离散数学(集合)
- 格式:ppt
- 大小:707.50 KB
- 文档页数:53
离散数学集合的表示方法离散数学是指以一定的符号系统来表示数学概念和数学运算的学科,其中最基本的概念是集合。
集合是一组独立的元素的有序集,也可以说是一类物体的总称,它可以用简单的符号表示。
这种表示方法在数学研究和计算上起着重要作用。
本文着重介绍离散数学集合的表示方法。
首先,在离散数学中,所有的集合都可以用符号表示,通常用大写字母代表集合,如A、B、C等。
确定集合的方法通常有三种:①通过给出其元素的方式,如表示集合A={1,3,5,7,9};②通过用公式表示法,如表示集合B={2n|n∈N,n≤5};③通过用符号表示,如表示集合C={x|x∈A,x>3}。
此外,在离散数学中,还有一些特殊的集合概念,包括空集、自身的集合、全集以及基本集合。
空集是指不包含元素的集合,它有一个特殊的符号,即;自身的集合,即一个集合的元素全部不在其他集合中,如集合A={1,2,3},则A∈A;全集是指包含所有元素的集合,标识符为G;基本集合是指包含元素的所有集合,标识符通常是N、Z、R等。
另外,集合运算也是离散数学中非常重要的概念,其中有一些重要的运算,如交集、并集、补集、差集等。
其定义和运算方法是:对于两个集合A={1,2,3}、B={2,4,6},交集A∩B={2},即A和B的交集,两个集合的公共元素;并集A∪B={1,2,3,4,6},即A和B的并集,包含A和B全部元素;补集A′={4,6},即在A中没有的元素;差集A-B={1,3},即A中有,而B中没有的元素。
总之,离散数学集合的表示方法有大写字母表示、公式表示法和符号表示,以及特殊的集合概念如空集、自身的集合、全集以及基本集合,以及交集、并集、补集、差集等重要的集合运算。
它们为离散数学的理解和应用提供了基础,同时也为计算机科学技术的发展提供了条件和依据。
离散数学集合论基础知识离散数学是计算机科学中一门重要的基础学科,集合论是离散数学的基础之一。
在这篇文章中,我们将介绍离散数学集合论的基础知识,包括集合的定义、运算、关系等内容。
一、集合的定义与表示集合是具有确定性的事物或对象的总体,它是数学中的一个基本概念。
我们可以用不同的方式表示一个集合,包括列举法、描述法和图形法。
(一)列举法列举法是通过列举集合中的元素来表示一个集合。
例如,可以用列举法表示自然数集合N={1, 2, 3, 4, …},表示所有正整数的集合。
(二)描述法描述法是通过描述集合中元素的性质来表示一个集合。
例如,可以用描述法表示偶数集合E={x | x是整数,且x能被2整除},表示所有能被2整除的整数的集合。
(三)图形法图形法是用图形的方式表示一个集合。
例如,可以用图形法表示平面上所有整数坐标点构成的集合。
二、集合的运算集合的运算包括并集、交集、差集和补集等。
(一)并集集合A与集合B的并集,记作A∪B,表示由所有属于集合A或集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。
(二)交集集合A与集合B的交集,记作A∩B,表示由既属于集合A又属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A∩B={3}。
(三)差集集合A与集合B的差集,记作A-B,表示由属于集合A但不属于集合B的元素组成的集合。
例如,设A={1, 2, 3},B={3, 4, 5},则A-B={1, 2}。
(四)补集对于给定的全集U,集合A相对于全集U的补集,记作A'或者A^c,表示由全集U中不属于集合A的元素组成的集合。
例如,设全集U为自然数集合N,A={2, 4, 6},则A'={1, 3, 5, 7, ...}(即不是偶数的自然数)。
三、集合的关系集合的关系包括包含关系、相等关系和互斥关系等。
离散数学知识点摘要:离散数学是计算机科学和数学的一个分支,它专注于非连续结构的研究。
本文旨在概述离散数学的核心知识点,包括集合论、逻辑、关系、函数、图论、组合数学和递归等。
1. 集合论- 集合的基本概念:集合是离散数学的基础,它是一组明确的、无重复的对象的集合。
- 集合运算:包括并集、交集、差集、补集等。
- 幂集:一个集合所有子集的集合。
- 笛卡尔积:两个集合所有可能的有序对的集合。
2. 逻辑- 命题逻辑:研究命题(声明的真值)和它们之间的关系,如合取、析取、否定等。
- 谓词逻辑:使用量词(如全称量词和存在量词)来表达更复杂的逻辑关系。
- 逻辑推理:包括直接证明、间接证明和归谬法等。
3. 关系- 关系的定义:一个集合到另一个集合的有序对的集合。
- 关系的类型:自反性、对称性和传递性等。
- 关系的闭包:在给定关系下,集合的最小闭包。
4. 函数- 函数的定义:一个集合到另一个集合的映射,每个元素有唯一的像。
- 函数的类型:单射、满射和双射。
- 复合函数:两个函数可以组合成一个新的函数。
5. 图论- 图的基本概念:由顶点(节点)和边组成的结构。
- 图的类型:无向图、有向图、连通图、树等。
- 图的算法:如最短路径、最小生成树、图的着色等。
6. 组合数学- 排列和组合:从n个不同元素中取出r个元素的不同排列和组合的数量。
- 二项式定理:描述了二项式的幂展开的系数。
- 生成函数:一种编码序列的方法,用于解决复杂的计数问题。
7. 递归- 递归定义:一个对象通过引用比自己更小的版本来定义。
- 递归函数:在计算机程序中,一个函数调用自身来解决问题。
结论:离散数学为理解和设计计算机系统提供了基础工具和理论。
它的知识点广泛应用于算法设计、数据结构、编程语言理论和数据库等领域。
掌握离散数学对于任何希望在计算机科学领域取得进展的人来说都是至关重要的。
本文提供了一个简洁的离散数学知识点概述,每个部分都直接针对一个主题,避免了不必要的背景信息和解释。
离散数学集合及运算离散数学是计算机科学的基本学科之一,也是计算机学习和研究的重要基础。
集合和运算是离散数学中最基本的概念之一,也是计算机学习过程中最基础的概念之一。
本文主要介绍集合及运算的相关概念。
一、集合的定义在数学中,集合是一组确定的对象的集合。
它们可以是数、字母、变量、符号、函数或其他数学实体。
集合是以大写字母表示的,属于这个集合的元素以小写字母表示。
例如,集合A可以包括元素a、b和c,表示为A={a,b,c}。
集合中没有重复的元素,但元素的顺序是不重要的。
例如,集合{a,b,c}和{c,a,b}是相等的,因为它们包含相同的元素。
二、集合的运算1. 并集对于两个集合A和B,它们的并集就是包含A和B的所有元素的集合。
简单而言,对于集合A和B,A ∪ B就是由A和B中的元素组成的集合。
例如,如果A={a,b,c},B={c,d,e},那么A ∪ B={a,b,c,d,e}。
并集也可以扩展到多组集合的情况。
例如,如果有三个集合A、B和C,它们的并集可以表示为A∪B∪C。
2. 交集对于两个集合A和B,它们的交集是指它们共有的元素所组成的集合。
简单来说,如果一个元素同时属于集合A和集合B,那么这个元素就属于A和B的交集。
例如,如果A={a,b,c},B={c,d,e},那么A ∩ B={c}。
同样地,交集也可以扩展到多组集合的情况。
例如,如果有三个集合A、B和C,它们的交集可以表示为A∩B∩C。
3. 补集对于一个集合A和它包含的全集U,它的补集是指所有不属于集合A的元素构成的集合。
简单来说,补集就是相对于全集的补集。
例如,如果集合A={a,b,c},全集U={a,b,c,d,e},那么A的补集就是U-A={d,e}。
4. 差集对于两个集合A和B,它们的差集是指所有属于集合A但不属于集合B的元素所构成的集合。
简单来说,差集就是集合A中除了集合B以外的所有元素构成的集合。
例如,如果A={a,b,c},B={c,d,e},那么A-B={a,b}。