高考数学选修-不等式
- 格式:doc
- 大小:2.39 MB
- 文档页数:41
高考数学知识点:不等式1500字高考数学中的不等式是一个重要的知识点,几乎在每年的高考试卷中都会出现。
不等式在很多实际问题中都有重要的应用,如经济学中的利润最大化问题、几何学中的面积最大最小问题等。
下面将对高考数学中常见的不等式知识点进行详细介绍。
一、一元一次不等式一元一次不等式的形式为ax+b>0(或ax+b≥0)、ax+b<0(或ax+b≤0),其中a和b为已知实数,x为未知数。
要求解这类不等式,需要注意以下几点:1. 若a>0,则当a>0时,不等式两侧都乘以正数a;当a<0时,不等式两侧都乘以负数a,不等号方向不变。
2. 若a<0,则当a>0时,解的不等式两侧都乘以负数a,不等号方向相反;当a<0时,解的不等式两侧都乘以正数a,不等号方向不变。
3. 若a=0,则不等式只有在b>0(或b≥0)和b<0(或b≤0)时有解。
二、一元二次不等式一元二次不等式是形如ax²+bx+c>0(或ax²+bx+c≥0)、ax²+bx+c<0(或ax²+bx+c≤0)的不等式,其中a、b、c为已知实数,a≠0。
要求解一元二次不等式,需要经过以下几个步骤:1. 确定a的正负性,若a>0则为开口向上的抛物线,若a<0则为开口向下的抛物线。
2. 计算抛物线的顶点坐标,即x₀=-b/2a。
3. 根据a的正负性确定抛物线的上升段或下降段。
4. 根据a的正负性确定不等式的解集。
三、绝对值不等式绝对值不等式是形如|ax+b|>c(或|ax+b|≥c)、|ax+b<c(或|ax+b|≤c)的不等式,其中a、b、c为已知实数,a≠0且c>0。
要求解绝对值不等式,需要根据绝对值的定义和性质进行推导,具体步骤如下:1. 根据绝对值的定义,将不等式分为正数和负数两个部分。
2. 对于正数部分,去掉绝对值符号,并得到一个二次不等式。
高考数学复习讲义 不等式【要点提炼】考点一 不等式的性质与解法1.不等式的倒数性质(1)a>b ,ab>0⇒1a <1b. (2)a<0<b ⇒1a <1b. (3)a>b>0,0<c<d ⇒a c >b d. 2.不等式恒成立问题的解题方法(1)f(x)>a 对一切x ∈I 恒成立⇔f(x)min >a ,x ∈I ;f(x)<a 对一切x ∈I 恒成立⇔f(x)max <a ,x ∈I.(2)f(x)>g(x)对一切x ∈I 恒成立⇔当x ∈I 时,f(x)的图象在g(x)的图象的上方.(3)解决恒成立问题还可以利用分离参数法.【热点突破】【典例】1 (1)若p>1,0<m<n<1,则下列不等式正确的是( )A.⎝ ⎛⎭⎪⎫m n p >1 B.p -m p -n <m n C .m -p <n -p D .log m p>log n p(2)(2020·北京市昌平区新学道临川学校模拟)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b)x -3b<0的解集是( )A .(-∞,-3)∪(2,+∞)B .(-3,2)C .(-∞,-2)∪(3,+∞)D .(-2,3)【拓展训练】1 (1)已知函数f(x)=⎩⎪⎨⎪⎧ 3,x<12,1x ,x ≥12,则不等式x 2f(x)+x -2≤0的解集是________________. (2)若不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-2,65B.⎣⎢⎡⎭⎪⎫-2,65C.⎣⎢⎡⎦⎥⎤-2,65D.⎣⎢⎡⎭⎪⎫-2,65∪{2}【要点提炼】考点二 基本不等式基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y =m +A g x+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式求最值. 【典例】2 (1)下列不等式的证明过程正确的是( )A .若a ,b ∈R ,则b a +a b≥2b a ·a b =2 B .若a<0,则a +4a ≥-2a ·4a=-4 C .若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg bD .若a ∈R ,则2a +2-a ≥22a ·2-a =2(2)(2019·天津)设x>0,y>0,x +2y =5,则x +12y +1xy 的最小值为________.【拓展训练】2 (1)(2020·北京市中国人民大学附属中学模拟)已知a>0,b>0,且a -b =1,则2a +1b的最小值为________. (2)(2020·江苏)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 专题训练一、单项选择题1.不等式(-x +3)(x -1)<0的解集是( )A .{x|-1<x<3}B .{x|1<x<3}C .{x|x<-1或x>3}D .{x|x<1或x >3}2.下列命题中正确的是( )A .若a>b ,则ac 2>bc 2B .若a>b ,c<d ,则a c >b dC .若a>b ,c>d ,则a -c>b -dD .若ab>0,a>b ,则1a <1b 3.(2020·北京市昌平区新学道临川学校模拟)已知一元二次不等式f(x)<0的解集为{x|x<-2或x>3},则f(10x)>0的解集为( )A .{x|x<-2或x>lg 3}B .{x|-2<x<lg 3}C .{x|x>lg 3}D .{x|x<lg 3} 4.若a>b>0,且ab =1,则下列不等式成立的是( )A .a +1b <b 2a <log 2(a +b) B.b 2a <log 2(a +b)<a +1bC .a +1b <log 2(a +b)<b 2aD .log 2(a +b)<a +1b <b 2a 5.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( )A .a +b<ab<0B .ab<a +b<0C .a +b<0<abD .ab<0<a +b6.已知x>0,y>0,x +2y +2xy =8,则x +2y 的最小值是( )A .3B .4 C.92 D.1127.已知a>-1,b>-2,(a +1)(b +2)=16,则a +b 的最小值是( )A .4B .5C .6D .78.已知正实数a ,b ,c 满足a 2-2ab +9b 2-c =0,则当ab c 取得最大值时,3a +1b -12c的最大值为( )A .3 B.94C .1D .0 二、多项选择题9.设f(x)=ln x,0<a<b ,若p =f(ab),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12[f(a)+f(b)],则下列关系式中正确的是( )A .q =rB .p<qC .p =rD .p>q10.已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( )A .6B .7C .8D .911.(2020·威海模拟)若a ,b 为正实数,则a>b 的充要条件为( )A.1a >1bB .ln a>ln bC .aln a<bln bD .a -b<e a -e b12.(2020·新高考全国Ⅰ)已知a>0,b>0,且a +b =1,则( )A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2 D.a +b ≤ 2三、填空题 13.对于0<a<1,给出下列四个不等式:①log a (1+a)<log a ⎝ ⎛⎭⎪⎫1+1a ;②log a (1+a)>log a ⎝ ⎛⎭⎪⎫1+1a ;③a 1+a <11a a +;④a 1+a >a1+1a.其中正确的是________.(填序号) 14.当x ∈(0,+∞)时,关于x 的不等式mx 2-(m +1)x +m>0恒成立,则实数m 的取值范围是________.15.已知函数f(x)=x 3-2x +e x -1e x ,其中e 是自然对数的底数,若f(a -1)+f(2a 2)≤0,则实数a 的取值范围是________.16.已知实数x ,y 满足x>1,y>0且x +4y +1x -1+1y =11,则1x -1+1y 的最大值为________.。
不等式应试技巧总结1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; (2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n na b >>(4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④b a b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0;⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。
关于不等式的基本性质的高考数学知识点总结不等式是数学中非常重要的概念之一,它在数学的各个领域和实际问题中有着广泛的应用。
在高考数学中,不等式也是一个考查频率较高的知识点。
下面是对不等式的基本性质的总结:1.不等关系性质不等关系具有自反性、对称性、传递性。
即对任意实数a,b,有:自反性:a≥a,a≤a对称性:如果a≥b,则b≤a;如果a≤b,则b≥a传递性:如果a≥b,b≥c,则a≥c;如果a≤b,b≤c,则a≤c2.加减性质对于不等式a<b和任意实数c,有:a+c<b+ca-c<b-c3.乘除性质(1)正数乘除:对于不等式a<b,如果c是正数,则有:正数乘性:ac < bc正数除性:如果c是正数且c≠0,则有:a/c<b/c(2)负数乘除:对于不等式a<b,如果c是负数,则有:负数乘性:ac > bc负数除性:如果c是负数且c≠0,则有:a/c>b/c(3)双边不等式乘除:对于不等式a<b和任意非零实数c,有:a/c<b/c(当c>0时)a/c>b/c(当c<0时)4.基本不等式基本不等式是指在特定条件下,可以将不等式简化为更为简单形式的不等式。
(1)三角形不等式:对于三角形的三边长a,b,c,有:a+b>ca+c>bb+c>a(2) 平均值不等式:对于任意n个非负实数a1,a2,...,an,有:平均值不等式:(a1+a2+...+an)/n ≥ √(a1a2...an)5.同向不等式同向不等式的性质和解法与等式类似。
对于同向不等式,如果对不等号两边同时乘除以同一个正数,或者对不等号两边同时乘除以同一个负数,则不等号方向不变。
例如,对于不等式2x+1<3x-2,可以同时减去2x,得到1<-2x-2,再同时减去1,得到0<-2x-3,再同时乘以(-1/2),得到0>(2x+3)/2,最后反转不等号得到(2x+3)/2<0。
高考数学复习考点题型专题讲解专题31 不等式高考定位 1.对不等式的性质及不等式的解法的考查一般不单独命题,常与集合、函数图象与性质相结合,也常渗透在三角函数、数列、解析几何、导数等题目中;2.基本不等式主要渗透在其他知识中求最值;3.题型多以选择题、填空题的形式呈现,中等难度.1.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案 B解析法一因为A={x|(x-2)(x+1)>0}={x|x<-1或x>2},A={x|-1≤x≤2},故选B.所以∁R法二因为A={x|x2-x-2>0},A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.所以∁R2.(2019·全国Ⅱ卷)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|答案 C解析由函数y=ln x的图像(图略)知,当0<a-b<1时,ln(a-b)<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.3.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则() A.x +y ≤1 B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1答案 BC解析 因为ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤3⎝ ⎛⎭⎪⎫x +y 22,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为⎝⎛⎭⎪⎫x -y 22+34y 2=1, 设x -y 2=cos θ,32y =sin θ, 所以x =cos θ+33sin θ,y =233sin θ, 因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin ⎝⎛⎭⎪⎫2θ-π6∈⎣⎢⎡⎦⎥⎤23,2, 所以当x =33,y =-33时满足等式, 但是x 2+y 2≥1不成立,所以D 错误.4.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2, 所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号. 所以x 2+y 2的最小值为45. 法二 设x 2+y 2=t >0,则x 2=t -y 2.因为5x 2y 2+y 4=1,所以5(t-y2)y2+y4=1,所以4y4-5ty2+1=0. 由Δ=25t2-16≥0,解得t≥45⎝⎛⎭⎪⎫t≤-45舍去.故x2+y2的最小值为4 5 .热点一不等式的性质及应用不等式的常用性质(1)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd>0.(3)a>b>0⇒a n>b n,na>nb(n∈N,n≥2).(4)a>b,ab>0⇒1a<1b.例1 (1)(多选)(2022·苏州模拟)若a>b>0>c,则( )A.ca>cbB.b-ca-c>baC.a c>b cD.a-c>2-bc(2)(2022·长沙模拟)已知a,b,c满足a>b>c,且ac>0,则下列选项中一定能成立的是( )A.ab>acB.c(b-a)>0C.ab(a-c)>0D.cb2>ca2答案(1)ABD (2)C解析(1)由于a>b>0>c,对于A:ca-cb=c⎝⎛⎭⎪⎫1a-1b=c⎝⎛⎭⎪⎫b-aab>0,故ca-cb>0,∴ca>cb,故A正确;对于B:由于a>b>0,所以b-ca-c>ba,故B正确;对于C:当a>b>1时,a c<b c,故C错误;对于D:由于a>b>0>c,所以a-c>b-c>2b(-c)=2-bc,故D正确. (2)取a=-1,b=-2,c=-3,则ab=2<ac=3,cb2=-12<ca2=-3,排除A,D;取a=3,b=2,c=1,则c(b-a)=-1<0,排除B;因为a>b>c,且ac>0,所以a,b,c同号,且a>c,所以ab(a-c)>0.规律方法判断关于不等式命题真假的常用方法(1)作差法、作商法.(2)利用不等式的性质推理判断.(3)利用函数的单调性.(4)特殊值验证法,特殊值法只能排除错误的命题,不能判断正确的命题.训练1 (1)(多选)(2022·广州模拟)设a,b,c为实数且a>b,则下列不等式一定成立的是( )A.1a >1bB.2 023a -b >1C.ln a >ln bD.a (c 2+1)>b (c 2+1)(2)设12<a <1,m =log a (a 2+1),n =log a (1-a ),p =log a 12a,则m ,n ,p 的大小关系是( )A.n >m >pB.m >p >nC.p >n >mD.n >p >m答案 (1)BD (2)D解析 (1)对于A ,若a >b >0,则1a <1b,所以A 错误; 对于B ,因为a -b >0,所以2 023a -b >1,所以B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误; 对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D 正确.故选BD.(2)因为12<a <1, 所以a 2+1-12a =2a 3+2a -12a >0, 12a -(1-a )=1-2a +2a 22a =2⎝ ⎛⎭⎪⎫a -122+122a>0,y =log a x 为减函数, 所以m <p ,p <n .可得n >p >m .热点二 不等式的解法不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I .(2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法.例2 (1)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )A.(-∞,-3)∪(2,+∞)B.(-3,2)C.(-∞,-2)∪(3,+∞)D.(-2,3)(2)若不等式x 2-ax ≥16-3x -4a 对任意a ∈[-2,4]都成立,则x 的取值范围为() A.(-∞,-8]∪[3,+∞)B.(-∞,0)∪[1,+∞)C.[-8,6]D.(0,3]答案 (1)A (2)A解析 (1)由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0,则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0,即(x +3)(x -2)>0,解得x <-3或x >2,所以不等式的解集为(-∞,-3)∪(2,+∞).(2)由题意得不等式(x -4)a -x 2-3x +16≤0对任意a ∈[-2,4]都成立,则⎩⎨⎧(x -4)×(-2)-x 2-3x +16≤0,(x -4)×4-x 2-3x +16≤0,即⎩⎨⎧-x 2-5x +24≤0,-x 2+x ≤0,解得x≥3或x≤-8.故选A.易错提醒求解含参不等式ax2+bx+c<0恒成立问题的易错点(1)对参数进行讨论时分类不完整,易忽略a=0时的情况.(2)不会通过转换把参数作为主元进行求解.(3)不考虑a的符号.训练2 (1)已知函数f(x)在R上为增函数,若不等式f(-4x+a)≥f(-3-x2)对任意x∈(0,3]恒成立,则a的取值范围为( )A.[-1,+∞)B.(3,+∞)C.[0,+∞)D.[1,+∞)(2)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.(-6,+∞)D.(-∞,-6)答案(1)D (2)A解析(1)由题意得,不等式-4x+a≥-3-x2对任意x∈(0,3]恒成立,所以a≥-x2+4x-3对任意x∈(0,3]恒成立,令g(x)=-x2+4x-3=-(x-2)2+1,当x∈(0,3]时,g(x)∈(-3,1],所以a≥1,即a的取值范围为[1,+∞).故选D.(2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,x∈(1,4). 令g(x)=x2-4x-2,x∈(1,4),所以g(x)<g(4)=-2,所以a<-2.热点三基本不等式及其应用基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑出符合基本不等式条件的项,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y=m+Ag(x)+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式来求最值.例3 (1)(多选)(2022·青岛模拟)设正实数a,b满足a+b=1,则( )A.log2a+log2b≥-2 B.ab+1ab≥174C.2a+1b≤3+22D.2a-b>12(2)(2022·湖北九师联盟质检)已知a>0,b≠0,且a+|b|=3,则9a+b+3|b|的最小值为________.答案(1)BD (2)3+2 3解析(1)log2a+log2b=log2(ab)≤log2⎝⎛⎭⎪⎫a+b22=-2,A错误;因为a>0,b>0,a+b=1,所以ab ≤a +b 2=12(当且仅当a =b 时取等号), 所以0<ab ≤14, 因为函数y =x +1x 在⎝ ⎛⎦⎥⎤0,14上单调递减, 所以ab +1ab ≥14+4=174,B 正确; 因为⎝ ⎛⎭⎪⎫2a +1b (a +b )=3+2b a +a b ≥3+22(当且仅当2b a =a b 时取等号), 所以2a +1b≥3+22,C 错误; 易知0<a <1,0<b <1,所以-1<a -b <1,所以2a -b >2-1=12,D 正确.选BD. (2)9a +b +3|b |=9a +3|b |+b |b |, 当b >0时,b |b |=1, 当b <0时,b|b |=-1. 9a +3|b |=13⎝ ⎛⎭⎪⎫9a +3|b |(a +|b |)=13⎝ ⎛⎭⎪⎫12+9|b |a +3a |b |≥13(12+63) =4+23,当且仅当9|b |a =3a |b |,3+13+1所以当a =333+1,b =-33+1时, 9a +b +3|b |取得最小值,且最小值为3+2 3.易错提醒 利用基本不等式求最值时,要注意其必须满足的条件: (1)一正二定三相等,三者缺一不可;(2)若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.训练3 (1)(2022·湖州质检)若x >0,y >0且x +y =xy ,则x x -1+2yy -1的最小值为( ) A.3 B.52+ 6C.3+6D.3+2 2(2)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.2 2 C.4 D.92答案 (1)D (2)B 解析 (1)∵x +y =xy , ∴(x -1)(y -1)=1, ∴x x -1+2y y -1=(x -1)+1x -1+2(y -1)+2y -1=3+1x -1+2y -1≥3+21x -1·2y -1=3+22,x -1y -1(2)∵对任意m ,n ∈(0,+∞), 都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n+2nm≥2m n ·2nm=22, 当且仅当m n=2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.一、基本技能练1.若a ,b ,c 为实数,且a <b <0,则下列说法正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2 答案 D解析 当c =0时,A 不成立; 1a -1b =b -a ab >0,即1a >1b,B 错误;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,C 错误; 由a <b <0,得a 2>ab >b 2,D 正确.2.不等式4x -2≤x -2的解集是( ) A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞) C.[2,4)D.(-∞,2)∪(4,+∞) 答案 B解析 当x -2>0,即x >2时,(x -2)2≥4, 即x -2≥2,则x ≥4,当x -2<0,即x <2时,(x -2)2≤4, 即-2≤x -2<0,∴0≤x <2, 综上,0≤x <2或x ≥4.3.(2022·泰安质检)若不等式ax 2-x -c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12,则函数y =cx 2-x -a的图象可以为( )答案 C解析由题意可得-1和12是方程ax 2-x -c =0的两个根,且a <0,∴⎩⎪⎨⎪⎧-1+12=1a ,-1×12=-ca ,解得a =-2,c =-1,则y =cx 2-x -a =-x 2-x +2=-(x +2)(x -1),其图象开口向下,与x 轴交于 (-2,0),(1,0).故选C.4.已知关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为(-∞,x 1)∪(x 2,+∞),且x 2-x 1=52,则a 等于( ) A.-5B.-32C.-2D.-52答案 C解析 x 2-ax -6a 2=(x -3a )(x +2a )>0, ∵a <0,∴x >-2a 或x <3a , ∴x 2=-2a ,x 1=3a ,∴x 2-x 1=-5a =52,∴a =- 2.5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A.f (x )有最大值114B.f (x )有最大值-114 C.f (x )有最小值132D.f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14= -⎝⎛⎭⎪⎫1-x4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立. 6.原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A.第一种方案更划算B.第二种方案更划算C.两种方案一样D.无法确定 答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升,则 方案一:两次加油平均价格为40x +40y 80=x +y2≥xy ,方案二:两次加油平均价格为400200x +200y=2xyx +y ≤xy ,故无论油价如何起伏,方案二比方案一更划算. 7.设x >y >z ,n ∈N *,且1x -y +1y -z ≥n x -z恒成立,则n 的最大值为( ) A.2 B.3 C.4 D.5 答案 C解析 因为x >y >z ,n ∈N *, 所以x -y >0,y -z >0,x -z >0,由1x -y +1y -z ≥n x -z, 可得n ≤(x -z )⎝⎛⎭⎪⎫1x -y +1y -z =[(x -y )+(y -z )]⎝ ⎛⎭⎪⎫1x -y +1y -z =1+1+y -z x -y +x -yy -z≥2+2y -z x -y ·x -yy -z=4, 当且仅当x -y =y -z 时,上式取得等号, 由题意可得n ≤4,即n 的最大值为4.8.已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,33 B.⎝⎛⎭⎪⎫-∞,47 C.⎝ ⎛⎭⎪⎫33,+∞D.⎝ ⎛⎭⎪⎫47,+∞答案 A解析x ∈(0,2]时, 不等式可化为ax +3a x<2;当a =0时,不等式为0<2,满足题意; 当a >0时,不等式化为x +3x <2a,则2a>2x ·3x=23,当且仅当x =3时取等号, 所以a <33,即0<a <33;当a <0时,x +3x >2a恒成立.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,33.选A.9.(多选)(2022·泰州模拟)下列函数中最小值为6的是( ) A.y =ln x +9ln x B.y =6|sin x |+32|sin x |C.y =3x +32-xD.y =x 2+25x 2+16答案 BC解析 对于A 选项,当x ∈(0,1)时,ln x <0, 此时ln x +9ln x<0,故A 不正确.对于B 选项,y =6|sin x |+32|sin x |≥29=6,当且仅当6|sin x |=32|sin x |,即|sin x |=12时取“=”,故B 正确.对于C 选项,y =3x +32-x ≥232=6, 当且仅当3x =32-x ,即x =1时取“=”,故C 正确.对于D 选项,y =x 2+16+9x 2+16=x 2+16+9x 2+16≥29=6, 当且仅当x 2+16=9x 2+16,即x 2=-7无解,故D 不正确.故选BC.10.(多选)已知a >0,b >0,且a +b =1,则( ) A.a 2+b 2≥12B.2a -b >12C.log 2a +log 2b ≥-2D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1,所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B ,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2(ab )≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2,得a +b ≤2,故D 正确. 综上可知,正确的选项为ABD.11.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0, 即x 2-2x -c <0的解集为(m ,m +4), 所以m ,m +4是方程x 2-2x -c =0的两个根, 所以⎩⎨⎧m +m +4=2,m (m +4)=-c ,解得⎩⎨⎧m =-1,c =3.12.若命题“∃x ∈R ,x 2-2x +m <0”为真命题,则实数m 的取值范围为________. 答案 (-∞,1)解析由题意可知,不等式x2-2x+m<0有解,∴Δ=4-4m>0,m<1,∴实数m的取值范围为(-∞,1).二、创新拓展练13.(多选)(2022·苏锡常镇调研)已知正实数a,b满足a+2b=ab,则以下不等式正确的是( )A.2a+1b≥2 B.a+2b≥8C.log2a+log2b<3 D.2a+b≥9答案BD解析对于A,因为正实数a,b满足a+2b=ab,所以a+2bab=1,即2a+1b=1,所以A错误,对于B,因为a>0,b>0,a+2b=ab,所以a+2b≥22ab=22(a+2b),当且仅当a=2b时取等号,所以(a+2b)2≥8(a+2b),因为a+2b>0,所以a+2b≥8,当且仅当a=2b时取等号,所以B正确,对于C,若log2a+log2b<3,则log2a+log2b=log2(ab)<3=log28,所以ab <8,所以a +2b <8,而由选项B 可知a +2b ≥8, 所以log 2a +log 2b <3不成立,所以C 错误, 对于D ,因为正实数a ,b 满足a +2b =ab , 由选项A 知,2a +1b=1,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22ab·2ba=9,当且仅当2ba=2ab,即a=b =3时取等号, 所以D 正确,故选BD.14.(多选)(2022·镇海中学模拟)已知函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,下列选项正确的是( )A.函数f (x )在(-2,1)上单调递增B.函数f (x )的值域为⎣⎢⎡⎭⎪⎫-1e 2,+∞C.若关于x 的方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,则实数a 的取值范围是⎝ ⎛⎭⎪⎫1e 2,4e D.不等式f (x )-ax -a >0在(-1,+∞)恰有两个整数解,则实数a 的取值范围是⎣⎢⎡⎭⎪⎫3e 2,2e答案 ACD解析函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,所以函数f ′(x )=⎩⎨⎧(x +2)e x (x <0),-(x +1)(x -1)e x (x ≥0), 故函数f (x )的大致图象如图1所示,故A 正确,B 错误;对于D ,不等式f (x )>a (x +1),在(-1,+∞)上恰有两个整数解,必为x =0,x =1, 故⎩⎨⎧f (1)>a (1+1),f (2)≤a (2+1),解得a ∈⎣⎢⎡⎭⎪⎫3e 2,2e ,故D 正确;对于C ,如图2,函数y =|f (x )|的图象,原方程可化为|f (x )|=0或|f (x )|=a ,由于方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,所以只需|f (x )|=a 有两个不等实根,所以a ∈⎝ ⎛⎭⎪⎫1e 2,4e ,C 正确,故选ACD. 15.(多选)(2022·全国名校大联考)若实数x ,y 满足2x +2y +1=1,m =x +y ,n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1,则( )A.x <0且y <-1B.m 的最大值为-3C.n 的最小值为7D.n ·2m <2答案 ABD解析 由2x +2y +1=1,得2y +1=1-2x >0,2x =1-2y +1>0,所以x <0且y <-1,故A 正确;由2x +2y +1=1≥22x ·2y +1=22x +y +1,得m =x +y ≤-3,当且仅当x =y +1=-1,即x =-1,y =-2时,等号成立,所以m 的最大值为-3,故B 正确;n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1(2x +2y +1) =5+2×2y 2x +2×2x2y ≥5+22×2y 2x ·2×2x 2y =9, 当且仅当2×2y 2x =2×2x2y ,即x =y =-log 23时,等号成立, 所以n 的最小值为9,故C 错误;n ·2m=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1·2x +y =2y +2x +1=2-3×2y <2,故D 正确.故选ABD. 16.(2022·湖南三湘名校联考)若两个正实数x ,y 满足x +2y -xy =0,且不等式x +2y ≥m 2-7m 恒成立,则实数m 的取值范围为________.答案 [-1,8]解析 由x +2y -xy =0,得2x +1y=1, 所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+x y +4y x ≥8,当且仅当x =4,y =2时等号成立, 所以m 2-7m ≤8,解得-1≤m ≤8.17.已知关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4},则c 2+5a +b 的取值范围为________.答案 [45,+∞)解析 关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4}, 所以a <0,且3和4是关于x 的方程ax 2+bx +c =0的两实数根,由根与系数的关系知:⎩⎪⎨⎪⎧3+4=-b a ,3×4=c a ,解得⎩⎨⎧b =-7a ,c =12a (a <0). 所以c 2+5a +b =144a 2+5a -7a =-24a -56a≥ 2(-24a )·5-6a =45(当且仅当-24a =-56a ,即a =-512时等号成立), 所以c 2+5a +b的取值范围是[45,+∞). 18.(2022·温州测试)已知函数f (x )=x 2+|x -a |+b ,若存在实数b ,使得对任意的|x |≤1都有|f (x )|≤109,则实数a 的最大值是________. 答案 13解析 由题可得,因为存在实数b 对任意的|x |≤1都有|x 2+|x -a |+b |≤109, 所以-109≤x 2+|x -a |+b ≤109, 即存在实数b 对任意的|x |≤1都有-x 2-109-b ≤|x -a |≤109-x 2-b , 由对称性可知,当实数a 取得最大值时,a ≥0,令g (x )=-x 2-109-b ,h (x )=-x 2+109-b ,则g ′(x )=h ′(x )=-2x .因为y =-x +a 的斜率为-1,所以-2x =-1,解得x =12, 所以g ⎝ ⎛⎭⎪⎫12=-14-109-b =-4936-b . 又因为h (-1)=-1+109-b =19-b , 即当a ≥12时,切线斜率k =h (-1)-g ⎝ ⎛⎭⎪⎫12-1-12=-5354>-1,不能满足条件; 故当0≤a <12时,g (x )的零点为a ,此时a 最大,满足⎩⎪⎨⎪⎧g (a )=-a 2-109-b =0,k =-1+109-b -1-a =-1,即⎝⎛⎭⎪⎫a -23⎝ ⎛⎭⎪⎫a -13=0, 由0≤a <12可得a =13.。
高考数学中的不等式基本概念及应用不等式作为高中数学的一个重要内容,在高考中占有重要的位置。
掌握不等式的基本概念及应用是高考数学考试中取得较高分数的关键因素之一。
本文将介绍不等式的基本概念以及在高考数学中的应用。
一、不等式的定义及性质不等式是数学中的一种关系符号,表示两个数或两个量之间的大小关系。
不等式的基本定义是:若两个量A和B之间的关系可以用“>”或“<”来表示,则称这个关系是不等式。
例如:x>y或x<y。
其中“>”和“<”分别表示两个量之间的大小关系。
如果两个量A和B之间的大小关系不能用“>”或“<”来表示,则称这个关系是等式。
不等式具有很多的基本性质,包括:1、自反性:对于任何实数a,有a≥a或a≤a。
2、对称性:对于任何实数a和b,如果a≥b,则b≤a;如果a≤b,则b≥a。
3、传递性:对于任何实数a、b和c,如果a≥b且b≥c,则a≥c;如果a≤b且b≤c,则a≤c。
4、加减法原理:若a≥b,则a+c≥b+c;若a≤b,则a+c≤b+c(这里c可以是任何实数)。
5、乘法原理:若a≥0,且b≥c,则a×b≥a×c;若a≤0,且b≥c,则a×b≤a×c。
这些基本性质是不等式应用中的基础,理解和掌握这些性质对于解决不等式问题非常重要。
二、不等式的简单应用1、不等关系的确定当两个数的大小关系不能直接用等号来表示时,就需要用不等号(>,<)来表示它们的大小关系。
例如,我们可以用不等号来表示以下不等式:3x+8<7x-9;2y-6>5y-12。
需要注意的是,在应用不等式时,我们应该首先确定不等关系的类型。
此处的不等关系是大于(>)还是小于(<),这是不等式应用的基本前提。
2、高中的不等式变形和求解不等式的变形和求解是高中数学课程中常常涉及到的内容。
不等式变形基本上可以与等式变形类比,不等式的变形同样可以运用加减法、乘除法等基本运算法则。
高考数学选修 不等式课 题: 第01课时 不等式的基本性质 一、引入:不等关系是自然界中存在着的基本数学关系。
《列子•汤问》中脍炙人口的“两小儿辩日”:“远者小而近者大”、“近者热而远者凉”,就从侧面表明了现实世界中不等关系的广泛存在;日常生活中息息相关的问题,如“自来水管的直截面为什么做成圆的,而不做成方的呢”、“电灯挂在写字台上方怎样的高度最亮”、“用一块正方形白铁皮,在它的四个角各剪去一个小正方形,制成一个无盖的盒子。
要使制成的盒子的容积最大,应当剪去多大的小正方形”等,都属于不等关系的问题,需要借助不等式的相关知识才能得到解决。
而且,不等式在数学研究中也起着相当重要的作用。
本专题将介绍一些重要的不等式(含有绝对值的不等式、柯西不等式、贝努利不等式、排序不等式等)和它们的证明,数学归纳法和它的简单应用等。
人与人的年龄大小、高矮胖瘦,物与物的形状结构,事与事成因与结果的不同等等都表现出不等的关系,这表明现实世界中的量,不等是普遍的、绝对的,而相等则是局部的、相对的。
还可从引言中实际问题出发,说明本章知识的地位和作用。
生活中为什么糖水加糖甜更甜呢转化为数学问题:a 克糖水中含有b 克糖(a>b>0),若再加m(m>0)克糖,则糖水更甜了,为什么分析:起初的糖水浓度为a b ,加入m 克糖 后的糖水浓度为m a m b ++,只要证m a m b ++>ab即可。
怎么证呢二、不等式的基本性质:1、实数的运算性质与大小顺序的关系:数轴上右边的点表示的数总大于左边的点所表示的数,从实数的减法在数轴上的表示可知:0>-⇔>b a b a0=-⇔=b a b a 0<-⇔<b a b a得出结论:要比较两个实数的大小,只要考察它们的差的符号即可。
2、不等式的基本性质:①、如果a>b ,那么b<a ,如果b<a ,那么a>b 。
(对称性)②、如果a>b ,且b>c ,那么a>c ,即a>b ,b>c ⇒a>c 。
③、如果a>b ,那么a+c>b+c ,即a>b ⇒a+c>b+c 。
推论:如果a>b ,且c>d ,那么a+c>b+d .即a>b , c>d ⇒a+c>b+d . ④、如果a>b ,且c>0,那么ac>bc ;如果a>b ,且c<0,那么ac<bc . ⑤、如果a>b >0,那么nn b a >(n ∈N ,且n>1)⑥、如果a>b >0,那么nn b a > (n ∈N ,且n>1)。
三、典型例题:例1、已知a>b ,c<d ,求证:a-c>b-d . 例2已知a>b>0,c<0,求证:bc a c >。
选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的解法 一、引入:在初中课程的学习中,我们已经对不等式和绝对值的一些基本知识有了一定的了解。
在此基础上,本节讨论含有绝对值的不等式。
关于含有绝对值的不等式的问题,主要包括两类:一类是解不等式,另一类是证明不等式。
下面分别就这两类问题展开探讨。
1、解在绝对值符号内含有未知数的不等式(也称绝对值不等式),关键在于去掉绝对值符号,化成普通的不等式。
主要的依据是绝对值的意义.请同学们回忆一下绝对值的意义。
在数轴上,一个点到原点的距离称为这个点所表示的数的绝对值。
即⎪⎩⎪⎨⎧<-=>=0000x x x x x x ,如果,如果,如果。
2、含有绝对值的不等式有两种基本的类型。
第一种类型。
设a 为正数。
根据绝对值的意义,不等式a x <的解集是 }|{a x a x <<-,它的几何意义就是数轴上到原点的距离小于a 的点的集合是开区间(-a ,a ),如图所示。
a - 图1-1 a如果给定的不等式符合上述形式,就可以直接利用它的结果来解。
第二种类型。
设a 为正数。
根据绝对值的意义,不等式a x >的解集是 {|x a x >或a x -<}它的几何意义就是数轴上到原点的距离大于a 的点的集合是两个开区间),(),,(∞--∞a a 的并集。
如图1-2所示。
–a a 图1-2同样,如果给定的不等式符合这种类型,就可以直接利用它的结果来解。
二、典型例题:例1、解不等式213+<-x x 。
例2、解不等式x x ->-213。
方法1:分域讨论★方法2:依题意,x x ->-213或213-<-x x ,(为什么可以这么解) 例3、解不等式52312≥-++x x 。
例4、解不等式512≥-+-x x 。
解 本题可以按照例3的方法解,但更简单的解法是利用几何意义。
原不等式即数轴上的点x 到1,2的距离的和大于等于5。
因为1,2的距离为1,所以x 在2的右边,与2的距离大于等于2(=(5-1))2÷;或者x 在1的左边,与1的距离大于等于2。
这就是说,4≥x 或.1-≤x例5、不等式 31++-x x >a ,对一切实数x 都成立,求实数a 的取值范围。
四、练习:解不等式1、 .1122>-x2、01314<--x3、 423+≤-x x .4、 x x -≥+21.5、 1422<--x x6、 212+>-x x .7、 42≥-+x x8、 .631≥++-x x9、 21<++x x 10、 .24>--x x选修4_5 不等式选讲课 题: 第02课时 含有绝对值的不等式的证明 一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1)b a b a +≥+ (2)b a b a +≤-(3)b a b a ⋅=⋅ (4))0(≠=b baba 请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理 实际上,性质b a b a ⋅=⋅和)0(≠=b baba 可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。
因此,只要能够证明b a b a +≥+对于任意实数都成立即可。
我们将在下面的例题中研究它的证明。
现在请同学们讨论一个问题:设a 为实数,a 和a 哪个大显然a a ≥,当且仅当0≥a 时等号成立(即在0≥a 时,等号成立。
在0<a 时,等号不成立)。
同样,.a a -≥当且仅当0≤a 时,等号成立。
含有绝对值的不等式的证明中,常常利用a a +≥、a a -≥及绝对值的和的性质。
二、典型例题:例1、证明 (1)b a b a +≥+, (2)b a b a -≥+。
证明(1)如果,0≥+b a 那么.b a b a +=+所以.b a b a b a +=+≥+如果,0<+b a 那么).(b a b a +-=+所以b a b a b a b a +=+-=-+-≥+)()( (2)根据(1)的结果,有b b a b b a -+≥-++,就是,a b b a ≥++。
所以,b a b a -≥+。
例2、证明 b a b a b a +≤-≤-。
例3、证明 c b c a b a -+-≤-。
思考:如何利用数轴给出例3的几何解释(设A ,B ,C 为数轴上的3个点,分别表示数a ,b ,c ,则线段.CB AC AB +≤当且仅当C 在A ,B 之间时,等号成立。
这就是上面的例3。
特别的,取c =0(即C 为原点),就得到例2的后半部分。
)探究:试利用绝对值的几何意义,给出不等式b a b a +≥+的几何解释含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。
例4、已知 2,2cb yc a x <-<-,求证 .)()(c b a y x <+-+ 证明 )()()()(b y a x b a y x -+-=+-+ b y a x -+-≤ (1)2,2c b y c a x <-<-Θ, ∴c cc b y a x =+<-+-22 (2)由(1),(2)得:c b a y x <+-+)()(例5、已知.6,4ay a x <<求证:a y x <-32。
证明 6,4a y a x <<Θ,∴23,22ay a x <<,由例1及上式,a aa y x y x =+<+≤-223232。
注意: 在推理比较简单时,我们常常将几个不等式连在一起写。
但这种写法,只能用于不等号方向相同的不等式。
四、练习:1、已知.2,2cb Bc a A <-<-求证:c b a B A <---)()(。
2、已知.6,4cb yc a x <-<-求证:c b a y x <+--3232。
链接:不等式的图形借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。
关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。
我们再来通过几个具体问题体会不等式图形的作用。
1.解不等式121+≤-+-x x x 。
题意即是在数轴上找出到11=ξ与22=ξ的距离之和不大于到点13-=ξ的距离的所有流动点x 。
首先在数轴上找到点11=ξ,22=ξ,13-=ξ(如图)。
3ξ 1x 1ξ 2ξ 2x x -1 0 1 2 3从图上判断,在1ξ与2ξ之间的一切点显示都合乎要求。
事实上,这种点到1ξ与2ξ的距离和正好是1,而到3ξ的距离是)21(1)1(2≤≤+=-+x x x 。
现在让流动点x 由点1ξ向左移动,这样它到点3ξ的距离变,而到点1ξ与2ξ的距离增大,显然,合乎要求的点只能是介于13-=ξ与11=ξ之间的某一个点1x 。
由),1()2()1(111--≤-+-x x x 可得.321≥x 再让流动点x 由点2ξ向右移动,虽然这种点到1ξ与2ξ的距离的和及到3ξ的距离和都在增加,但两相比较,到1ξ与2ξ的距离的和增加的要快。
所以,要使这种点合乎要求,也只能流动到某一点2x 而止。
由),1()2()1(222--≤-+-x x x 可得.42≤x 从而不等式的解为.432≤≤x 2.画出不等式1≤+y x 的图形,并指出其解的范围。