典型飞行控制系统
- 格式:ppt
- 大小:351.00 KB
- 文档页数:12
飞机飞行控制系统飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。
3.4.1. 飞行控制系统概述飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。
由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。
最简单的人工飞行控制系统就是机械操纵系统。
不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。
自动驾驶仪是最基本的自动飞行控制系统。
飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。
控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。
传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。
飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。
作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。
自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。
信息传输链用于系统各部件之间传输信息。
常用的传输链有电缆、光缆和数据总线。
接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。
图3.4.1 飞行控制系统基本原理飞控系统基本工作原理除个别的开环操纵系统(如机械操纵系统)外,所有的飞控系统都采用了闭环反馈控制的工作原理。
图3.4.1是通用的飞控系统基本工作原理框图。
飞行控制系统的组成飞行控制系统是指用于控制飞机飞行的一系列设备和程序。
它是飞机的重要组成部分,直接影响着飞机的操纵性、稳定性和安全性。
飞行控制系统的主要组成包括飞行操纵系统、飞行指示系统、飞行保护系统和自动飞行控制系统。
一、飞行操纵系统飞行操纵系统是飞行控制系统的核心部分,用于操纵飞机的姿态和航向。
它包括操纵杆、脚蹬和相关的机械传动装置。
操纵杆通过机械传动装置将飞行员的操作转化为飞机的姿态变化,从而实现对飞机的操纵。
脚蹬主要用于控制飞机的航向。
飞行操纵系统的设计需要考虑飞行员的操作感受和操作精度,以及飞机的动力特性和气动特性。
二、飞行指示系统飞行指示系统用于向飞行员提供飞机的状态和参数信息,以帮助飞行员准确地掌握飞机的飞行情况。
飞行指示系统包括人机界面设备和显示设备。
人机界面设备包括仪表板、显示器和按钮等,用于向飞行员显示飞机的状态和参数,并接收飞行员的操作指令。
显示设备一般采用液晶显示屏或投影显示技术,能够实时显示飞机的速度、高度、姿态、航向等信息。
飞行指示系统的设计需要考虑信息的清晰度和可读性,以及对飞行员的操作需求和反馈。
三、飞行保护系统飞行保护系统用于提供飞机的保护和安全功能,防止飞机发生失控或危险情况。
飞行保护系统包括防护装置、警告系统和应急措施。
防护装置主要包括防止飞机过载的装置、防止飞机超速的装置和防止飞机失速的装置等,能够保护飞机免受过载、超速和失速等不安全飞行状态的影响。
警告系统主要用于向飞行员提供飞机的警告和提示信息,以帮助飞行员及时发现和解决飞机的异常情况。
应急措施主要包括自动驾驶和自动下降等功能,能够在紧急情况下自动控制飞机的飞行。
四、自动飞行控制系统自动飞行控制系统是飞行控制系统的高级形式,能够实现自动驾驶和飞行管理功能。
自动飞行控制系统主要包括飞行管理计算机、自动驾驶仪和导航系统等。
飞行管理计算机负责计算飞机的飞行参数和航路信息,并根据飞行员的指令进行飞行计划和航线管理。
空中飞行器的飞行控制和稳定性控制系统空中飞行器的飞行控制和稳定性控制系统在现代航空技术中扮演着重要角色。
这些系统负责控制和维持飞行器的平稳飞行以及各种机动动作。
本文将就飞行控制系统和稳定性控制系统的工作原理和应用进行探讨。
一、飞行控制系统飞行控制系统是指控制飞行器姿态和自稳定的系统。
它通过感知和分析飞行器的状态,依靠飞行控制计算机来决定控制器输出的指令,从而实现对姿态和自稳定的控制。
1. 系统组成飞行控制系统主要由以下几个组成部分构成:传感器:包括陀螺仪、加速度计、气压计等,用于感知飞行器的姿态、速度、高度等参数。
飞行控制计算机:负责算法的计算和控制指令的生成。
控制器:根据控制指令调整飞行器的推力、翼面、襟翼等控制面。
执行器:执行控制指令,通过调整控制面的位置和姿态来控制飞行器的姿态和飞行状态。
2. 工作原理飞行控制系统的工作原理可以简单描述为以下几个步骤:传感器感知飞行器的姿态、速度、高度等参数。
飞行控制计算机根据传感器数据分析并决策。
控制器根据飞行控制计算机生成的控制指令调整飞行器的控制面位置和姿态。
执行器执行控制指令,改变飞行器的状态和姿态。
3. 应用飞行控制系统广泛应用于各类飞行器中,包括商用客机、军用战斗机、直升机、无人机等。
它们通过飞行控制系统实现飞行器的平稳飞行、自动驾驶和飞行特性优化等功能。
在紧急情况下,如飞行器出现故障或遭遇恶劣天气,飞行控制系统也能帮助飞行员稳定飞行器,确保飞行安全。
二、稳定性控制系统稳定性控制系统是飞行器中重要的控制系统之一,它能够使飞行器保持在稳定的状态,抵抗外界扰动并保持飞行安全。
1. 系统组成稳定性控制系统主要由以下几个组成部分构成:纵向稳定性控制:包括俯仰稳定和纵向运动稳定。
横向稳定性控制:包括滚转稳定和侧滑稳定。
自动驾驶系统:可根据预设的稳定性要求自动控制飞行器的稳定状态。
姿态控制系统:根据飞行器的姿态信息,调整控制面的位置和姿态。
2. 工作原理稳定性控制系统的工作原理依赖于飞行控制系统提供的姿态信息。
飞行控制系统报告1. 引言飞行控制系统是飞机的核心组成部分之一,它负责飞机的姿态控制、导航控制、自动驾驶等功能,对飞机的飞行安全和性能至关重要。
本报告将对飞行控制系统的原理、结构和应用进行详细的介绍和分析。
2. 飞行控制系统原理飞行控制系统的基本原理是通过传感器获取飞机当前的状态信息,然后根据预设的飞行模式和飞行指令,通过控制算法和执行器来实现飞机的稳定飞行和精确控制。
飞行控制系统依靠飞行管理计算机(FMC)来进行整体的协调和控制。
3. 飞行控制系统结构飞行控制系统通常由三个重要的部分组成:飞行管理计算机(FMC)、飞行控制计算机(FCC)和执行器。
3.1 飞行管理计算机(FMC)飞行管理计算机(FMC)是飞行控制系统的核心,它负责对飞机进行全面的管理和控制。
FMC接收来自传感器的飞机状态信息,并根据预设的飞行计划和飞行指令来制定飞行控制策略,并将控制指令传递给飞行控制计算机(FCC)。
3.2 飞行控制计算机(FCC)飞行控制计算机(FCC)是飞行控制系统的核心计算单元,负责根据FMC提供的指令和飞机的状态信息,计算出合适的控制指令,并将其传递给执行器来实现飞机的动力控制和姿态控制。
3.3 执行器执行器是飞行控制系统的执行部分,它负责接收来自FCC的控制指令,并通过各种控制机构,如舵面、发动机推力等,来实现对飞机的控制。
4. 飞行控制系统的应用4.1 飞机稳定性和姿态控制飞行控制系统通过对飞机的姿态控制,可以使飞机保持平稳的飞行状态,提供稳定性和安全性。
4.2 飞行导航和自动驾驶飞行控制系统可以通过GPS导航系统,实现对飞机的导航控制,同时也可以实现自动驾驶功能,减轻驾驶员的工作负担。
4.3 飞机性能优化飞行控制系统可以通过精确的控制和调节,优化飞机的飞行性能,提高燃油效率,减少飞行阻力,提升飞机的速度和操纵性。
5. 飞行控制系统的发展趋势随着航空技术的不断发展,飞行控制系统也在不断创新和进步。
飞行控制系统及其使用摘要基于电传控制自动飞行控制系统和数字化的电子飞行仪表系统,将飞行方式和飞行导引显示在主飞行显示器上,实时提供给飞行员;并引入飞行管理系统(FMS)作为导航源。
使用自动驾驶仪可以减小飞行员工作量,特别是在仪器飞行规则(Instrument Flight Rules)的时候。
你可以让自动驾驶仪帮助你完成一些辅助工作(比如象保持航向和高度),可以让你集中精力去完成其他一些与飞行安全相关的工作(比如空管信息,通话等等)。
关键词自动飞行;控制系统;民用飞机0前言民用客机自动飞行控制系统的发展可以分为三个阶段,1914年首次出现基于反馈原理与飞机空气动力响应行程的闭合回路的自动驾驶仪,它是以舵机回路的稳定控制为主。
然后从自动驾驶仪到自动飞行控制系统,配合无线电导航,惯性导航等侧向指令的输入,增加了外汇路控制部分,并与自动油门相结合控制飞机的速度。
基于电传控制自动飞行控制系统和数字化的电子飞行仪表系统,将飞行方式和飞行导引显示在主飞行显示器上,实时提供给飞行员;并引入飞行管理系统(FMS)作为导航源。
使用自动驾驶仪可以减小飞行员工作量,特别是在仪器飞行规则(Instrument Flight Rules)的时候。
你可以让自动驾驶仪帮助你完成一些辅助工作(比如象保持航向和高度),可以让你集中精力去完成其他一些与飞行安全相关的工作(比如空管信息,通话等等)。
1飞行控制原理飞机的控制系统是个闭环系统,如图1所示飞机控制原理如下:当飞机偏离原状态或者目标状态(比如空速,高度,航姿等),飞行员通过观察飞机上安装的仪表了解飞机当前的状态,操纵飞机的操纵机构和油门杆,使飞机舵面偏转和油门增减,使飞机达到原状态或目标状态。
自动飞行控制系统替代了飞行员的工作,由敏感元件感受偏离输出信号给自动飞行计算机,计算机计算后发出指令给飞机的执行机构。
图1 飞机控制原理框图2自动飞行控制系统的系统构成自动飞行控制系统的系统的控制回路包括以下5部分:传感器和测量装置:如无线电高度表,航姿计算机,惯性导航计算机,大气数据计算机,无线电导航设备等,测量飞机的运动参数作为信号输入给自动飞行控制系统。
航空航天中的飞行控制系统航空航天事业一直是人类追求飞翔梦想的象征。
在这个行业中,飞行控制系统扮演着至关重要的角色。
本文将介绍航空航天中的飞行控制系统的基本原理、关键技术以及未来发展方向。
一、飞行控制系统概述飞行控制系统是指航空航天器为了维持稳定的飞行状态所采用的一系列技术和设备的集合体。
其主要目标是确保飞行器安全地完成预定任务,并保证飞行过程中的舒适性。
飞行控制系统主要包括飞行姿态控制、导航系统、引擎控制系统以及航空电子设备等。
这些组成部分相互配合,通过传感器获取飞行器的状态信息,并根据预定的飞行计划进行计算和控制。
二、飞行控制系统的基本原理飞行控制系统的基本原理是通过控制飞行器的姿态、航向和速度,使其按照预定的轨迹安全飞行。
具体而言,飞行控制系统依赖于以下几个关键技术:1. 飞行姿态控制技术飞行姿态控制是指通过控制飞行器的姿态(如俯仰、横滚和偏航角)以及推力,使飞行器保持稳定飞行状态。
常用的控制手段包括机械控制、液压控制和电气控制等。
2. 导航系统导航系统是飞行控制系统中的关键组成部分,其作用是确定飞行器的位置和速度,并提供导航指令。
常见的导航系统包括惯性导航系统、全球卫星导航系统(如GPS)以及地面导航设备等。
3. 引擎控制系统引擎控制系统用于控制飞行器的动力系统,确保引擎工作稳定,并根据需要提供合适的推力。
这需要通过控制燃料供给、气流调节以及温度控制等手段来实现。
4. 航空电子设备航空电子设备包括飞行仪表、通信设备、自动驾驶系统等,它们与飞行控制系统密切相关,用于获取飞行器的状态信息并进行控制。
三、飞行控制系统的关键技术随着科技的发展,飞行控制系统不断向智能化、自主化发展。
以下几个关键技术将在未来的航空航天中得到应用:1. 自适应控制技术自适应控制技术能够根据飞行器在飞行过程中的变化状态进行实时调整,以适应不同的飞行条件,提高飞行器的稳定性和控制精度。
2. 传感器融合技术传感器融合技术是指将多种传感器(如惯性传感器、气压传感器、磁力传感器等)的数据进行综合和处理,提高飞行器的状态感知和控制能力。
控制系统的案例分析:分享典型控制系统的案例分析和经验总结引言你是否经历过在生活中遇到一些需要控制和管理的系统?也许是你的家庭电器,也许是你的汽车,亦或是你的个人健康管理系统。
这些系统背后都有一套控制系统,它们通过传感器、执行器和算法来实现对系统的控制和调节。
在本文中,我们将分享一些典型的控制系统案例分析,并总结经验教训,帮助读者更好地理解控制系统的原理和应用。
什么是控制系统?在深入研究案例分析之前,让我们先来了解一下什么是控制系统。
简而言之,控制系统是一个将输入转换为输出的系统,其目标是通过控制输入来达到所期望的输出。
它由三个主要部分组成:传感器、控制器和执行器。
传感器用于感知系统的状态和环境,控制器根据输入信号制定决策并发送控制信号,而执行器根据控制信号来执行相应的动作。
控制系统的主要目标是通过实时监测和调节来保持系统的稳定性、准确性和可靠性。
在下面的案例分析中,我们将详细介绍一些具体的控制系统案例,以帮助读者更好地理解这些概念。
案例分析1:家庭温控系统假设你在冬天里呆在一个没有温控系统的房子里,你会感觉到室内温度的不断下降,直到让你感到不适。
现在,让我们来看看一个控制系统是如何帮助我们维持室内温度的。
传感器首先,我们需要一个传感器来感知室内的温度。
我们可以使用一个温度传感器,它能够实时地检测室内温度并将数据传输给控制器。
控制器控制器是整个系统的决策中枢。
基于传感器提供的数据,控制器可以判断室内温度是否过低,并决定是否需要加热。
如果室内温度低于预设值,控制器将发送控制信号给执行器。
执行器在这种情况下,执行器可以是加热器。
当控制信号被发送给加热器时,它将开始加热室内空气,使室温升高。
反馈机制为了保持室内温度的稳定,我们还需要一个反馈机制。
一种常见的做法是将室内温度传感器的数据再次传输给控制器,控制器可以根据实际温度和目标温度之间的差异来调节加热器的功率。
通过这种控制系统,我们可以保持室内温度在一个舒适的范围内,使我们感到温暖舒适。
飞机飞行控制技术丛书自动飞行控制系统粤怎贼燥皂葬贼蚤糟云造蚤早澡贼悦燥灶贼则燥造杂赠泽贼藻皂申安玉摇申学仁摇李云保摇等编著·北京·摇图书在版编目(悦陨孕)数据摇摇自动飞行控制系统辕申安玉等编著援—北京:国防工业出版社,圆园园圆郾怨摇(飞机飞行控制技术丛书)摇陨杂月晕苑员员愿?园圆愿缘愿?源摇摇Ⅰ援自援援援摇Ⅱ援申援援援摇Ⅲ援飞机原自动飞行控制原飞行控制系统摇Ⅳ援灾圆源怨援员圆圆摇摇中国版本图书馆悦陨孕数据核字(圆园园圆)第园猿圆怨源远号(北京市海淀区紫竹院南路圆猿号)(邮政编码摇员园园园源源)北京奥隆印刷厂印刷新华书店经售开本愿缘园伊员员远愿摇员辕猿圆摇印张愿 摇圆园愿千字圆园园圆年怨月第员版摇摇圆园园圆年怨月北京第员次印刷印数:员—猿园园园册摇摇定价:圆园援园园元(本书如有印装错误,我社负责调换)致摇读摇者本书由国防科技图书出版基金资助出版。
国防科技图书出版工作是国防科技事业的一个重要方面。
优秀的国防科技图书既是国防科技成果的一部分,又是国防科技水平的重要标志。
为了促进国防科技和武器装备建设事业的发展,加强社会主义物质文明和精神文明建设,培养优秀科技人才,确保国防科技优秀图书的出版,原国防科工委于员怨愿愿年初决定每年拨出专款,设立国防科技图书出版基金,成立评审委员会,扶持、审定出版社国防科技优秀图书。
国防科技图书出版基金资助的对象是:员援在国防科学技术领域中,学术水平高,内容有创见,在学科上居领先地位的基础科学理论图书;在工程技术理论方面有突破的应用科学专著。
圆援学术思想新颖,内容具体、实用,对国防科技和武器装备发展具有较大推动作用的专著;密切结合国防现代化和武器装备现代化需要的高新技术内容的专著。
猿援有重要发展前景和有重大开拓使用价值,密切结合国防现代化和武器装备现代化需要的新工艺、新材料内容的专著。
源援填补目前我国科技领域空白并具有军事应用前景的薄弱学科和边缘学科的科技图书。
第16章飞行管理系统16。
1飞行管理系统概述随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。
于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。
在1981年12月,飞行管理系统首次安装在B767型飞机上。
此后生产的大中型飞机广泛采用飞行管理系统。
16。
2飞行管理系统的组成和功能16。
2.1飞行管理系统的组成飞行管理系统由几个独立的系统组成。
典型的飞行管理系统一般由四个分系统组成,如图16-1,包括:(1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心;(2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统;(3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统;(4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备.驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。
主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。
各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。
飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理.图16-1飞行管理系统16。
2。
2飞行管理系统的功能FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。
FMS实现了全自动导航,大大减轻了驾驶员的工作负担。
另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。