光谱仪在测镀层厚度方面具有许多优势,例如:测量速度快、非破坏性、精度高、范围广等。
然而,它也存在一些局限性,例如:对于轻元素的测量精度较低、受到样品形状和尺寸的限制、需要对不同样品进行校准等。
四、结论总的来说,X 射线荧光光谱仪在测镀层厚度方面具有很大的优势,为工业生产和科研领域提供了一种高效、准确的检测手段。
X射线荧光光谱仪使用方法说明书一、引言X射线荧光光谱仪是一种常用的分析工具,广泛应用于材料科学、地质学、环境监测等领域。
本说明书旨在详细介绍X射线荧光光谱仪的使用方法,以帮助操作人员正确地进行实验操作和数据分析。
二、X射线荧光光谱仪的基本原理X射线荧光光谱仪通过照射样品,利用样品中原子的X射线荧光信号进行元素分析。
当样品受到X射线的照射时,样品中的原子吸收X 射线能量并转化为内层电子的激发能量,随后这些电子会跃迁到低能级的壳层,释放出特定的能量。
光谱仪收集并分析这些荧光信号,得出样品中各种元素的含量和种类。
三、仪器的准备工作1. 确保X射线荧光光谱仪处于稳定的电源供应下;2. 清洁检查样品台面,确保无任何污染物;3. 放置待测样品,并确保其处于稳定的位置;4. 确保X射线管、样品间的距离适当。
四、实验步骤1. 打开X射线荧光光谱仪的电源,并预热10分钟;2. 校准仪器,包括峰位校准、能量刻度等,以保证实验结果的准确性;3. 设置工作模式和参数,如选择连续测量模式或单元素测量模式,并设置相应的参数;4. 确定测量范围和时间,根据待测样品的特性进行相应设置,以保证测量结果的准确性和稳定性;5. 点击开始测量按钮,启动测量程序;6. 测量完成后,关闭X射线荧光光谱仪的电源。
五、数据处理和分析1. 根据测量结果生成相应的光谱图,观察各峰位的位置和强度;2. 利用光谱软件进行数据分析,包括计算元素含量、元素比例等;3. 对数据进行统计和比对,与相关标准进行对比,以确定样品的性质和成分;4. 进行结果的解读和报告,提供详细的分析结果和结论。
六、安全注意事项1. 在实验操作中,严禁直接观察或照射X射线,以免对人体产生伤害;2. 使用符合规定的防护装备,如防护眼镜、防护服等;3. 严禁将样品与裸露的皮肤直接接触,以免造成污染或伤害;4. 遵守实验室安全操作规范,注意仪器的正常使用和维护;5. 定期检查X射线荧光光谱仪的安全性能,确保仪器正常工作。
x射线荧光光谱仪结构x射线荧光光谱仪,也称为x射线荧光分析仪,是一种高精度、高灵敏度的物质成分分析仪器。
它能够利用x射线的特性,将物质中的元素分析出来,被广泛应用于材料分析、环境监测、地质勘探、药品研究等领域。
下面是x射线荧光光谱仪的结构和原理。
一、x射线荧光光谱仪的结构1.主控制台:主控制台是x射线荧光光谱仪的核心部分,它包括检测、控制、数据处理等功能模块,负责整个分析仪器的运行和数据处理。
2.激发源:激发源是x射线荧光光谱仪的重要组成部分,是产生x射线的装置。
通常采用的激发源包括射线管、放射性同位素等。
3.样品台:样品台是用于放置样品的平台,通常采用的是旋转式样品台。
样品台的旋转能够确保样品均匀地受到x射线的激发。
4.探测器:探测器是x射线荧光光谱仪的另一个重要组成部分。
探测器采用固态半导体探测器,对x射线的荧光进行自动检测,并将检测结果发送到主控制台进行数据处理。
5.过滤器:过滤器是用于筛选x射线的装置,通常采用的过滤器有铝片、钽片、铬片等。
6.电子学模块:电子学模块是用于探测器信号放大、滤波、数字化处理等的电路模块。
二、x射线荧光光谱仪的原理利用x射线荧光光谱仪进行分析,主要是通过对样品进行x射线激发,然后利用探测器检测样品中产生的荧光x射线的能量和强度,再通过数据处理得到样品中各元素的含量和分布情况。
1.样品的激发和荧光当x射线照射到样品表面时,样品会发出一系列电子束,这些电子束将导致样品原子中的一些电子被激发或瞬时轰出。
当电子回到原子内部时,将会产生x射线荧光。
2.荧光的检测探测器位于样品与激发源之间,能够检测到样品中产生的x射线荧光。
荧光信号被探测器接收并被发送到电子学模块进行信号放大、滤波和数字化处理。
3.数据处理在电子学模块中得到的荧光信号,通过计算机进行数字化处理,得到不同元素的荧光峰强度和位置,再将这些数据与标准样品库相比较,计算出样品中各元素的含量和分布情况。
以上就是x射线荧光光谱仪的结构和原理的详细介绍。
X射线荧光光谱仪结构和原理第一章X荧光光谱仪可分为同步辐射X射线荧光光谱、质子X射线荧光光谱、全反射X射线荧光光谱、波长色散X射线荧光光谱和能量色散X射线荧光光谱等。
波长色散X射线荧光光谱可分为顺序(扫描型)、多元素同时分析型(多道)谱仪和固定道与顺序型相结合的谱仪三大类。
顺序型适用于科研及多用途的工作,多道谱仪则适用于相对固定组成和批量试样分析,固定道与顺序式相结合则结合了两者的优点。
X射线荧光光谱在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。
§1.1 激发源激发样品的光源主要包括具有各种功率的X射线管、放射性核素源、质子和同步辐射光源。
波长色散X射线荧光光谱仪所用的激发源是不同功率的X射线管,功率可达4~4.5kW,类型有侧窗、端窗、透射靶和复合靶。
能量色散X射线荧光光谱仪用的激发源有小功率的X射线管,功率从4~1600W,靶型有侧窗和端窗。
靶材主要有Rh、Cr、W、Au、Mo、Cu、Ag等,并广泛使用二次靶。
现场和便携式谱仪则主要用放射性核素源。
激发元素产生特征X射线的机理是必须使原子内层电子轨道产生电子空位。
可使内层轨道电子形式空穴的激发方式主要有以下几种:带电粒子激发、电磁辐射激发、内转换现象和核衰变等。
商用的X射线荧光光谱仪中,目前最常用的激发源是电磁辐射激发。
电磁辐射激发源主要用X射线管产生的原级X射线谱、诱发性核素衰变时产生的γ射线、电子俘获和内转换所产生X射线和同步辐射光源。
§1.1.1 X射线管1、X射线管的基本结构目前在波长色散谱仪中,高功率X射线管一般用端窗靶,功率3~4KW,其结构示意图如下:X光管本质上是一个在高电压下工作的二极管,包括一个发射电子的阴极和一个收集电子的阳极(即靶材),并密封在高真空的玻璃或陶瓷外壳内。
发射电子的阴极,一般由螺旋状的灯丝组成,灯丝的材料是钨丝。
灯丝在一稳定的灯丝电流加热下发射电子,在灯丝周围形成一定密度的电子云,电子在阳极高压作用,被加速飞向阳极,与阳极材料中原子相互作用,发射X射线。
X荧光光谱仪的原理结构及应用【摘要】X荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。
本文就X荧光光谱仪的工作原理及其应用做简单阐述。
【关键词】X荧光;光谱仪;原理;应用一、X荧光的基本原理:当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。
此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。
当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了X荧光。
X荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。
由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征X射线,也称荧光X射线或X荧光。
X荧光光谱法就是由X射线光管发生的一次X射线激发样品,试样可以被激发出各种波长的特征X射线荧光,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析的方法。
该方法是一种非破坏性的仪器分析方法,常用的有能量色散型和波长色散型两种类型。
广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。
下面我以波长色散型X射线光谱仪为例讲一下它的原理及构造。
二、X荧光光谱仪的原理与仪器构造:使用X荧光光谱法的仪器叫X射线荧光光谱仪。
X荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。
建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。
1、激发光源—X射线管X光管可以分成端窗和侧窗二种,但是近代X光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。
X射线荧光光谱法原理一、引言X射线荧光光谱法是一种重要的化学分析技术,广泛应用于材料科学、环境科学、医学等领域。
该方法通过测量样品受激发后发射出的X射线荧光,推导出样品的元素组成和含量。
本文将详细阐述X射线荧光光谱法的原理,并通过实例分析说明其在不同领域的应用和优势。
二、X射线荧光光谱法简介X射线荧光光谱法是一种基于X射线与样品相互作用,产生荧光辐射的化学分析技术。
它具有高灵敏度、高分辨率和高精度等优点,能够快速、准确地测定样品的元素组成和含量。
三、X射线荧光光谱法原理X射线荧光光谱法基于以下原理:当样品受到高能X射线照射时,会吸收部分X射线能量,导致电子从低能级跃迁到高能级。
这些被激发的电子在返回基态过程中,会释放出特定波长的X射线荧光。
每种元素都有其独特的荧光波长,因此通过测量荧光波长和强度,可以确定样品中元素的种类和含量。
四、X射线荧光光谱法实验方法X射线荧光光谱法的实验方法包括样品制备、样品激发、荧光测量和数据分析等步骤。
样品制备一般包括研磨、干燥和称重等步骤,以保证样品的均匀性和稳定性。
样品激发通常采用X射线源或放射性源照射样品,以激发出元素的特征荧光。
荧光测量则通过使用高精度光谱仪测量荧光的波长和强度。
最后,通过数据分析方法,如校准曲线法、基本参数法等,推导出样品的元素组成和含量。
五、X射线荧光光谱法应用领域X射线荧光光谱法广泛应用于各个领域。
在材料科学领域,该方法被用于研究合金、陶瓷、高分子等材料的元素组成和结构。
在环境科学领域,X射线荧光光谱法用于测定土壤、水样等环境样品中的重金属元素,评估环境污染程度和制定相应的治理措施。
在医学领域,X射线荧光光谱法用于人体组织中的元素分析,如评估人体营养状况、疾病风险等。
此外,该方法还被广泛应用于地质学、农业、化学等领域。
六、X射线荧光光谱法优缺点X射线荧光光谱法的优点主要包括高灵敏度、高分辨率和高精度等。
该方法能够快速、准确地测定样品的元素组成和含量,且具有较低的检测限。
x射线荧光光谱仪原理x射线荧光光谱仪是一种用于分析物质成分的仪器。
它利用物质在受到x射线激发后产生的荧光来获取物质的元素组成和含量。
该仪器主要由以下几个部分组成:1. X射线源:通常使用x射线管作为光源。
X射线管内部有一个阴极和一个阳极,通过加电压使阴极释放出电子,从而形成电子流。
当电子流与阳极相碰撞时,会产生x射线。
2. 样品室:样品室是一个盛放待分析样品的空间。
在进行分析时,样品被放置在样品室中。
3. 准直系统:准直系统用于将x射线束聚焦到样品上,以使样品吸收更多的x射线。
4. 荧光探测器:荧光探测器用于测量样品受到激发后产生的荧光。
它通常由一个固态探测器和一个电子学系统组成。
探测器可以将荧光转换成电信号,并通过电子学系统进行放大和处理。
5. 数据处理系统:数据处理系统用于接收电子学系统输出的信号,并将其转换为荧光强度与能量之间的关系。
然后,根据已知的元素荧光谱,可以通过比对样品荧光强度与能量的特征来确定样品的元素组成和含量。
使用x射线荧光光谱仪进行分析的具体步骤如下:1. 将待测样品放置在样品室中,确保样品与光束垂直。
2. 打开x射线源,通过适当的参数设置,产生合适的x射线谱。
3. 调整准直系统,使x射线束聚焦在样品上,使样品吸收更多的x射线。
4. 荧光探测器接收样品产生的荧光,并将其转换成电信号。
5. 电子学系统对荧光信号进行放大和处理,产生对应的荧光强度与能量之间的关系。
6. 数据处理系统根据已知的元素荧光谱进行分析,确定样品的元素组成和含量。
x射线荧光光谱仪具有分析快速、准确度高、非破坏性等优点,被广泛应用于许多领域,如材料科学、地质学、环境监测等。
X荧光光谱仪的原理结构及应用
【摘要】x荧光分析是一种快速、无损、多元素同时测定的分析技术,已广泛应用于材料、冶金、地质、生物医学、环境监测、天体物理、文物考古、刑事侦察、工业生产等诸多领域,可为相关生产企业提供一种可行的、低成本的、及时的检测、筛选和控制有害元素含量的有效途径。
本文就x荧光光谱仪的工作原理及其应用做简单阐述。
【关键词】x荧光;光谱仪;原理;应用
一、x荧光的基本原理:
当一束高能粒子与原子相互作用时,如果其能量大于或等于原子某一轨道电子的结合能,将该轨道电子逐出,对应的形成一个空穴,使原子处于激发状态。
此后在很短时间内,由于激发态不稳定,外层电子向空穴跃迁使原子恢复到平衡态,以降低原子能级。
当较外层的电子跃迁(符合量子力学理论)至内层空穴所释放的能量以辐射的形式放出,便产生了x荧光。
x荧光的能量与入射的能量无关,它只等于原子两能级之间的能量差。
由于能量差完全由该元素原子的壳层电子能级决定,故称之为该元素的特征x射线,也称荧光x 射线或x荧光。
x荧光光谱法就是由x射线光管发生的一次x射线激发样品,试样可以被激发出各种波长的特征x射线荧光,需要把混合的x射线按波长(或能量)分开,分别测量不同波长(或能量)的x射线的强度,以进行定性和定量分析的方法。
该方法是一种非破坏性的仪
器分析方法,常用的有能量色散型和波长色散型两种类型。
广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。
下面我以波长色散型x射线光谱仪为例讲一下它的原理及构造。
二、x荧光光谱仪的原理与仪器构造:
使用x荧光光谱法的仪器叫x射线荧光光谱仪。
x荧光光谱仪是一种相对测量仪器,它是通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,才能得到准确分析结果的测量。
建立正确的数学模型必须依靠一组好的标样,代表性好,有一定的跨度范围,有准确的结果。
1、激发光源—x射线管
x光管可以分成端窗和侧窗二种,但是近代x光荧光光谱仪几乎都只采用端窗一种类型,因为它能接近试样安放,有利于提高测定灵敏度。
如图:管体内为高度真空。
管内有阳极,阴极,灯丝,冷却水管,x射线出射窗(铍窗);尾部有高压电缆接头,冷却水接口和灯丝电缆;头部为x射线出射窗口。
2、x光管的老化
x光管的老化是指将x光管的功率从低到高进行慢升的操作过程。
对新管或约2周没有运作的光管都必须进行老化操作。
这是因为从微观上看,新的灯丝或阴极的表面不可能十分光滑,这种毛糙在较高电压下会引起放电产生电弧,而长期放置不用,灯丝表面可能被
漏入的空气氧化产生凹凸不平,也会产生打弧从而损坏。
慢升功率可使在由低到高的高压下,逐步将可能存在的凹凸打平,从而减少或消除打弧,当然如果表面很不光滑(加工不好),则必须更换。
幻灯片7
3、分光系统
分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的x射线分开。
根据布拉格衍射定律2dsinθ=nλ,当波长为λ的x射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsinθ的一级衍射及波长为λ/2,λ/3等高级衍射。
改变θ角,可以观测到另外波长的x射线,因而使不同波长的x射线可以分开。
4、检测系统
射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。
流气正比计数器主要由金属圆筒负极和芯线正极组成,筒内充氩(90%)和甲烷(10%)的混合气体,x射线射入管内,使ar原子电离,生成的ar+在向阴极运动时,又引起其它ar原子电离,雪崩式电离的结果,产生一脉冲信号,脉冲幅度与x射线能量成正比。
所以这种计数器叫正比计数器,为了保证计数器内所充气体浓度不变,气体一直是保持流动状态的。
流气正比计数器适用于轻元素的检测。
另外一种检测装置是闪烁计数器,闪烁计数器由闪烁晶体和光电倍增管组成。
x射线射到晶体后可产生光,再由光电倍增管放大,
得到脉冲信号。
闪烁计数器适用于重元素的检测。
三、仪器的应用:
x射线荧光光谱法是一个相对分析方法,任何制样过程和步骤必须有非常好的重复操作可能性。
用于制作校准曲线的标准样品和分析样品必须经过同样的制样处理过程。
x射线荧光实际上又是一个表面分析方法,激发只发生在试样的浅表面,必须注意分析面相对于整个样品是否有代表性。
此外,样品的平均粒度和粒度分布是否有变化,样品中是否存在不均匀的多孔状态。
样品制备过程由于经过多步骤操作,还必须防止样品的损失和玷污。
固体样品的制备分为压片法和熔片法两种方法
1.样品的制备
1.1压片法
粉末试样通常采用研磨法使其达到一定的粒度后,再压制成圆形样片。
有时需要添加粘结剂,用研磨手段使样品均匀。
采用粉末试样压片测定,试样粒度一般小于0.075mm。
目前在xrf分析中专用的电动压样机,可预选加压压力及达到预选压力后保持一定时间,以克服粉末样品存在的弹性,使压片密度相近,得到重现性良好的样片。
在粉末压片中,常用的粘结剂有淀粉、硼酸、甲基纤维素、聚乙烯粉末、石墨、石蜡粉等。
1.2熔片法
用压片制样方法不能完全消除颗粒度的影响和矿物效应。
而熔融技术能使试样熔融分解并制成均匀的玻璃体,从而克服了上述影
响。
同时这种技术可以进行适当比例的稀释,以降低基体效应。
比较常用的熔剂有四硼酸钠(熔点740℃)、四硼酸锂(熔点930℃)、偏硼酸锂(熔点850℃)。
比较常用的氧化剂有硝酸锂、硝酸钾、硝酸钠、二氧化钡、二氧化铈等,它们可以防止铂-金合金坩埚的损坏。
比较常用的脱模剂有碘化钾、碘化铵、溴化钠、氟化锂、溴水和碘氢酸等。
它们能使熔融物的玻璃体从坩埚中完全剥离,但脱模剂不宜加入太多,否则使玻璃体产生结晶而破裂,或浇铸时形成球状,妨碍展平。
(1)坩埚最常用的为95%pt-5%au的合金坩埚。
(2)通常制备直径为30mm的玻璃圆片,总质量(试样十熔剂)以6~7g为宜。
将磨细到0.075mm的试样和熔剂按预定质量比称量、混匀,转入熔融坩埚(如pt-au坩埚),置于马弗炉或高频感应炉中上,在950℃~1100℃熔融10min左右,中间应摇动1~2次,冷却后取出圆片。
该片一般可以直接用作测定,如遇试样面不平整或有裂痕,再熔一次,不平整可作抛光处理。
综上所述,x荧光光谱法是一种非破坏性的仪器分析方法,因此被广泛应用于钢铁、铁矿石、炉渣、石灰石、萤石、耐火材料、地质等行业的多种元素的测定。
通过测量一定数量已知结果的标准样品,建立相应的正确的数学模型后,得到准确分析结果的测量方法。