最新人教部编版七年级下册数学《完全平方公式》教案
- 格式:doc
- 大小:134.54 KB
- 文档页数:3
《完全平方公式》教案第一章:引言1.1 教学目标让学生了解完全平方公式的概念和意义。
引导学生通过实际例子发现完全平方公式的规律。
1.2 教学内容完全平方公式的定义和表达式。
完全平方公式的推导和证明。
1.3 教学方法使用图表和动画辅助学生理解和记忆完全平方公式。
1.4 教学评估设计一些练习题,让学生应用完全平方公式进行计算。
观察学生在练习中的表现,及时给予指导和帮助。
第二章:完全平方公式的推导和证明2.1 教学目标让学生理解完全平方公式的推导过程。
引导学生通过证明理解完全平方公式的正确性。
2.2 教学内容完全平方公式的推导方法。
完全平方公式的证明过程。
2.3 教学方法使用图表和动画演示完全平方公式的推导过程。
引导学生通过逻辑推理和数学证明理解完全平方公式的正确性。
2.4 教学评估设计一些证明题,让学生运用完全平方公式进行证明。
观察学生在证明过程中的思路和推理是否清晰。
第三章:完全平方公式的应用3.1 教学目标让学生能够运用完全平方公式解决实际问题。
引导学生通过完全平方公式简化计算过程。
3.2 教学内容完全平方公式在实际问题中的应用。
完全平方公式在简化计算过程中的作用。
3.3 教学方法通过实际例子引导学生运用完全平方公式解决问题。
使用图表和动画演示完全平方公式在计算过程中的应用。
3.4 教学评估设计一些应用题,让学生运用完全平方公式进行计算和解决问题。
观察学生在解题过程中的思路和计算是否准确。
第四章:完全平方公式的扩展4.1 教学目标让学生了解完全平方公式的扩展形式。
引导学生通过完全平方公式的扩展形式解决更复杂的问题。
4.2 教学内容完全平方公式的扩展形式。
完全平方公式的扩展形式在解决问题中的应用。
4.3 教学方法通过实际例子引导学生了解完全平方公式的扩展形式。
使用图表和动画演示完全平方公式的扩展形式在解决问题中的应用。
4.4 教学评估设计一些扩展题,让学生运用完全平方公式的扩展形式进行计算和解决问题。
《完全平方公式》教案
一、教学目标
1. 知识与技能:掌握完全平方公式的推导过程和结构特点,能够运用完全平方公式进行整式的乘法运算。
2. 过程与方法:通过观察、分析、归纳等方法,提高学生的数学思维能力和运算能力。
3. 情感态度价值观:培养学生的数学兴趣,增强学生的自信心。
二、教学重难点
1. 教学重点:完全平方公式的推导过程和结构特点。
2. 教学难点:运用完全平方公式进行整式的乘法运算。
三、教学方法
讲授法、演示法、练习法
四、教学过程
1. 导入:复习平方差公式,通过计算(a+b)(a-b)=a^2-b^2,引出今天的课题《完全平方公式》。
2. 知识讲解:讲解完全平方公式的推导过程和结构特点。
(1) 推导过程:(a+b)^2=a^2+2ab+b^2
(2) 结构特点:左边是两个相同的二项式相乘,右边是一个三项式,其中两项是左边两项的平方和,第三项是左边两项的积的2 倍。
3. 练习环节:学生进行练习,教师进行个别指导。
4. 课堂总结:老师对本节课的内容进行总结,强调重点和难点。
5. 布置作业:让学生在课后完成一些练习题,以巩固所学的知识。
五、教学反思
通过本次教学,学生对完全平方公式的推导过程和结构特点有了更深入的理解,能够运用完全平方公式进行整式的乘法运算。
在教学过程中,学生的积极性和参与度较高,通过练习和指导,让他们更加主动地去思考和表达自己的观点。
不足之处是,由于时间限制,有些学生在练习过程中还需要更多的指导和练习,需要在今后的教学中加以改进。
初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。
初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。
学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
《完全平方公式》教案教案主题:完全平方公式的教学教学目标:1.理解完全平方的概念;2.掌握完全平方公式的运用;3.能够解决与完全平方公式相关的问题。
教学内容:1.完全平方的概念;2.完全平方公式的推导与运用;3.完全平方公式的应用。
教学步骤:一、导入(10分钟)1.引导学生回忆平方根的概念,并通过例子解释完全平方的概念。
2.提问:什么是完全平方?请举例说明。
二、概念讲解(15分钟)1.介绍完全平方公式的概念和用途。
2.解释完全平方公式的推导过程,通过几个例子说明。
三、公式推导(20分钟)1.运用代数运算的基础知识,推导完全平方公式。
2.解释推导过程中的每一步骤和思路,确保学生理解。
四、公式运用(20分钟)1.通过例题演示完全平方公式的运用。
2.引导学生思考并解答完全平方公式相关的问题。
五、练习与巩固(15分钟)1.分发练习题,让学生独立完成。
2.收集学生的答案,并进行讲解和讨论。
六、拓展与应用(15分钟)1.提供一些拓展问题,让学生运用完全平方公式解决实际问题。
2.引导学生思考其他与完全平方公式相关的数学问题。
七、小结与反思(10分钟)1.回顾本节课的主要内容和学习收获。
2.引导学生思考和总结完全平方公式的重要性和应用价值。
教学资源:1.幻灯片或黑板;2.教材和练习题。
教学评估:1.教师观察学生在课堂上的参与和回答问题的表现;2.课后布置练习题,检查学生对完全平方公式的掌握程度;3.对学生的作业进行批改和评价。
教学反思:本节课通过引导学生回忆和理解平方根的概念,引出了完全平方的概念,并通过推导完全平方公式的过程,让学生理解完全平方公式的运用。
教学过程中,教师使用了多种教学方法,例如提问、讲解、演示等,以提高学生的学习兴趣和参与度。
通过课堂练习和拓展问题,学生能够更好地巩固和应用所学的知识。
在教学评估中,可以及时发现学生的问题和困难,以便进行针对性的辅导和指导。
整体来说,本节课的教学效果良好。
初中完全平方公式教案一、教学目标:1. 让学生掌握完全平方公式的推导过程和应用。
2. 培养学生运用完全平方公式解决实际问题的能力。
3. 提高学生对数学知识的兴趣和积极性。
二、教学内容:1. 完全平方公式的推导。
2. 完全平方公式的应用。
3. 完全平方公式的拓展。
三、教学重点与难点:1. 完全平方公式的推导过程。
2. 完全平方公式的灵活运用。
四、教学过程:1. 导入:利用多媒体展示一个正方形,让学生观察并思考如何求得这个正方形的面积。
引导学生回顾平方公式,为新课的学习做好铺垫。
2. 新课讲解:a) 完全平方公式的推导:通过示例,讲解完全平方公式的推导过程,让学生理解并掌握完全平方公式的来源。
例如:(a+b)² = a² + 2ab + b²b) 完全平方公式的应用:讲解如何运用完全平方公式解决实际问题,例如:求解完全平方方程、估算无理数的大小等。
c) 完全平方公式的拓展:介绍完全平方公式的拓展知识,如:完全平方数、完全平方根等。
3. 课堂练习:设计一些练习题,让学生运用完全平方公式解决问题,巩固所学知识。
4. 总结与反思:让学生总结本节课所学的内容,反思自己在学习过程中的优点和不足,为今后的学习做好准备。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对完全平方公式的掌握程度。
3. 单元测试:通过单元测试,了解学生在段时间内对完全平方公式的运用能力。
六、教学策略:1. 采用直观演示法,让学生通过观察、实践,理解完全平方公式的推导过程。
2. 运用实例讲解法,让学生学会如何运用完全平方公式解决实际问题。
3. 设计多样化的练习题,激发学生的学习兴趣,提高学生的动手能力。
4. 鼓励学生积极参与课堂讨论,培养学生的合作意识。
5. 注重个体差异,给予每个学生充分的关注和指导,使他们在课堂上都能有所收获。
1.6 完全平方公式
1.会推导完全平方公式,并能运用公式进行简单的运算;(重点)
2.灵活运用完全平方公式进行计算.(难点)
一、情境导入
计算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述计算,你发现了什么结论?
二、合作探究
探究点:完全平方公式
【类型一】直接运用完全平方公式进行计算
利用完全平方公式计算:
(1)(5-a)2;
(2)(-3m-4n)2;
(3)(-3a+b)2.
解析:直接运用完全平方公式进行计算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3m-4n)2=9m2+24mn+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
方法总结:完全平方公式:(a±b)2=a2±2ab+b2.可巧记为“首平方,末平方,首末两倍中间放”.【类型二】利用完全平方公式求字母的值
如果36x2+(m+1)xy+25y2是一个完全平方式,求m的值.
解析:先根据两平方项确定出这两个数,再根据完全平方公式确定m的值.
解:∵36x2+(m+1)xy+25y2=(6x)2+(m+1)xy+(5y)2,∴(m+1)xy=±2·6x·5y,∴m+1=±60,∴m=59或-61.
方法总结:两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的
符号,避免漏解.
【类型三】灵活运用完全平方公式的变式求代数式的值若(x+y)2=9,且(x-y)2=1.
(1)求1
x2+
1
y2的值;
(2)求(x2+1)(y2+1)的值.
解析:(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.
解:(1)∵(x+y)2=9,(x-y)2=1,∴x2+2xy+y2=9,x2-2xy+y2=1,∴4xy=9-1=8,∴xy=2,
∴1
x2+
1
y2=
x2+y2
x2y2=
(x+y)2-2xy
x2y2=
9-2×2
22=
5
4;
(2)∵(x+y)2=9,xy=2,∴(x2+1)(y2+1)=x2y2+y2+x2+1=x2y2+(x+y)2-2xy+1=22+9-2×2
+1=10.
方法总结:所求的展开式中都含有xy或x+y时,我们可以把它们看作一个整体代入到需要求值的代数式中,整体求解.
【类型四】完全平方公式的几何背景
我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2-(a-b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此恒等式是()
A.a2-b2=(a+b)(a-b)
B.(a-b)(a+2b)=a2+ab-2b2
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面积为(a-b)2,还可以表示为a2-2ab+b2,所以此等式是(a-b)2=a2-2ab+b2.故选C.
方法总结:通过几何图形面积之间的数量关系对完全平方公式做出几何解释.
【类型五】与完全平方公式有关的探究问题
下表为杨辉三角系数表,它的作用是指导读者按规律写出形如(a+b)n(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出(a+b)6展开式中所缺的系数.
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
则(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3,可得(a+b)n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a+b)n-1的相邻两个系数的和,由此可得(a+b)4的各项系数依次为1、4、6、4、1;(a+b)5的各项系数依次为1、5、10、10、5、1,因此(a +b)6的各项系数分别为1、6、15、20、15、6、1.故填20.
方法总结:对于规律探究题,读懂题意并根据所给的式子寻找规律,是快速解题的关键.
三、板书设计
1.完全平方公式:
两个数的和(或差)的平方,等于这两个数的平方和加(或减)这两个数乘积的2倍.
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
2.完全平方公式的应用
本节课通过多项式乘法推导出完全平方公式,让学生自己总结出完全平方公式的特征,注意不要出现如下错误:(a+b)2=a2+b2,(a-b)2=a2-b2.为帮助学生记忆完全平方公式,可采用如下口诀:首平方,尾平方,乘积两倍在中央.教学中,教师可通过判断正误等习题强化学生对完全平方公式的理解记忆。