飞行操纵系统
- 格式:docx
- 大小:940.52 KB
- 文档页数:7
飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。
本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。
通过本文的阅读,读者可以对飞机系统有一个全面的了解。
一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。
1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。
通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。
飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。
2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。
比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。
此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。
3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。
自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。
二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。
飞机的动力系统通常由发动机和推进系统组成。
1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。
涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。
螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。
2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。
这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。
三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。
1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。
飞行控制系统的组成飞行控制系统是指用于控制飞机飞行的一系列设备和程序。
它是飞机的重要组成部分,直接影响着飞机的操纵性、稳定性和安全性。
飞行控制系统的主要组成包括飞行操纵系统、飞行指示系统、飞行保护系统和自动飞行控制系统。
一、飞行操纵系统飞行操纵系统是飞行控制系统的核心部分,用于操纵飞机的姿态和航向。
它包括操纵杆、脚蹬和相关的机械传动装置。
操纵杆通过机械传动装置将飞行员的操作转化为飞机的姿态变化,从而实现对飞机的操纵。
脚蹬主要用于控制飞机的航向。
飞行操纵系统的设计需要考虑飞行员的操作感受和操作精度,以及飞机的动力特性和气动特性。
二、飞行指示系统飞行指示系统用于向飞行员提供飞机的状态和参数信息,以帮助飞行员准确地掌握飞机的飞行情况。
飞行指示系统包括人机界面设备和显示设备。
人机界面设备包括仪表板、显示器和按钮等,用于向飞行员显示飞机的状态和参数,并接收飞行员的操作指令。
显示设备一般采用液晶显示屏或投影显示技术,能够实时显示飞机的速度、高度、姿态、航向等信息。
飞行指示系统的设计需要考虑信息的清晰度和可读性,以及对飞行员的操作需求和反馈。
三、飞行保护系统飞行保护系统用于提供飞机的保护和安全功能,防止飞机发生失控或危险情况。
飞行保护系统包括防护装置、警告系统和应急措施。
防护装置主要包括防止飞机过载的装置、防止飞机超速的装置和防止飞机失速的装置等,能够保护飞机免受过载、超速和失速等不安全飞行状态的影响。
警告系统主要用于向飞行员提供飞机的警告和提示信息,以帮助飞行员及时发现和解决飞机的异常情况。
应急措施主要包括自动驾驶和自动下降等功能,能够在紧急情况下自动控制飞机的飞行。
四、自动飞行控制系统自动飞行控制系统是飞行控制系统的高级形式,能够实现自动驾驶和飞行管理功能。
自动飞行控制系统主要包括飞行管理计算机、自动驾驶仪和导航系统等。
飞行管理计算机负责计算飞机的飞行参数和航路信息,并根据飞行员的指令进行飞行计划和航线管理。
目录ATA27-飞控系统 (2)1.飞机操纵系统包括哪几局部? (2)2.飞机的重要操纵面,各操纵什么运动? (2)3.操纵系统的分类及各自特点? (2)4.飞行操纵系统的要求? (3)5.软式传动与硬式传动优缺点? (3)6.钢索使用中的主要故障有哪些?如何彻底检查?〔豆〕 (4)7.什么是钢索的“弹性间隙〞,有什么危害?简述飞机操纵系统中减少“弹性间隙〞采用的方法及其原因。
(豆) (4)8.导致软性传动机构操纵灵敏性差的主要原因是什么?如何解决?〔豆〕 (4)9.软式传动操纵灵敏性变差的原因,如何解决。
〔上一题不够的话,加上这题〕 (4)10.简述钢索导向装置有哪些,分别是什么作用?〔豆〕 (4)11.软式传动机构的主要构件及其作用是什么?〔豆〕 (4)12.对于简单机械操纵系统,什么是传动系数?其含义是什么?并对操纵系统传动系数的大小特性进展比照分析。
〔豆〕 (5)13.为什么采用非线性传动机构操纵系统? (5)14.四余度系统的组成和功能? (5)15.以典型的四余度系统为例,简述电传操纵系统中的余度管理形式?// 多重系统也称余度系统,系统应满足哪三个条件? (6)16.余度系统每个通道中,信号选择器以及监控器与切换装置的主要作用是什么?〔豆〕717.在具有A、B、C、D四套电传操纵的四余度系统中,假设C套的杆力传感器和D套的舵回路同时出现故障,系统能否工作?如何工作?〔豆〕 (7)18.电传系统优缺点? (7)19.液压助力器的原理? (7)20.平衡片和调整片的作用? (8)21.在操纵系统的助力驱动装置中,液压和电动驱动装置分别用在什么地方?为什么?〔豆〕 (8)22.水平安定面配平 (8)23.简述飞机的横向操纵。
(8)24.根据附图,简述并列式柔性互联驾驶盘机构的工作情况。
(豆) (9)25.简述什么是副翼反向偏航,以及在副翼设计上可以用来防止副翼反向偏航的措施。
(豆)926.说明副翼感觉定中凸轮机构如何产生感觉力?在副翼配平操纵中如何工作?〔豆〕1027.输出扭力管的特点? (10)28.升降舵载荷感觉定中机构的特点? (11)29.根据附图,简述升降舵感觉定中机构的工作原理。
民航专业文献客机飞行操纵系统四客机飞行操纵系统1.功用提供飞机的横向、纵向、竖直方向的姿态控制,并在起飞、着陆时增加升力,在减速运动时增加阻力。
1.1组成:主操纵系统:提供飞机的横向、纵向、竖直方向的姿态控制,由副翼系统、升降舵系统和方向舵系统组成。
辅助操纵系统:由扰流板/减速板系统、后缘襟翼系统、前缘襟翼和缝翼系统、水平安定面系统组成。
警告系统:失速警告系统:当飞机将要失速时,向驾驶员提供警告。
起飞警告系统:在飞机起飞滑跑时,如果某些部件不在正确的位臵,给驾驶员一个音响警告。
1.2操纵面位臵副翼:2个带有平衡板和调整片的副翼安装在每个机翼的后缘,靠近翼尖处。
水平安定面:水平安定面位于机身尾部,是全动的,用于纵向配平。
升降舵:2个带有平衡板和调整片的升降舵安装在每个水平安定面的后缘。
方向舵:位于垂直尾翼的后缘。
后缘襟翼:位于机翼后缘。
共有4块,每个机翼2块,分别在发动机内侧和外侧。
前缘襟翼:位于机翼前缘、发动机内侧。
共有4块,每个机翼2块。
前缘缝翼:位于机翼前缘、发动机外侧。
共有6块,每个机翼3块。
扰流板/减速板:位于机翼上表面,襟翼前方。
共有10块,每个机翼5块,从左到右依次编,分别为0、1、2、…、9。
其中,2、3、6、7号是飞行扰流板,0、1、4、5、8、9号是地面扰流板。
1.3操纵动力主舵面:正常情况由A系统或B系统液压力操纵。
应急情况方向舵由备用系统液压力操纵,副翼和升降舵可由人力操纵。
扰流板/减速板:2、7号飞行扰流板由B系统液压力操纵,其余由A系统液压力操纵。
后缘襟翼:正常情况下由B系统液压力操纵,应急情况下由电动马达操纵。
前缘装臵:正常情况下由B系统液压力操纵,应急情况下可由PTU或备用系统液压力操纵。
水平安定面:可由电动马达或人力操纵。
2.副翼系统2.1副翼的位臵是由2个动力控制组件(PCU)通过钢索来决定的,PCU的输入信号可以来自驾驶盘的偏转、配平作动筒的伸缩或自动驾驶伺服作动筒的输出。
飞行操纵系统
摘要:飞行操纵系统是保障民航飞机在天空安全可靠飞行的重要系统。
它是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总和,用于控制飞机的飞行姿态、气动外形和乘坐品质。
波音737NG作为典型的液压助力机械式主操作系统,对其研究具有重要意义。
因此,本文将结合波音737NG对飞机的主操纵系统和辅助操纵系统做主要介绍。
正文:
飞行操纵系统分类很多,根据操纵信号的来源不同可分为人工飞行操纵系统和自动飞行操纵系统。
自动飞行操纵系统操纵信号由系统本身产生,而人工飞行操纵系统操纵信号由驾驶员产生。
在人工操纵系统中,通常又分为主操纵系统和辅助操纵系统。
主操纵系统指驱动副翼、升降舵和方向舵,使飞机产生绕纵轴、横轴、立轴转动的系统。
其他驱动扰流板、前缘装置、后缘襟翼和水平安定面配平等辅助操纵面的操纵系统均称为辅助操纵系统。
一、飞行主操作系统
1、副翼
飞机副翼通常铰接在机翼外侧后缘,在大型飞机的组合横向操纵系统中,通常有4块副翼----2块内副翼和2块外副翼。
低速飞行时,内外副翼可以共同进行横向操作;高速飞行时,仅有内副翼进行横向
操作。
副翼系统操纵飞机绕纵轴进行滚转运动,运动期间,一侧机翼的副翼上偏,另一侧机翼的副翼下偏,两侧机翼产生升力差,飞机完成滚转。
图一典型副翼操纵系统原理
如图所示为737NG飞机的副翼操纵系统,采用并列驾驶盘式操纵机构,两驾驶盘通过互联鼓轮柔性相连。
当转动任意驾驶盘产生操纵信号都可以按如下路径向后传递:驾驶盘、左侧副翼鼓轮、钢索、副翼输入扇形轮、副翼输入扭力管、输入摇臂和输入杆、液压助力器、输出摇臂和输出扭力管、输出鼓轮、钢索、扇形轮、传动杆、副翼。
其中关键部件为驾驶盘柔性互联机构、液压助力器与副翼感觉定中机构。
驾驶盘柔性互联机构用于防止驾驶盘卡阻。
正常情况下,操纵一侧驾驶盘,另一侧随动。
当右侧驾驶盘卡阻,左侧机长可以操纵左驾驶盘通过左钢索系统操纵副翼;当左驾驶盘卡阻时,副驾驶可以使用
右驾驶盘操纵扰流板进行应急横滚操作。
现代民航客机舵面的气动载荷较大,故采用液压助力器进行助力操作。
液压助力器输入是一个机械信号,此输入信号经比较机构与输出反馈信号比较,使偏差信号推动液压伺服活门,输出与偏差信号成正比的液压功率到作动筒,作动筒产生一个放大的机械输出信号,同时提供反馈信号到比较机构,使输入与输出一一对应。
当驾驶员操纵副翼时,副翼感觉定中机构提供感觉力,防止操作不足或过量,使飞机保持安全平稳飞行。
2、升降舵
升降舵位于水平安定面的后缘,波音737NG飞机拥有2块升降舵。
升降舵系统操纵飞机绕横轴进行俯仰运动。
当驾驶员前推驾驶杆时,升降舵下偏,飞机产生低头力矩;同理,后拉驾驶杆时,升降舵上偏,飞机产生抬头力矩。
如图二为波音737NG飞机的升降舵操纵系统,该系统中重要部件为升降舵扭力管(如图四)和升降舵感觉定中机构(如图三)。
扭力管可以将升降舵助力器的动力输出到升降舵摇臂,一般采用双层套管结构,外套管为一根长管,内套管为两根短管,内外套管在外管中间部位用铆钉链接;输入摇臂连接在外套管上,摇臂分别接助力器,输出摇臂连接在内套管上。
无论扭力管从哪个助力器获得操纵力矩,内管均从扭力管中央获得扭矩输出,使得左右内套管外端相对于内端扭曲角度相同,保证左右升降舵偏转角度一致。
升降舵需要进行对飞
行姿态影响最为明显的俯仰操作,故其感觉定中机构更为复杂,它由感力计算机和感力定中单元组成。
感力计算机是液压机械部件,并非传统意义上的计算机。
它一方面可以感受飞机飞行时的总压、静压,从而换算出与飞机空速相关的动压。
另一方面,它可以感受A、B两液压系统的压力。
这两方面的因素决定了双重感觉作动筒的的移动方向,由此影响感力定中单元输出给驾驶员的驾驶感力,使其可以进行准确安全的操作。
图二典型升降舵操纵系统原理
图三升降舵感力定中装置
图四扭力管
3、方向舵
方向舵位于飞机垂直安定面的后缘,波音737NG采用单块的方向舵舵面。
方向舵系统操纵飞机绕立轴进行偏航运动,可通过方向舵配平手轮或脚蹬操作。
在方向舵上装配有偏航阻尼器,用于消除由于飞机的横侧稳定性过强而偏航稳定性弱产生的荷兰滚,但此时方向舵脚蹬并不随动。
二、飞行辅助操纵系统
1、飞机增升装置
民航飞机的机翼外形适用于高速飞行。
在低速飞行时,特别是在起飞着陆阶段,飞行速度较小,即使增大迎角,升力依然不足以维持
飞机的水平飞行,故民航飞机普遍配置有增升装置。
通常增大机翼弯度、增大机翼面积和延缓机翼上气流分离可以达到增升的目的。
现代民航飞机采用的增升装置主要有后缘襟翼、前缘缝翼和前缘襟翼。
后缘襟翼:简单襟翼、分裂襟翼、富勒后退襟翼和后退开缝式襟翼。
前缘襟翼常用布鲁格襟翼。
前缘缝翼安装在机翼前缘,分为固定式和可动式。
固定式前缘襟翼与机翼本体间构成一条固定狭缝,不能随迎角改变而开闭;而可动式缝翼可根据空气动力的压力或吸力改变狭缝宽度。
2、扰流板
扰流板是安装在机翼上表面的可偏转小片,分为地面扰流板和飞行扰流板。
地面扰流板仅有两个位置:放下位和立起位,故其传动装置为普通双向单杆液压作动筒。
地面扰流板仅在地面使用,立起时可卸除升力,同时增大阻力,缩短滑跑距离。
飞行扰流板既可以在空中使用也可以在地面使用,主要功用为:配合副翼操纵;飞机减速;应急横侧操纵;降低机翼突风载荷以及在地面减速卸升,缩短滑跑距离。
3、配平操纵
配平的意思是消除驾驶杆力,以减轻长途飞行时驾驶员的疲劳;对飞机产生某些不需要的飞行姿态趋势进行修正。
现代民航客机广泛采用助力操纵系统,由于助力操纵系统的操纵感力由感力定中机构提供,所以他的配平操纵就是指消除感力定中机构的模拟感力。
副翼和
方向舵没有专门的配平舵面而通过扳动相应的配平电门或旋钮,控制配平电机工作,使定中机构重新定于中立位。
俯仰配平可以通过水平安定面实现,人工操纵、电动配平以及自动驾驶操纵都可以实现对水平安定面的操作。
通常手动操纵优先级最高,其次是电动配平,自动驾驶仪优先权最小。
三、飞机操纵警告系统
1、起飞警告系统
飞机位于地面时,油门杆前推,已下任一情况都会触发起飞警告:1)减速板手柄未在“放下位”;
2)停留刹车未松开;
3)前缘襟翼未放出;
4)后缘襟翼不在起飞位;
5)水平安定面不在绿区范围;
2、失速警告系统
飞机临近或达到最大可用升力(即飞机接近失速状态)时触发失速警告。
核心部件为失速管理计算机,其信号输入来源有:迎角、襟翼位置、缝翼位置和空/地信号。
当它采集到失速信号后,会输出电信号,经放大器后驱动推杆器,自动推杆,减小飞机迎角,防止失速。
参考文献:
[1]徐鑫福.飞机飞行操纵系统.北京航空航天大学出版社.1989
[2]陈再新.空气动力学.北京:航空工业出版社,1993。