新人教版九年级数学上册《旋转》全章复习与巩固导学案
- 格式:doc
- 大小:116.50 KB
- 文档页数:5
人教版初中数学九年级上册《旋转》全章节导学案1图形的旋转(1)1.了解旋转及其旋转中心和旋转角的概念.2. 了解旋转对应点的概念及应用它们解决一些实际问题.重点:旋转及对应点的有关概念及其应用.难点:从生活中抽象出数学概念.(2分钟)请同学们完成下面各题.(1)将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.,第(1)小题图),第(2)小题图)(2)如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.(3)①圆是轴对称图形吗?②等腰三角形呢?③你还能指出其他的吗?答:(1)①是;(2)②是;(3)③等腰梯形、长方形、正多边形等.点拨精讲:(1)平移的有关概念及性质;(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它有哪些性质;(3)什么叫轴对称图形.一、自学指导.(10分钟)观察:让学生看转动的钟表和风车等.(1)上面情景中的转动现象,有什么共同的特征?(指针、风车叶片分别绕中间点旋转)(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?(形状、大小不变,位置发生变化)问题:(1)从3时到5时,时针转动了多少度?(60°)(2)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?(60°)(3)以上现象有什么共同特点?(物体绕固定点旋转)思考:在数学中如何定义旋转?归纳:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.下列物体的运动不是旋转的是(C)A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.下列现象中属于旋转的有__4__个.①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头的转动;⑤钟摆的运动;⑥荡秋千运动.3.如图,如果把钟表的指针看成四边形AOBC,它绕着O点旋转到四边形DOEF位置,在这个旋转过程中:旋转中心是点__O__,旋转角是__∠AOD(或∠BOE),经过旋转,点A转到__D__点,点C转到__F__点,点B转到__E__点,线段OA,OB,BC,AC分别转到OD,OE,EF,DF,∠A,∠B,∠C分别与∠D,∠E,∠F__是对应角.点拨精讲:旋转角指对应点与旋转中心的连线的夹角.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角;(3)经过旋转,点A,B,C,D分别移到什么位置?解:(1)可以看做是由基本图案正方形ABCD通过旋转而得到的;(2)画图略;(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.点拨精讲:旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.2.如图,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点__A__;旋转的度数是__45°__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(5分钟)两个边长为1的正方形,如图所示,让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为14,现把其中一个正方形固定不动,另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化?说明理由.点拨精讲:设任转一角度,如图中的虚线部分,要说明旋转后正方形重叠部分面积不变,只要说明S △OEE ′=S △ODD ′,即说明△OEE′≌△ODD′.学生总结本堂课的收获与困惑.(2分钟)1.旋转及其旋转中心、旋转角的概念.2.旋转的对应点及其它们的应用.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(2)1.通过观察具体实例认识旋转,探索它的基本性质.2.了解图形旋转的特征,并能根据这些特征绘制出旋转后的几何图形.重点:图形的旋转的基本性质及其应用.难点:利用旋转的性质解决相关问题.一、自学指导.(10分钟)动手操作:在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题:(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?点拨精讲:(1)OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心距离相等.(2)∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.(3)△ABC和△A′B′C′形状相同且大小相等,即全等.归纳:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)如图,四边形ABCD 是边长为1的正方形,且DE =14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF 的长度是多少?(4)如果连接EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求AE 的长度,由勾股定理很容易得到.△ABF 与△ADE 是完全重合的,所以△AEF 是等腰直角三角形.解:(1)旋转中心是A 点;(2)∵△ABF 是由△ADE 旋转而成的,∴B 是D 的对应点,∴∠DAB =90°就是旋转角;(3)∵AD =1,DE =14,∴AE =12+(14)2=174.∵对应点到旋转中心的距离相等且F 是E 的对应点,∴AF =174;(4)∵∠EAF =90°(与旋转角相等)且AF =AE ,∴△EAF是等腰直角三角形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.如图,E是正方形ABCD中CD边上任意一点,以点A为中心,把△ADE 顺时针旋转90°,画出旋转后的图形.点拨精讲:关键是确定△ADE三个顶点的对应点的位置.2.已知线段AB和点O,画出AB绕点O逆时针旋转100°后的图形.作法:1.连接OA;2.在逆时针方向作∠AOC=100°,在OC上截取OA′=OA;3.连接OB;4.在逆时针方向作∠BOD=100°,在OD上截取OB′=OB;5.连接A′B′.∴线段A′B′就是线段AB绕点O按逆时针方向旋转100°后的对应线段.点拨精讲:作图应满足三要素:旋转中心、旋转角、旋转方向.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.如图,AD=DC=BC,∠ADC=∠DCB=90°,BP=BQ,∠PBQ=90°.(1)此图能否旋转某一部分得到一个正方形?(2)若能,指出由哪一部分旋转而得到的?并说明理由.(3)它的旋转角多大?并指出它们的对应点.解:(1)能;(2)由△BCQ绕B点旋转得到.理由:连接AB,易证四边形ABCD为正方形.再证△ABP≌△CBQ.可知△QCB可绕B点旋转与△ABP重合,从而得到正方形ABCD.(3)90°.点C对应点A,点Q对应点P.2.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B 对应点的位置,以及旋转后的三角形.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.点拨精讲:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置.3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.解:∵四边形ABCD、四边形AKLM是正方形,∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°,∴△ADM是以A为旋转中心,以∠BAD为旋转角,由△ABK旋转而成的.∴BK=DM.点拨精讲:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.学生总结本堂课的收获与困惑.(2分钟)1.问题:对比平移、轴对称两种变换,旋转变换与另两种变换有哪些共性与区别?2.本节课要掌握:(1)旋转的基本性质.(2)旋转变换与平移、轴对称两种变换有哪些共性与区别.学习至此,请使用本课时对应训练部分.(10分钟)1图形的旋转(3)1.理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果.2. 掌握根据需要用旋转的知识设计出美丽的图案.重点:用旋转的有关知识画图.难点:根据需要设计美丽图案.一、自学指导.(15分钟)1.学生独立完成作图题.如图,△ABC绕B点旋转后,O点是A点的对应点,作出△ABC旋转后的三角形.点拨精讲:要作出△ABC旋转后的三角形,应找出三方面的关系:①旋转中心B;②旋转角∠ABO;③C点旋转后的对应点C′.探究:从上面的作图题中,知道作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.把一个图案以O点为中心进行旋转,选择不同的旋转中心,不同的旋转角,会出现不同的效果图形.1.旋转中心不变,改变旋转角.2.旋转角不变,改变旋转中心.我们可以设计成如下图美丽的图案.归纳:旋转中心不变、改变旋转角与旋转角不变、改变旋转中心会产生不同的效果,所以可以经过旋转设计出美丽的图案.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(2分钟)如图所示是日本三菱汽车公司的标志,它可以看作是由一个菱形经过__3__次旋转,每次旋转__120°__得到的.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.如图所示,图①沿逆时针方向旋转90°可得到图__⑤__.图①按顺时针方向至少旋转__180__度可得图③.2.如图所示,在△ABC中,∠BAC=90°,AB=AC,点P是△ABC内的一点,且AP=3,将△ABP绕点A旋转后与△ACP′重合,求PP′的长.解:依题意,AP绕点A旋转90°时得AP′=AP=3,则△APP′是等腰直角三角形.所以PP′=PA2+P′A2=32+32=3 2.解题的关键是确定AP与AP′垂直且相等.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)如图所示,点C是线段AB上任意一点,分别以AC,BC为边在同侧作等边三角形ACD和等边三角形BCE,连接AE,BD,试找出图中能通过旋转完全重合的一对三角形,并指明旋转中心、旋转角及旋转方向.解:△ACE旋转后能与△DCB完全重合.旋转中心是点C,旋转角是60°,旋转方向是顺时针方向.(也可看作△DCB 绕点C逆时针旋转60°得到△ACE)学生总结本堂课的收获与困惑.(3分钟)1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案.2.作出几个复合图形组成的图案旋转后的图案,要先求出图中的关键点——线的端点、角的顶点、圆的圆心等.学习至此,请使用本课时对应训练部分.(10分钟)2. 1中心对称1. 了解中心对称、对称中心、关于中心的对称点等概念.2. 掌握中心对称的基本性质.重点:中心对称的性质及初步应用.难点:中心对称与旋转之间的关系.一、自学指导.(10分钟)自学1:中心对称,对称中心,对称点等概念:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry);这个点叫做对称中心;这两个图形中的对应点叫做关于对称中心的对称点.自学2:中心对称的性质:(1)关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;(2)关于中心对称的两个图形是全等图形.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是,对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A,B,C,D关于中心对称的对称点是哪些点.解:(1)根据中心对称的定义便知这两个图形是中心对称图形,对称中心是D 点.(2)A,B,C,D关于中心D的对称点是A′,B′,C′,D′,这里的D′与D重合.2.如图,已知AD是△ABC的中线,作出以点D为对称中心,与△ABD成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C,B为一对对应点,因此,只要再作出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),A点关于中心D的对称点为A′.(2)连接A′B′,A′C′.则△A′B′D为所求作的三角形,如图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称.(只保留作图痕迹,不要求写出作法)点拨精讲:(1)画法总结;(2)性质归纳.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.如图,等边△ABC内有一点O,试说明:OA+OB>OC.解:如图,把△AOC以A为旋转中心顺时针方向旋转60°后,到△AO′B 的位置,则△AOC≌△AO′B.∴AO=AO′,OC=O′B.又∵∠OAO′=60°,∴△AO′O为等边三角形.∴AO=OO′.在△BOO′中,OO′+OB>BO′,即OA+OB>OC.点拨精讲:要证明OA+OB>OC,必然把OA,OB,OC转化在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转.以A为旋转中心,旋转60°,便可把OA,OB,OC转化在一个三角形内.2.教材第66页练习.学生总结本堂课的收获与困惑.(2分钟)1.中心对称及对称中心的概念;2.关于中心对称的两个图形的性质.学习至此,请使用本课时对应训练部分.(10分钟)2.2中心对称图形1. 掌握中心对称图形的定义.2. 准确判断某图形是否为中心对称图形.重点:中心对称图形的判断.难点:两个图形成中心对称和中心对称图形的关系,以及中心对称图形的判定.一、自学指导.(7分钟)自学:自学课本P66~67的内容.探究:中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合.那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(3分钟)将下面左图的四张扑克牌中的一张旋转180°后,得到右图,你知道旋转了哪一张扑克吗?议一议.解:J.点拨精讲:这里相当于问哪一张扑克牌是中心对称图形.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.我们已学过许多几何图形,下列几何图形中,哪些是中心对称图形?对称中心是什么?(出示课件图片)(1)平行四边形(2)矩形(3)菱形(4)正方形(5)正三角形(6)线段(7)角(8)等腰梯形解:常见的中心对称图形:线段(线段中点)、平行四边形(对角线交点)、矩形、菱形、正方形、圆(圆心)等.2.中心对称图形与中心对称有哪些区别与联系.解:区别:中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称.联系:如果将成中心对称的两个图形看成一个整体,则它们是中心对称图形;如果将中心对称图形对称的部分看成两个图形,则它们成中心对称.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(15分钟)1.英文大写字母中有哪些中心对称图形?答:(H,I,N,O,S,X,Z).2.说一说:在生活中你还见过哪些中心对称图形?学生思考、举例、回答问题,教师展示图片、归纳总结.3.想一想:你学过的几何图形具有怎样的对称性?点拨精讲:边数为奇数的正多边形只是轴对称图形而不是中心对称图形,边数为偶数的正多边形既是轴对称图形,又是中心对称图形.4.课本第67页小练习2.点拨精讲:怎样判断非常见几何图形是否为中心对称图形的妙法:将书本转180°,即倒过来后,看图形是否与原来一样.5.如果公园里的草坪是下面的形状,你能否只修一条笔直的小路就将这块草坪分成面积相等的两部分?点拨精讲:由两个中心对称图形构成的图形,过两个对称中心的直线,把这个图形分成的两部分面积相等.学生总结本堂课的收获与困惑.(2分钟)1.中心对称图形的定义.2.怎样准确判断某图形是否为中心对称图形.学习至此,请使用本课时对应训练部分.(10分钟)2.3关于原点对称的点的坐标掌握两个点关于原点对称时的坐标特征,能够运用特征解决相关问题.重点:关于原点对称的点的坐标的关系及初步应用.难点:关于原点对称的点的坐标的性质及其运用它解决实际问题.一、自学指导.(10分钟)自学:自学课本P68的内容.思考:关于原点作中心对称时,(1)它们的横坐标与横坐标的绝对值有什么关系?纵坐标与纵坐标的绝对值又有什么关系?(2)坐标与坐标之间符号又有什么特点?点拨精讲:(1)横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等;(2)坐标符号相反,即P(x,y)关于原点O的对称点为P′(-x,-y).二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-2),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?解:A,B,C,D,E,F点关于原点O对称点分别为A′(3,-1),B′(4,0),C′(0,-3),D′(-2,-2),E′(-3,2),F′(2,2).这些点的横纵坐标与已知点的横纵坐标互为相反数.2.如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形.解:△ABC的三个顶点A(-2,2),B(-4,-1),C(1,1)关于原点的对称点分别为A′(2,-2),B′(4,1),C′(-1,-1),依次连接A′B′,B′C′,A′C′,就可得到与△ABC关于原点对称的△A′B′C′,如右图所示.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)如图,直线AB与x轴、y轴分别相交于A,B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.(1)在图中画出直线A1B1.(2)求出过线段A1B1中点的反比例函数解析式.(3)是否存在另一条与直线A1B1平行的直线y=kx+b(我们发现互相平行的两条直线斜率k值相等),它与双曲线只有一个交点,若存在,求此直线的函数解析式,若不存在,请说明理由.点拨精讲:(1)只需画出A,B两点绕点O顺时针旋转90°得到的点A1,B1,连接A1B1.(2)先求出A1B1中点的坐标,设反比例函数解析式为y=kx代入求k.(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加以说明.这一条直线是存在的,因为A1B1与双曲线是相切的,只要我们通过A1B1的坐标作A1,B1关于原点的对称点A2,B2,连接A2B2的直线就是我们所求的直线.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.点拨精讲:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.2.教材P69的第1,2,3题.学生总结本堂课的收获与困惑.(2分钟)本节课应掌握:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y),及利用这些特点解决一些实际问题.学习至此,请使用本课时对应训练部分.(10分钟)3课题学习图案设计1.认识和欣赏平移、轴对称、旋转在现实生活中的应用.2. 利用图形的平移、轴对称、旋转变换设计组合图案.重点:设计图案.难点:如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、自学指导.(10分钟)自学:自学教材P72内容,思考下列问题.(1)我们学过哪些图形变换?它们分别有何特征?(2)下列图形之间的变换分别属于什么变换?探究:(1)观察下面的图形,分析它是将哪种基本图形经过了哪些变换后得到的?(2)观察三种图形变换的过程,回答问题:①平移、旋转和轴对称变换的基本特征;②归纳三种图形变换的共性.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)1.分析图案的形成过程要注意些什么?分析图案的形成过程,应注意运用__平移、__轴对称__、__旋转__进行描述,只要合理就行.2.图案设计的关键是什么?选取简单的基本几何图形,然后通过不同的变换组合出美丽的图案.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)用平移、旋转或轴对称变换分析下图中各个图案,分析它是将哪种基本图形经过了哪些变换后得到的?点拨精讲:将基本图形从组合图案中分离出来,并再现此基本图形的变换过程.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.某单位搞绿化,要在一块圆形空地上种植四种颜色的花,为了便于管理和美观,相同颜色的花集中种植,且每种颜色的花所占的面积相同,现征集设计方案,你能帮忙设计吗?点拨精讲:将基本图形创造性地应用平移、轴对称、旋转等变换,设计出和谐、丰富、美观的组合图案.2.下面花边中的图案,由圆弧、圆构成.仿照例图,请你为班级的板报设计一条花边,要求:(1)只要画出组成花边的一个图案;(2)以所给的图形为基础,用圆弧、圆或线段画出;(3)图案应有美感.学生总结本堂课的收获与困惑.(2分钟)利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.学习至此,请使用本课时对应训练部分.(10分钟)。
第二十三章旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O 对称,则m= -1 ,n= -5 . ④如图,在平面直角坐标系中,点A 的坐标为(-2,3),点B 的坐标为(-5,0),画出点A 、点B 关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴、y 轴的负半轴上,且OA =2,OB =1,将Rt △AOB 绕点O 按顺时针方向旋转90°,再把所得的图形沿x 轴正方向平移1个单位得到△CDO,写出A 、C 两点的坐标并求出点A 和点C 之间的距离.A(-2,0),C(1,2),点A 和点C 之间的距离22222313AC CD AD =+=+=.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:① 明了学情:特别关注学生是否对以往学过的旧知识不熟悉.② 差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=45cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。
第23章旋转教学目标1.了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用。
2.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用。
3.掌握关于原点对称的点坐标的变化规律。
学习重、难点重点:中心对称图形的有关概念及其它们的运用。
难点:区别关于中心对称的两个图形和中心对称。
一、知识体系旋转二、专题复习专题1:旋转的概念和性质的应用例1:如图,将左边的△AOB 沿顺时针旋转90°后,得到右边的△COD ,如果∠AOB=75°,BO=3.则∠DOC=____,∠AOD=___,OD=____.例2:如图,点D 是等腰三角形ABC 内的一点,BC 是斜边,如果将△ABODCADB绕点A逆时针旋转到△AEC的位置,则∠ADE的度数是____.例3.两个边长为1的正方形,如图所示, 让一个正方形的顶点与另一个正方形中心重合,不难知道重合部分的面积为,现把其中一个正方形固定不动, 另一个正方形绕其中心旋转,问在旋转过程中,两个正方形重叠部分面积是否发生变化? 说明理由.专题2:中心对称及中心对称图形例4;下列命题是假命题的是()A.任何一个具有对称中心的四边形都是平行四边形。
B.平行四边形既是轴对称图形,又是中心对称图形。
C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形。
D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条。
例5 如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.专题3:平面直角坐标系中的对称例6: 1.四边形ABCD各顶点的坐标分别为A(5,0),B(-2,3),C(-1,0),D(-1,-5),作出与四边形ABCD关于原点O对称的图形。
2. 如图,PQR ∆是ABC ∆经过某种变换后得到的图形.如果ABC ∆中任意一点M 的坐标为(a ,b ),那么它的对应点N 的坐标为 .专题4:运用旋转变换进行方案设计例6:如图是一块纸板,你能将它的面积分成相等的两部分吗?请在图中画出并保留作图痕迹。
学习目标1.通过学习使学生了解旋转的、旋转中心、旋转角的含义2.理解旋转的性质学习过程一、忆一忆平移的有关概念及性质如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.什么叫轴对称图形?探索新知像这样,把一个图形绕着某转动一个的图形变换叫做旋转,点O叫做,转动的角叫做. .试一试1.如图,如果把△ADE,它绕A点按顺时针方向旋转得到△ABM,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点D、E分别移动到什么位置?(3)指出,经过旋转,点A、B、C、D分别移到什么位置?有效训练:1.从5点15分到5点20分,分针旋转的度数为().A.20 B.26°C.30°D.36°2.如图(1),在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70°B.80°C.60°D.50°(1) (2) (3)3.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.4.如图(2),△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.5.如图(3),△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)•旋转角度是________△ADP•是________三角形.MDCABE学习目标:了解旋转的实质,掌握旋转规律解决问题学习过程:忆一忆1.什么叫旋转?什么叫旋转中心?什么叫旋转角?探索新知1、(1)对应点到旋转中心的距离;(2)对应点与旋转中心所连线段的夹角等于;(3)旋转前、后的图形.试一试1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.有效训练1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,•则旋转角等于()A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是()A.在图形上的每一点到旋转中心的距离相等B.图形上每一点移动的角度相同C.图形上可能存在不动的点D.图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()4.在作旋转图形中,各对应点与旋转中心的距离________.5.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,•则图中三个扇形面积之和是多少?学习目标:理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.学习过程忆一忆1.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2. 如图,△AOB 绕O 点旋转后,G 点是B 点的对应点,作出△AOB 旋转后的三角形.有效训练1.下面的图形,绕着一个点旋转120°后,能与原来的位置重合的是( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)2.五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.3.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.4.如图,△ABC 的直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,如果AP=3,求PP ′的长.5、如图,∠AOB =90°,∠B =30°,△A ’OB ’可以看作是由△AOB 绕点O 顺时针旋转α角度得到的,若点A ’在AB 上,则旋转角α的大小可以是( )A 、30°B 、45°C 、60°D 、90°(提示:本题要充分重视条件“点A ’在AB 上”,由此可推出△AOA ’是等边三角形.)6、(2009年,武汉)如图,已知ABC △的三个顶点的坐标分别为(23)A -,、(60)B -,、(10)C -,.(1)请直接写出点A 关于y 轴对称的点的坐标;(2)将ABC △绕坐标原点O 逆时针旋转90°.画出图形,直接写出点B 的对应点的坐标;(3)请直接写出:以A B C 、、为顶点的平行四边形的第四个顶点D 的坐标.学习目标: 1、两个图形关于这个点对称或中心对称、对称中心、关于中心的对称点等概念及其运用它们解决一些实际问题.2.关于中心对称的两个图形,对称点所连线段都经过对称中心,•而且被对称中心所平分.3.关于中心对称的两个图形是全等图形.探索新知 把一个图形绕着某一个点旋转 ,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做 .试一试1.如图,四边形ABCD 绕D 点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A 、B 、C 、D 关于中心的对称点是哪些点.2.如图,已知△ABC ,画出以点O 为对称中心,与△ABC •成中心对称的三角形.①.关于中心对称的两个图形,对称点所连线段都经过对 ,而且被对称中心 . ②.关于中心对称的两个图形是 .应用拓展:如图,在△ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到△A ′B ′C ′的位置.(1)若平移的距离为3,求△ABC 与△A ′B ′C ′重叠部分的面积.(2)若平移的距离为x (0≤x ≤4),求△ABC 与△A ′B ′C ′重叠部分的面积y ,写出y 与x 的关系式.有效训练1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,•那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(•填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)•梯形.4.如图,在正方形ABCD 中,作出关于B 点的中心对称图形.OC BA学习目标:1.中心对称图形的概念.2.对称中心的概念及其它们的运用.3.难点与关键:区别关于中心对称的两个图形和中心对称图形.忆一忆1.关于中心对称的两个图形具有什么性质?思考:中心对称图形是。
《旋转》第一节图形的旋转导学案1主编人:占利华主审人:班级:学号:姓名:学习目标:【知识与技能】通过具体实例认识图形的旋转,理解“对应点到旋转中心的距离相等”以及“旋转前、后的图形全等”的基本性质。
【过程与方法】经历对具有旋转特征的图形进行观察、分析、动手操作和画图等过程,按要求作出简单平面图形旋转后的图形。
【情感、态度与价值观】学生在经历了实际探究、知识应用及内化等数学活动中,体验数学的具体、生动、灵活,调动学生学习的数学的主动性。
培养学生初步的审美能力,增强对图形的欣赏意识.。
【重点】对生活中的旋转现象作数学上的分析,理解旋转的定义。
【难点】对旋转现象进行分析研究,旋转后的现象进行探索。
学习过程:一、自主学习(一)复习巩固1. 把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做.点O叫做,转动的角叫做.2. 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离.(2)对应点与旋转中心所连线段的夹角等于.(3)旋转前、后的图形.(二)自主探究例1.如图所示,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置,则旋转中心是哪点?旋转方向是什么?旋转角度是多少?点B的对应点是什么?例2.选择题:(1)如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A’的坐标为()A.(2,2)B.(2,4)C.(4,2)D.(1,2)(2)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是()(三)归纳总结:1 一般地,可以根据定义得出旋转的以下性质:(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角.(3)旋转前、后的图形全等.2. 画已知图形旋转后的图形时,首先要确定一些对应点的位置,这主要由旋转角度及对应点到旋转中心的距离相等等条件确定,也可以利用一些特殊图形的性质.3. 利用旋转设计图案时,要注意到影响设计效果的三个主要因素:基本图形,旋转中心,旋转角度.多试验才能得出美丽的图案.(四)、自我尝试:1.如图所示,△ABC中,∠ACB=90°,∠BAC=30°,点D是斜边上任意一点,以A 点为中心,把△ACD顺时针旋转30°,画出旋转后的图形.二、学生分小组交流解疑,教师点评升华。
人教版九年级数学《旋转》全章导学案第1课时旋转的概念及性质知识点1:旋转的有关概念【例1】如图1-23-29-1,△AOB旋转到△A′OB′的位置. 若∠AOA′=90°,则旋转中心是点O,旋转角是∠AOA′或∠BOB′,点A的对应点是点A′,线段AB的对应线段是A′B′,∠B的对应角是∠B′,∠BOB′=90°.图1-23-29-1,1. 如图1-23-29-2,△ABC绕点C顺时针旋转90°后得到△A′B′C′,则:(1)线段AB的对应线段是A′B′,线段AC的对应线段是A′C,线段BC的对应线段是B′C;(2)∠A的对应角是∠A′,∠B的对应角是∠B′.图1-23-29-2知识点2:运用旋转的基本性质求角度和边长【例2】如图1-23-29-3,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB =40°,则∠AOD的度数为50°.图1-23-29-3,2. 如图1-23-29-4,Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B 逆时针旋转90°到△A′BC′的位置,则AA′的长为( A )图1-23-29-4A. 10 2B. 10C. 20D. 52知识点3:旋转基本性质的简单运用【例3】如图1-23-29-5,△ABC旋转后与△AED重合,且△ABE为等边三角形,那么:(1)旋转中心是点A;(2)旋转方向是顺时针;(3)旋转角是∠BAE或∠CAD;(4)AC的对应线段是AD,BC的对应线段是ED,∠ABC的对应角是∠AED;(5)连接CD,试判断△ACD的形状.图1-23-29-5解:(5)△ACD是等边三角形.,3. 如图1-23-29-6,四边形ABCD是正方形,△ADE旋转后能与△ABF重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果连接EF,那么△AEF是怎样的三角形?图1-23-29-6解:(1)点A.(2)90°.(3)等腰直角三角形.A组4. 下列现象属于旋转的是( C )A. 摩托车在急刹车时向前滑动B. 飞机起飞后冲向空中的过程C. 幸运大转盘转动的过程D. 笔直的铁轨上飞驰而过的火车,5. 如图1-23-29-7,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( A )图1-23-29-76. 如图1-23-29-8,将△ABC绕点O旋转得到△A′B′C′,且∠AOB=30°,∠AOB′=20°,则:图1-23-29-8(1)点B的对应点是点B′;(2)线段OB的对应线段是线段OB′;(3)∠AOB的对应角是∠A′OB′;(4)△ABC旋转的度数是50°.7. 如图1-23-29-9,△ABC绕旋转中心O逆时针旋转60°后到△A′B′C′的位置,则OA=OA′,OB=OB′,AB=A′B′,BC=B′C′,CA=C′A′,∠CAB=∠C′A′B′,∠ABC=∠A′B′C′,∠BCA=∠B′C′A′,∠AOA′=∠COC′或∠BOB′=60°.图1-23-29-9B组8. 如图1-23-29-10,把△AOB绕点O顺时针旋转得到△COD,则旋转角是( A )图1-23-29-10A . ∠AOCB . ∠AODC . ∠AOBD . ∠BOC,9. 如图1-23-29-11,将Rt △ABC 绕直角顶点顺时针旋转90°,得到△A ′B ′C ,连接AA ′,∠1=26°,则∠B 的度数是 71° .图1-23-29-11C 组10. 如图1-23-29-12,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形.若点C 恰好落在AB 上,且∠AOD 的度数为90°,求∠B 的度数.图1-23-29-12解:由题意,得△AOB ≌△COD , ∴OA =OC ,∠AOB =∠COD.∴∠A =∠OCA ,∠AOC =∠BOD =40°.∴∠OCA =180°-40°2=70°.∵∠AOD =90°, ∴∠BOC =10°.∵∠OCA =∠B +∠BOC , ∴∠B =70°-10°=60°.,11. 如图1-23-29-13,以点A 为中心,把△ABC 逆时针旋转120°,得到△AB ′C ′(点B ,C 的对应点分别为点B ′,C ′),连接BB ′.若AC ′∥BB ′,求∠CAB ′的度数.图1-23-29-13解:∵∠BAB′=∠CAC′=120°,AB =AB′,∴∠AB′B =12×(180°-120°)=30°.∵AC′∥BB′,∴∠C′AB′=∠AB′B =30°.∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.第2课时 旋转的性质应用知识点1:求旋转角的度数【例1】如图1-23-30-1,△ABC 绕点B 逆时针方向旋转到△EBD 的位置.若∠A =15°,∠C =10°,点E ,B ,C 在一条直线上,则旋转角是 25 度,∠ABD = 130 度.图1-23-30-1,1. 如图1-23-30-2,Rt △AOB 绕点O 逆时针旋转到△COD 的位置.若∠BOC =127°,求旋转角的度数.图1-23-30-2解:旋转角的度数为37°.知识点2:旋转基本性质的简单应用【例2】如图1-23-30-3,在Rt △ABC 中,∠ACB =90°. 如果△ABC 经过旋转得到了△EBD ,那么:(1)旋转中心是 点B ; (2)旋转方向是 顺时针 ;(3)旋转角是 ∠CBD 或∠ABE ; (4)如果AC =5 cm ,∠ABC =30°, 那么BE = 10 cm ,DB = 5 3 cm ,ED = 5 cm .图1-23-30-3,2. 如图1-23-30-4,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD相交于点F.(1)旋转中心是点A,旋转角至少是60度;(2)求∠DFC的度数.图1-23-30-4解:(2)易证得△ABD≌AEC.∴∠ADB=∠ACE.∴∠FDC+∠FCD=∠FDC+∠ACD+∠FCA=∠ACD+∠FDC+∠ADB=∠ACD+∠ADC=120°.∴∠DFC=180°-120°=60°.知识点3:旋转基本性质的综合应用【例3】如图1-23-30-5,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°.(1)△ACA′是等腰直角三角形;(2)求∠BAA′的度数.图1-23-30-5解:(2)∵AC=A′C,∴∠CAA′=∠CA′A=45°.∴∠CA′B′=∠CA′A-∠1=20°.∴∠BAC=20°,∠CB′A′=70°.∴∠CAA′=∠CB′A′-∠1=45°.∴∠BAA′=∠BAC+∠CAA′=20°+45°=65°.,3. 如图1-23-30-6,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是6,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形.图1-23-30-6(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1.又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.A 组4. 如图1-23-30-7,将一个含30°角的直角三角板ABC 绕点A 旋转到△AB ′C ′位置,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是( D )图1-23-30-7A . 60°B . 90°C . 120°D . 150° ,5. 如图1-23-30-8,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C. 若∠A =40°,∠B′=110°,则∠BCA′的度数是( B )图1-23-30-8A . 90°B . 80°C . 50°D . 30° B 组6. 如图1-23-30-9,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,求∠BB ′C ′的度数.图1-23-30-9解:∵Rt △ABC 绕点A 逆时针旋转40°得到Rt △AB′C′, ∴AB =AB′,∠BAB′=40°.在△ABB′中,∠ABB′=12×(180°-∠BAB′)=12×(180°-40°)=70°.∵∠AC′B′=∠C =90°, ∴B′C′⊥AB. ∴∠BB′C′=90°-∠ABB′=90°-70°=20°.,7. 如图1-23-30-10,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,求CD的长.图1-23-30-10解:由旋转的性质,得AD=AB.∵∠B=60°,∴△ABD是等边三角形.∴BD=AB.∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.C组8. 如图1-23-30-11,在等边三角形ABC中,D是边AC上一点,连接BD,将△BCD 绕点B逆时针旋转60°,得到△BAE,连接ED.若BC=10,BD=9,求△ADE的周长.图1-23-30-11解:∵将△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,CD=AE,∠DBE=60°.∴△BDE是等边三角形.∴DE=BD=BE=9.∵△ABC是等边三角形,∴BC=AC=10.∴△ADE的周长为AE+AD+DE=CD+AD+DE=AC+BD=10+9=19,即△ADE的周长为19. ,9. 如图1-23-30-12,已知P是正方形ABCD内一点,P A=1,PB=2,PC=3,以点B为旋转中心,将△ABP按顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)求出PG的长度;(2)请你猜想△PGC的形状,并说明理由.图1-23-30-12解:(1)∵∠ABP=∠CBG,∴∠PBG=∠ABC=90°.又∵BP=BG,∴△PBG是等腰直角三角形.∴PG=2PB=2 2.(2)△PGC是直角三角形.理由如下:∵PG=22,GC=PA=1,PC=3,且(22)2+12=32,∴△PGC是直角三角形.第3课时图形的旋转作图知识点1:以图形上的某一点为旋转中心作图【例1】已知如图1-23-31-1,△ABC是等腰直角三角形,∠C为直角. 画出以点A 为旋转中心,逆时针旋转45°后的图形.图1-23-31-1答图23-31-1解:如答图23-31-1,△AB′C′即为所求.,1. 如图1-23-31-2,等边三角形ABC中有一点P,在图中画出△APC绕点A顺时针旋转60°后的△AP1B.图1-23-31-2答图23-31-4解:如答图23-31-4,△AP1B即为所求.知识点2:以图形外的某一点为旋转中心作图【例2】如图1-23-31-3,以点O为中心,把线段AB逆时针旋转90°.图1-23-31-3答图23-31-2解:如答图23-31-2,A′B′即为所求. ,2. 如图1-23-31-4,画出将△ABC绕点O顺时针方向旋转90°后的对应三角形.图1-23-31-4答图23-31-5解:如答图23-31-5,△A′B′C′即为所求.知识点3:网格中的旋转作图【例3】在如图1-23-31-5所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上. 画出△ABC绕点O顺时针旋转90°后的△A1B1C1.图1-23-31-5答图23-31-3解:如答图23-31-3,△A1B1C1即为所求.3. 如图1-23-31-6,△ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1),如果将△ABC 绕点C按逆时针方向旋转90°得到△A′B′C.(1)画出△A′B′C;(2)写出点A′和B′的坐标.图1-23-31-6答图23-31-6解:(1)如答图23-31-6,△A′B′C即为所求.(2)点A′的坐标为(-3,3),点B′的坐标为(1,4).4. 如图1-23-31-7,画出△ABC绕点A按逆时针方向旋转90°后的△AB′C′.图1-23-31-7答图23-31-7解:如答图23-31-7,△AB′C′即为所求.,5. 如图1-23-31-8,在6×6的方形网格中,有一个Rt△ABC,∠ACB=90°,A,B,C三点都在格点上. 绕点C将△ABC顺时针旋转90°得到△A′B′C,在图中作出△A′B′C.图1-23-31-8答图23-31-8解:如答图23-31-8,△A′B′C即为所求.B组6. 如图1-23-31-9,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC绕O点逆时针旋转90°得到的△A1B1C1;(2)写出A1,B1,C1的坐标.图1-23-31-9答图23-31-96. 解:(1)如答图23-31-9,△A1B1C1即为所求.(2)A1(-1,1),B1(-2,4),C1(-4,3).,7. 如图1-23-31-10,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上的三点. 画出△ABC绕原点O顺时针旋转90°后的图形,并写出各顶点旋转后的坐标.图1-23-31-10解:图略,旋转后点A,B,C的对应点的坐标分别为(-3,3),(-1,2),(-2,1).C组8. 如图1-23-31-11,在Rt△ABC中,∠ABC=90°,BC=1,AC= 5.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.图1-23-31-11答图23-31-10解:(1)如答图23-31-10,△A′BC′即为所求. (2)∵∠ABC =90°,BC =1,AC =5,∴AB =(5)2-12=2.∵△ABC 沿逆时针方向旋转90°得到△A′BC′, ∴BA =BA′,∠ABA′=90°. ∴△ABA ′为等腰直角三角形. ∴AA ′=2AB =2 2.9. 如图1-23-31-12,已知四边形ABCD 四个顶点的坐标分别是A (-2,1),B (0,-1),C (3,2),D (0,3),(1)将四边形ABCD 绕原点O 顺时针旋转90°得四边形A 1B 1C 1D 1,画出四边形A 1B 1C 1D 1,并写出A 1,B 1,C 1,D 1的坐标;(2)直接写出四边形ABCD 与四边形A 1B 1C 1D 1重叠部分的面积.图1-23-31-12答图23-31-11解:(1)如答图23-31-11,四边形A 1B 1C 1D 1即为所求,其中,A 1的坐标为(1,2),B 1的坐标为(-1,0),C 1的坐标为(2,-3),D 1的坐标为(3,0).(2)四边形ABCD 与四边形A 1B 1C 1D 1重叠部分的面积为3×3-2×12×2×2-2×12×1×1=4.第4课时中心对称知识点1:中心对称的有关概念【例1】如图1-23-32-1,如果△ABC与△A′B′C′关于点O成中心对称,那么:(1)△ABC绕点O旋转180°后能与△A′B′C′重合;(2)线段AA′,BB′,CC′都经过点O;(3)OA=OA′,OB′=OB,AC=A′C′.图1-23-32-1,1. 下列图形中,△A′B′C′与△ABC成中心对称的是( A )知识点2:中心对称的性质【例2】已知△ABC和△DEF关于点O对称,相应的对称点如图1-23-32-2,则下列结论正确的是( D )图1-23-32-2A. AO=BOB. 点A关于点O的对称点是点DC. BO=EOD. 点D 在BO的延长线上,2. 如图1-23-32-3,△ABC与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( D )图1-23-32-3A. AB=A′B′,BC=B′C′B. AB∥A′B′,BC∥B′C′C. S△ABC=S△A′B′C′D. △ABC≌△A′OC′知识点3:中心对称的作图【例3】如图1-23-32-4,将△ABC绕着点B旋转180°得到△A2B2C2,画出图形△A2B2C2.图1-23-32-4略.,3. 如图1-23-32-5,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O 成中心对称.图1-23-32-5解:如答图23-32-1,△DEF即为所求.答图23-32-1A组4. 如图1-23-32-6,已知△ABC与△A′B′C′关于点O成中心对称,则下列判断不正确的是( B )图1-23-32-6A. ∠ABC=∠A′B′C′B. ∠BOC=∠B′A′C′C. AB=A′B′D. OA=OA′ ,5. 如图1-23-32-7所示四组图形中,左边的图形与右边的图形成中心对称的有( C )图1-23-32-7A. 1组B. 2组C. 3组D. 4组B组6. 如图1-23-32-8,已知△ABC与△DEF关于某点对称,则对称中心是( D )A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点图1-23-32-8,7. 如图1-23-32-9,△ABC和△DEF关于点O成中心对称.(1)作出它们的对称中心O;(2)若AB=6,AC=5,BC=4,求△DEF的周长.图1-23-32-9答图23-32-2解:(1)如答图23-32-2,点O 即为所求. (2)∵△ABC 和△DEF 关于点O 成中心对称, ∴△ABC ≌△DEF.∴AB =DE =6,AC =DF =5,BC =EF =4.∴△DEF 的周长为15. C 组8. 如图1-23-32-10,△ABO 与△CDO 关于点O 中心对称,点E ,F 在线段AC 上,且AF =CE ,求证:DF =BE .图1-23-32-10证明:∵△ABO 与△CDO 关于点O 中心对称, ∴BO =DO ,AO =CO. ∵AF =CE ,∴AO -AF =CO -CE. ∴FO =EO.在△FOD 和△EOB 中,⎪⎩⎪⎨⎧=∠=∠=,,,DO BO EOB FOD EO FO∴△FOD ≌△EOB(SAS).∴DF =BE . ,9. 如图1-23-32-11,将一张直角三角形纸片ABC 沿中位线DE 剪开后在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,判断四边形ACE ′E 的形状并证明.图1-23-32-11解:四边形ACE′E 的形状是平行四边形. 证明如下:∵DE 是△ABC 的中线,∴DE ∥AC ,DE =12AC.∵将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,∴DE=DE′.∴EE′=2DE=AC.∴四边形ACE′E的形状是平行四边形.第5课时中心对称图形知识点1:中心对称图形【例1】下面四个手机应用图标中,属于中心对称图形的是( B ),1. 下列图案都是由字母“m”经过变形、组合而成的,其中不是中心对称图形的是( B )知识点2:中心对称与中心对称图形【例2】下列说法错误的是( B )A. 成中心对称的两个图形全等B. 成中心对称的两个图形中,对称点的连线被对称轴平分C. 中心对称图形的对称中心是对称点连线的中心D. 中心对称图形绕对称中心旋转180°后,都能与自身重合,2. 如图1-23-33-1,已知△ABC与△CDA关于点O对称,过点O作EF分别交AD,BC于点E,F. 下列结论:①点E和F,点B和D是关于中心O的对称点;②线段BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称.其中正确的有( D )图1-23-33-1A. 1个B. 2个C. 3个D. 5个知识点3:中心对称图形与轴对称图形【例3】下列图形中,既是轴对称图形又是中心对称图形的是( D ),3. 下列图形中既是中心对称图形又是轴对称图形的是( C )A组4. 下列四个图形是中心对称图形的是( C ),5. 在下列这些汽车标识中,是中心对称图形的是( C )B组6. 北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是( D ),7. “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用. 瓦当上的图案设计优美,字体行云流水,极富变化,是中国特有的文化艺术遗产. 下列“瓦当”图案中既是轴对称图形又是中心对称图形的是( B )C组8. 如图1-23-33-2是4×4的正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.图1-23-33-2解:如答图23-33-1.答图23-33-1,9. 如图1-23-33-3①所示的四张牌,若只将其中一张牌旋转180°后得到图1-23-33-3②,则旋转的牌是方块5.图1-23-33-3第6课时关于原点对称的点的坐标知识点1:求关于原点对称的点的坐标【例1】在平面直角坐标系中,点P(1,2)关于原点的对称点P′的坐标是( D )A. (1,2)B. (-1,2)C. (1,-2)D. (-1,-2),1. 已知点A(m,1)与点B(5,n)关于原点对称,则m和n的值为( D )A. m=5,n=-1B. m=-5,n=1C. m=-1,n=-5D. m=-5,n=-1知识点2:求图形中关于原点成中心对称的点的坐标【例2】如图1-23-34-1,▱ABCD的对角线的交点是原点,AD∥BC,D(3,2),C(1.5,-2),则A点的坐标为(-1.5,2),B点的坐标为(-3,-2).图1-23-34-1,2. 如图1-23-34-2,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(4,2),则点N的坐标为( A )图1-23-34-2A. (-4,-2)B. (-4,2)C. (-2,4)D. (2,4)知识点3:平面直角坐标系中的中心对称【例3】如图1-23-34-3,在边长为1的正方形网格中,△ABC的顶点均在格点上. 画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标.图1-23-34-3解:图略.A′(4,0),B′(3,3),C′(1,3).,3. 如图1-23-34-4,△ABC在平面直角坐标系内,顶点坐标分别为A(-1,5),B(-4,2),C(-2,2).(1)画出△ABC关于原点O对称的△A1B1C1;(2)线段BB1的长度为45.图1-23-34-4解:(1)图略.A 组4. 点P (2,-1)关于原点对称的点P ′的坐标是( A ) A. (-2,1) B. (-2,-1) C. (-1,2) D. (1,-2) ,5. 已知点A (a ,-1)与B (2,b )是关于原点O 的对称点,则( B ) A. a =-2,b =-1 B. a =-2,b =1 C. a =2,b =-1 D. a =2,b =16. 若点P 1(m ,-1)关于原点的对称点是P 2(2,n ),则m +n 的值是( B ) A. 1 B. -1 C. 3 D. -3 ,7. 若点P (x ,-3)与点Q (4,y )关于原点对称,则xy 的值是( B ) A. 12 B. -12 C. 64 D. -64 B 组8. 若点A (a -2,3)和点B (-1,2b +2)关于原点对称,求a ,b 的值. 解:∵点A (a -2,3)和点B (-1,2b +2)关于原点对称, ∴a -2=-(-1),3=-(2b +2).解得a =3,b =-52. ,9. 已知点A (1-2x ,y -4)与点B (2y +1,x -1)关于原点对称,求y x . 解:由题意,得⎩⎨⎧--=-+-=-).1(4),12(21x y y x解得⎩⎨⎧==.2,3y x∴y x =23=8.10. 如图1-23-34-5,已知△ABC 中,A (-3,3),B (-4,1),C (-2,2). (1)画出△ABC 关于坐标原点对称的△A 1B 1C 1; (2)写出△A 1B 1C 1各顶点的坐标.图1-23-34-5解:(1)图略. (2)A 1(3,-3), B 1(4,-1),C 1(2,-2).,11. 如图1-23-34-6,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,-1).(1)作出△ABC 关于原点对称的△A 1B 1C 1; (2)写出点A 1的坐标.图1-23-34-6解:(1)图略.(2)点A 1的坐标为(1,-2).C 组12. 设点A 与点B 关于x 轴对称,点A 与点C 关于y 轴对称,则点B 与点C( C ) A . 关于x 轴对称 B . 关于y 轴对称 C . 关于原点对称D . 既关于x 轴对称,又关于y 轴对称,13. 已知点P(a +1,2a -3)关于原点的对称点在第二象限,则a 的取值范围是( B )A . a <-1B . -1<a <32C. -32<a<1 D. a>32第7课时课题学习图案设计知识点1:图案的形成【例1】下列图案可以由一个“基本图案”连续旋转45°得到的是( B ),1. 图1-23-35-1所示的左侧3个图形中,能通过旋转得到右侧图形的有( B )图1-23-35-1A. ①②B. ①③C. ②③D. ①②③知识点2:图案的简单设计【例2】在如图1-23-35-2所示的方格纸中,选择标有序号1,2,3,4中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是4.图1-23-35-2,2. 要在一块长方形的空地上修建一个既是轴对称图形又是中心对称图形的花坛,下列图案不符合设计要求的是( D )知识点3:图案的综合设计【例3】如图1-23-35-3,网格中每个小正方形的边长为1,请你认真观察图1-23-35-3①中的三个网格中阴影部分构成的图案,解答下列问题:图1-23-35-3(1)这三个图案都具有以下特征:都是中心对称图形,都不是轴对称图形;(2)请在图1-23-35-3②中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图1-23-35-3①中所给出的图案相同.解:(2)略.,3. 李兵同学家买了新房,准备装修地面,为节约开支,购买了两种质量相同、颜色不同的残缺地砖,现已加工成如图1-23-35-4①的等腰直角三角形形状,李兵同学设计出如图1-23-35-4②所示的四种图案:图1-23-35-4(1)请问你喜欢哪种图案?并简述该图案的形成过程;(2)请你利用平移、旋转、轴对称等知识再设计一幅与上述不同的图案.解:(1)答图23-35-1最后一个图案的形成过程是:以同行或同列的两个小正方形组成的长方形为“基本图案”,绕大正方形的中心旋转180°得到.(2)如答图23-35-1. (答案不唯一)A组4. 在下面的四个设计图案中,可以看作是中心对称图形的是( C ),5. 三菱标志是一种常见的商标,如图1-23-35-5,你认为它是怎样设计的?( D )图1-23-35-5A. 用一个菱形平移得到的B. 用一个菱形经过两次旋转,每次旋转60°得到的C. 用一个菱形经过两次旋转,每次旋转90°得到的D. 用一个菱形经过两次旋转,每次旋转120°得到的B组6. 在俄罗斯方块的游戏中,已拼好的图案如图1-23-35-6,现又出现一小方格体正向下运动,为了使所有图案消失,你必须进行以下哪项操作,才能拼成一个完整图案,使其自动消失?( A )图1-23-35-6A. 顺时针旋转90°,向右平移B. 逆时针旋转90°,向右平移C. 顺时针旋转90°,向下平移D. 逆时针旋转90°,向下平移,7. 下列四个图形中,若以其中一部分作为基本图案,无论用旋转还是平移都不能得到的图形是( C )8. 如图1-23-35-7,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为“基本图案”通过连续四次旋转所组成,这四次旋转中,旋转角度最小是72度.,9. 下列四个图案中,既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的是( C )C组10. 如图1-23-35-8,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形). 若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种,请画出来.图1-23-35-8答图23-35-2,11. 在如图1-23-35-9的4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案. (每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点视为相连);(2)将选中的小正方形方格用黑色签字笔涂成阴影图形. (若两个方案的图形经过翻折、平移、旋转后能够重合,均视为一种方案)图1-23-35-9略.第8课时旋转单元复习课知识点1:旋转的相关概念及性质【例1】如图1-23-36-1,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′.若∠AOB=15°,则∠AOB′的度数是( B )图1-23-36-1A. 25°B. 30°C. 35°D. 40°,1. 如图1-23-36-2,将△ABC绕点A顺时针旋转90°得到△AED,若点B,D,E 在同一条直线上,∠BAC=20°,则∠ADB的度数为( C )图1-23-36-2A. 55°B. 60°C. 65°D. 70°知识点2:中心对称与中心对称图形【例2】如图1-23-36-3,△ABC绕点O旋转180°后得到△A1B1C1,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有( D )图1-23-36-3A. 1个B. 2个C. 3个D. 4个2. 如图1-23-36-4,下列图案均是名车的标志,在这些图案中,是中心对称图形的有( C )图1-23-36-4A. 1个B. 2个C. 3个D. 4个知识点3:坐标与旋转变换【例3】如图1-23-36-5,若将△ABC绕点O逆时针旋转90°.(1)画出旋转后的图形△A1B1C1;(2)点B1的坐标为(-2,4).图1-23-36-5解:(1)略.3. △ABC在平面直角坐标系中的位置如图1-23-36-6,其中每个小正方形的边长为1个单位长度.(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)△A1B1C1中顶点A1的坐标为(1,-2),若P(a,b)为△ABC边上一点,则按照(1)中作图,点P对应的点P1的坐标为(-a,-b).图1-23-36-6解:(1)略.A组4. 下列现象:①时针的转动;②摩天轮的转动;③地下水位逐年下降;④传送带上的机器人. 其中,属于旋转的是( A )A. ①②B. ②③C. ①④D. ③④,5. 在平面直角坐标系中,点A(5,6)关于原点对称的点的坐标是( C )A. (-5,6)B. (5,-6)C. (-5,-6)D. (-6,-5)6. 如图1-23-36-7,点A,B,C,D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为90°.图1-23-36-77. 下列图标中,既是轴对称图形,又是中心对称图形的是( D )B组8. 如图1-23-36-8,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( B )图1-23-36-8A. 20°B. 25°C. 30°D. 35°,9. 如图1-23-36-9,在等边三角形ABC中,AB=6,点D是BC的中点,将△ABD 绕点A逆时针旋转后得到△ACE,那么线段DE的长为( C )图1-23-36-9 A . 2 3B . 6C . 3 3D . 4 2C 组10. 如图1-23-36-10,Rt △ABC 中,∠C =90°,把Rt △ABC 绕着点B 逆时针旋转,得到Rt △DBE ,点E 在AB 上.(1)若∠BDA =70°,求∠BAC 的度数;(2)若BC =8,AC =6,求△ABD 中AD 边上的高的长.图1-23-36-10解:(1)由旋转性质知BD =BA ,∠CBA =∠EBD.∵∠BDA =70°,∴∠BAD =70°.∴∠ABD =∠ABC =40°.∵∠C =90°,∴∠BAC =50°.答图23-36-1(2)∵BC =8,AC =6,∠C =90°,∴AB =10.由旋转性质知△ABC ≌△DBE ,则BE =BC =8,DE =AC =6,∴AE =2.在Rt △ADE 中, AD =DE 2+AE 2=62+22=210.作BF ⊥AD 于点F ,如答图23-36-1.∵BA =BD ,∴AF =12AD =10,则BF = BA 2-AF 2=102-(10)2=310.,11. 如图1-23-36-11,正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°. 将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:EF =FM ;(2)当AE =1时,求EF 的长.图1-23-36-11(1)证明:∵∠EDF =45°,∴∠ADE +∠FDC =45°.由旋转的性质可知,∠CDM =∠ADE ,DE =DM ,F ,C ,M三点共线,∴∠FDM =45°.∴∠FDM =∠EDF.在△EDF 和△MDF 中,⎪⎩⎪⎨⎧=∠=∠=,,,DF DF MDF EDF DM DE∴△EDF ≌△MDF(SAS ).∴EF =FM.(2)解:设EF =MF =x.∵AE =CM =1,BC =3,∴BM =BC +CM =3+1=4.∴BF =BM -MF =BM -EF =4-x.∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理,得EB 2+BF 2=EF 2,即22+(4-x )2=x 2. 解得x =2.5,则 EF =2.5.。
新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等(△ABC≌△A B C''').要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比平移轴对称旋转相同点都是全等变换(合同变换),即变换前后的图形全等.不同点定义把一个图形沿某一方向移动一定距离的图形变换.把一个图形沿着某一条直线折叠的图形变换.把一个图形绕着某一定点转动一个角度的图形变换.图形要素平移方向平移距离对称轴旋转中心、旋转方向、旋转角度性质连接各组对应点的线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角都等于旋转角.对应线段平行(或共线)且相等.任意一对对应点所连线段被对称轴垂直平分.*对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角,即:对应点与旋转中心连线所成的角彼此相等.【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转【: 388636:经典例题2-3】3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:【变式】如图,△ABC 中,∠BAC=90°,AC=2,AB=23,△ACD 是等边三角形. (1)求∠ABC 的度数.(2)以点A 为中心,把△ABD 顺时针旋转60°,画出旋转后的图形. (3)求BD 的长度.【答案】(1)Rt △ABC 中,AC=2,AB=23, ∴BC=4, ∴∠ABC=30° (2)如图所示:(3)连接BE .由(2)知:△ACE ≌△ADB , ∴AE=AB ,∠BAE=60°,BD=EC , ∴BE=AE=AB=23,∠EBA=60°, ∴∠EBC=90°, 又BC=2AC=4,∴Rt △EBC 中,EC=2223+4=27()4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则, ∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律. 【:388636:经典例题4-5】5.已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,(1)若PA=2,PB=4,∠APB=135°,求PC 的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.【思路点拨】通过旋转,把PA 、PB 、PC 或关联的线段集中到同一个三角形,再根据两边的平方和等于第三边求证直角三角形,可以求解∠APD . 【答案与解析】(1)∵AB=BC,∠ABC=90°,∴△CBP 绕点B 逆时针旋转90°,得到△ABE, ∵BC=BA,BP=BE,∠CBP=∠ABE ∴△CBP ≌△ABE ∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=42 又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:PE=2BP,PC=AE ∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90°又∵由(1)证得∠BAE=∠BCP∴∠PAB+∠BCP=90又∵∠ABC=90°∴点A,P,C三点共线,即P必在对角线AC上.【总结升华】注意勾股定理及逆定理的灵活运用.举一反三:【变式】如图,在四边形ABCD中,AB=BC,,K为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。
23.1 图形的旋转(1)一、学习目标:1.掌握旋转的概念,了解旋转中心、旋转角、旋转方向、对应点的概念及其应用。
2.掌握旋转的性质,应用概念解决一些实际问题. 学习过程: 一、自主预习:1.前面我们学过图形的两种变换,如下图,由△ABC 到△A′B′C′2.预习课本第55页至56 页的部分,完成以下问题(1).旋转的定义:把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的 ,点O 叫做 ,转动的角叫做.图形上的点P 经过旋转变为点P′,这两个点叫做这个旋转的.旋转也是一种图形变换.(2).如图,如果把钟表的指针看做三角形OAB ,它绕O 点按顺时针方向旋转得到△OCD ,在这个旋转过程中:A. 旋转中心是 ; 旋转角是 ;B. 经过旋转,点A 、B 分别移动到什么位置?即点A 、B 的对应点分别是 。
线段OB 的对应线段是____;线段AB 的对应线段是____; ∠A 的对应角是_____;∠B 的对应角是_____; (3). 如图,四边形ABCD 是边长为1的正方形,且DE=14, △ABF 是由△ADE 的旋转得到的图形① 旋转中心是_________; ②AF 的长度是________③旋转了_______度(4). 图形旋转的三个要素: 、 、 。
二、合作探究:1.如图,△ABC 绕点O 顺时针旋转一定角度 得到△A ′B′C′,OA 与OA′有什么关系? ∠AOA′与∠BOB′有什么关系?A ′C′DCA 'B 'B A△ABC 与△A′B′C′形状和大小有什么关系? 2.归纳总结 旋转的性质:⑴对应点到旋转中心的距离 ;⑵对应点与旋转中心所连线段的夹角等于 ; ⑶旋转前、后的图形 。
旋转三要素: 、 、 。
三、达标检测1.如图1,将ABC Rt ∆绕点C 按顺时针方向旋转︒90到C B A '''∆的位置,已知斜边cm AB 10=,cm BC 6=,(1)旋转中心是_______(2)如果连接B B ',那么B BC '∆的形状是_______图1 图2 图3 图42.如图2,△ABC 与△ADE 都是等腰直角三角形,∠C 和∠AED 都是直角,•点E •在AB 上,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC 为等边三角形,D 为△ABC •内一点,•△ABD •经过旋转后到达△ACP 的位置,则, (1)旋转中心是________;(2)•旋转角度是________;•(•3)•△ADP •是________三角形. 4.如图4,△ABC 与△ADE 都是直角三角形,∠C 与∠AED 都是直角,点E 在AB 上,∠D =30°,如果△ABC 经旋转后能与△ADE 重合,那么旋转中心是点______,旋转了_____度。
23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.例2.(学生活动)如图,四边形ABCD、四边形EFGH都是边长为1的正方形.(1)这个图案可以看做是哪个“基本图案”通过旋转得到的?(2)请画出旋转中心和旋转角.(3)指出,经过旋转,点A、B、C、D分别移到什么位置?(老师点评)(1)可以看做是由正方形ABCD的基本图案通过旋转而得到的.(2)•画图略.(3)点A、点B、点C、点D移到的位置是点E、点F、点G、点H.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P58 练习1、2、3.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心相等. 2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B•对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=ACD,•又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.例2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?分析:由△ABF是△ADE的旋转图形,可直接得出旋转中心和旋转角,要求AF•的长度,根据旋转前后的对应线段相等,只要求AE的长度,由勾股定理很容易得到.•△ABF与△ADE是完全重合的,所以它是直角三角形.三、巩固练习教材P64 练习1、2.四、应用拓展例3.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L、M•在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.分析:要用旋转的思想说明就是要用旋转中心、旋转角、对应点的知识来说明.解:∵四边形ABCD、四边形AKLM是正方形∴AB=AD,AK=AM,且∠BAD=∠KAM为旋转角且为90°∴△ADM是以A为旋转中心,∠BAD为旋转角由△ABK旋转而成的∴BK=DM五、归纳小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.23.1 图形的旋转(3) 第三课时教学目标理解选择不同的旋转中心、不同的旋转角度,会出现不同的效果,掌握根据需要用旋转的知识设计出美丽的图案.复习图形旋转的基本性质,着重强调旋转中心和旋转角然后应用已学的知识作图,设计出美丽的图案.教学过程一、复习引入 1.(学生活动)老师口问,学生口答.(1)各对应点到旋转中心的距离有何关系呢?(2)各对应点与旋转中心所连线段的夹角与旋转角有何关系?(3)两个图形是旋转前后的图形,它们全等吗?2.请同学独立完成下面的作图题.如图,△AOB绕O点旋转后,G点是B点的对应点,作出△AOB旋转后的三角形.(老师点评)分析:要作出△AOB旋转后的三角形,应找出三方面:第一,旋转中心:O;第二,旋转角:∠BOG;第三,A点旋转后的对应点:A′.二、探索新知从上面的作图题中,我们知道,作图应满足三要素:旋转中心、旋转角、对应点,而旋转中心、旋转角固定下来,对应点就自然而然地固定下来.因此,下面就选择不同的旋转中心、不同的旋转角来进行研究.1.旋转中心不变,改变旋转角画出以下图所示的四边形ABCD以O点为中心,旋转角分别为30°、60°的旋转图形.2.旋转角不变,改变旋转中心画出以下图,四边形ABCD分别为O、O为中心,旋转角都为30•°的旋转图形.因此,从以上的画图中,我们可以得到旋转中心不变,改变旋转角与旋转角不变,改变旋转中心会产生不同的效果,所以,我们可以经过旋转设计出美丽的图案.例1.如下图是菊花一叶和中心与圆圈,现以O•为旋转中心画出分别旋转45°、90°、135°、180°、225°、270°、315°的菊花图案.分析:只要以O为旋转中心、旋转角以上面为变化,•旋转长度为菊花的最长OA,按菊花叶的形状画出即可.(4)按菊花一叶图案画出各菊花一叶.那么所画的图案就是绕O点旋转后的图形.例2.(学生活动)如图,如果上面的菊花一叶,绕下面的点O′为旋转中心,•请同学画出图案,它还是原来的菊花吗?老师点评:显然,画出后的图案不是菊花,而是另外的一种花了.三、巩固练习教材P65 练习.四、应用拓展例3.如图,如何作出该图案绕O点按逆时针旋转90°的图形.分析:该备案是一个比较复杂的图案,是作出几个复合图形组成的图案,因此,要先画出图中的关键点,这些关键点往往是图案里线的端点、角的顶点、圆的圆心等,然后再根据旋转的特征,作出这些关键点的对应点,最后再按原图案作出旋转后的图案.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.选择不同的旋转中心、不同的旋转角,设计出美丽的图案;2.作出几个复合图形组成的图案旋转后的图案,•要先求出图中的关键点──线的端点、角的顶点、圆的圆心等.六、布置作业1.教材P67 综合运用7、8、9.1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.23.2 中心对称(1)第一课时教学目标了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题.复习运用旋转知识作图,•旋转角度变化,•设计出不同的美丽图案来引入旋转180°的特殊旋转──中心对称的概念,并运用它解决一些实际问题.重难点、关键1.重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题.2.难点与关键:从一般旋转中导入中心对称.教学过程一、复习引入请同学们独立完成下题.如图,△ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,•并写出简要作法.老师点评:分析,本题已知旋转后点A的对应点是点D,且旋转中心也已知,所以关键是找出旋转角和旋转方向.显然,逆时针或顺时针旋转都符合要求,•一般我们选择小于180°的旋转角为宜,故本题选择的旋转方向为顺时针方向;•已知一对对应点和旋转中心,很容易确定旋转角.如图,连结OA、OD,则∠AOD即为旋转角.接下来根据“任意一对对应点与旋转中心的连线所成的角都是旋转角”和“对应点到旋转中心的距离相等”这两个依据来作图即可.作法:(1)连结OA、OB、OC、OD;(2)分别以OB、OB为边作∠BOM=∠CON=∠AOD;(3)分别截取OE=OB,OF=OC;(4)依次连结DE、EF、FD;即:△DEF就是所求作的三角形,如图所示.二、探索新知问题:作出如图的两个图形绕点O旋转180°的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对称点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.例1.如图,四边形ABCD绕D点旋转180°,请作出旋转后的图案,写出作法并回答.(1)这两个图形是中心对称图形吗?如果是对称中心是哪一点?如果不是,请说明理由.(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点.例2.如图,已知AD是△ABC的中线,画出以点D为对称中心,与△ABD•成中心对称的三角形.分析:因为D是对称中心且AD是△ABC的中线,所以C、B为一对的对应点,因此,只要再画出A关于D的对应点即可.解:(1)延长AD,且使AD=DA′,因为C点关于D的中心对称点是B(C′),B•点关于中心D的对称点为C(B′)(2)连结A′B′、A′C′.则△A′B′C′为所求作的三角形,如图所示.C(B')B(C')AA'D三、巩固练习教材P74 练习2.23.2 中心对称(2)第二课时教学目标理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质.重难点、关键1.重点:中心对称的两条基本性质及其运用.2.难点与关键:让学生合作讨论,得出中心对称的两条基本性质.教学过程一、复习引入(老师口问,学生口答)1.什么叫中心对称?什么叫对称中心?2.什么叫关于中心的对称点?3.请同学随便画一三角形,以三角形一顶点为对称中心,•画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论.(1) (2)从图1中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′、BB′、CC′,点O在这些线段上且O平分这些线段.下面,我们就以图2为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′∴△AOB≌△A′OB′∴AB=A′B′同理可证:AC=A′C′,BC=B′C′∴△ABC≌△A′B′C′(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O•旋转180•°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例1.如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.例2.(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B•′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).二、巩固练习教材P70 练习.四、归纳小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,•而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.五、布置作业1.教材P74 复习巩固1 综合运用6、7.1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°23.2 中心对称(3)第三课时教学内容B ACDOBACE DOF1.中心对称图形的概念.2.对称中心的概念及其它们的运用.教学目标了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其它的运用.重难点、关键1.重点:中心对称图形的有关概念及其它们的运用.2.难点与关键:区别关于中心对称的两个图形和中心对称图形.教具、学具准备小黑板、三角形教学过程一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.A O(2)作出三角形AOB关于O点的对称图形,如图所示.B AOBACDO二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=•OB,所以,就是线段AB绕它的中点旋转180°后与它重合.上面的(2)题,连结AD、BC,则刚才的两个关于中心对称的两个图形,就成平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1:从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答.(学生活动)例2:请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳.例3.求证:如图任何具有对称中心的四边形是平行四边形.BACDO分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC、•BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,•四边形ABCD是平行四边形.三、巩固练习教材P72 练习.四、应用拓展例4.如图,矩形ABCD中,AB=3,BC=4,若将矩形折叠,使C点和A点重合,•求折痕EF的长.分析:将矩形折叠,使C点和A点重合,折痕为EF,就是A、C两点关于O点对称,这方面的知识在解决一些翻折问题中起关键作用,对称点连线被对称轴垂直平分,进而转化为中垂线性质和勾股定理的应用,求线段长度或面积.五、归纳小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.六、布置作业1.教材P74 综合运用5 P75 拓广探索8、923.2 中心对称(4)第四课时教学目标 理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 教学过程 一、复习引入(学生活动)请同学们完成下面三题.1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.lA2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.BAC老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B′即可.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′. 三、巩固练习 教材P73 练习.23.3 课题学习 图案设计教学内容课题学习──图案设计教学目标利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重难点、关键1.重点:设计图案.2.难点与关键:如何利用平移、轴对称、•旋转等图形变换中的一种或它们的组合得出图案.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B•点的对称点,•作出线段AB,并回答,AB与CD有什么位置关系.CD2.如图,已知线段CD,作出线段CD关于对称轴L的对称线段C′D′,•并说明CD与对称线段C′D′之间有什么关系?l3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,•并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥L,垂足为E并延长,使ED′=ED,同理作出C′点,连结C′D•′,•则CD′就是所求的.CD的延长线与C′D′的延长线相交于一点,这一点在L上并且CD=•C′D′.3.以D点为旋转中心,旋转后CD⊥C′D′,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或组合完成下面的图案设计.例1.(学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a)(2)把纸片任意撕成两部分(如图b,如图c)(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)(5)把如图(d)平移到如图(c)的右边,得到如图(e)(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、巩固练习教材P78 活动1.四、应用拓展例2.(学生活动)请利用线段、三角形、矩形、菱形、圆作为基本图形,•绘制一幅反映你身边面貌的图案,并在班级里交流展示.老师点评:老师点到为止,让学生自由联想,老师也可在黑板上设计一、二图案.五、归纳小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.六、布置作业1.教材P78 活动2 P80 综合运用4、5、6、7.2.选用作业设计.九年级(上)第23章《旋转》同步学习检测(§23.1)(时间45分钟满分100分)班级学号姓名得分一、填空题(每题3分,共30分)1.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为 ,这个定点称为 ,转动的角度称为 .2.如图,绕点O 旋转的两个图形的对应点M 与N 到旋转中心O 的距离 (填相等或不相等).3.如图,以左边图案的中心为旋转中心,将图案按 方向旋转 即可得到右边图案.4.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.5.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次. 6.如图所示,图①沿逆时针方向旋转90°可得到图_________.7.如上图所示,图①按顺时针方向至少旋转_______度可得图③.8.如图,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,若12AF AB,则可通过 (填“平移”、“旋转”、“轴对称”)变换,使三角形ABE 变到三角形ADF 的位置;且线段BE 、DF 的关系是 .9.你学过的英文大写字母中, 和 两个字母可以通过旋转互相重合, 字母可以通过旋转与自身重合.10.如图所示,在△ABC 中,∠C =90°,AB =5cm ,BC =3cm ,•把这个三角形在平面内绕点C 逆时针旋转60°至△A ′B ′C ′,那么AA ′的长度是______cm .(•不取近似值) 二、选择题(每题3分,共24分) 11.下列物体的运动不是旋转的是( )A .坐在摩天轮里的小朋友B .正在走动的时针C .骑自行车的人D .正在转动的风车叶片 12.下列运动属于旋转的是( )A .滾动过程中的篮球的滚动B .钟表的钟摆的摆动C .气球升空的运动D .一个图形沿某直线对折过程13.在10分钟的时间内,时钟的时针旋转过的角度是( ) A .5° B .10° C .15° D .30°14.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是( ) A .1 B .2 C .3 D .4 15.在图形的旋转中,下列说法错误的是( )A .图形上的每一点到旋转中心的距离都相等 C .图形上可能存在不动的点B .图形上的每一点转动的角度都相同 D .旋转前和旋转后的图形全等16.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是( )A .三角形B .等边三角形C .正方形D .圆17.如图,过圆心O 和圆上一点A 连一条曲线,将曲线OA 绕O 点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,则( )A .这四部分不一定相等B .这四部分相等C .前一部分小于后一部分D .不能确定18.下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )三、解答题(共46分)19.(7分)如图,作出ΔABC 绕点O 旋转120°的图形.(第1题) (第2题)(第6题)(第10题)(第8题)(第17题)。
第二十三章 旋转复习教案一.概念:1.旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.例:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 、C 分别移动到什么位置?图1 图22 .中心对称图形:图形绕着中心旋转180°后与自身重合称中心对称图形(如:平行四边形、圆等)。
例: ①在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有__________ ②在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )二.性质 1.旋转的性质:①旋转不改变图形的形状和大小(即旋转前后的两个图形全等).②任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角).③经过旋转,对应点到旋转中心的距离相等2.旋转三要点:旋转①中心,②方向,③角度.例:若两个图形关于某一点成中心对称,那么下列说法:①对称点的连线必过对称中心;②这两个图形一定全等;③对应线段一定平行且相等;④将一个图形绕对称中心旋转180°必定与另一个图形重合。
其中正确的是()。
(A) ①②(B) ①③(C) ①②③ (D) ①②③④2.如图,四边形ABCD是边长为1的正方形,且DE=14,△ABF是△ADE的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?三.基本练习1.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()2.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线 3.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等4.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°5.如图,△ABC是等边三角形。
新人教版九年级数学上册《旋转》全章复习与巩固导学案
引例:1、如图,C 为BD 上一点,分别以BC 和CD 为边向同侧作等边
ABC ECD ∆∆、,AD 和BE 相交于点M .
①探究线段BE 和AD 的数量关系和位置关系.在图中你还发现了什么结论?
②当ECD ∆绕点C 在平面内顺时针转动到如图所示的位置时,线段BE 和AD 有何关系?
在转动的过程中,特别是在一些特殊的位置,你还会发现什么结论?有哪些结论是不随图形位置的变化而改变的呢?
③如图,当转动到A 、D 、E 在一条直线上时,若BE=15cm ,AE=6cm ,求CD 的长度及∠AEB 的度数。
思考:在当ECD ∆绕点C 在平面内顺时针转动时,你能求出线段BE 的取值范围吗?
当D 在等边△ABC 内部运动时,DA+DB+DC 有无最值?
M D E
D
C
E M C E M A E A
M A E
2、如图,D 是等边△ABC 内一点,将△ADC 绕C 点逆时针旋转,使得A 、D 两点的对应点分别为B 、E ,则旋转角为______,图中除△ABC 外,还有等边三角形是_____.
3、已知E 为正△ABC 内任意一点.求证:以AE 、BE 、CE 为边可以构成一个三角形.若∠BEC=113°,∠AEC=123°, 求构成的三角形各角的度数.
例1、已知D 是等边△ABC 外一点,∠BDC=120º.求证:AD=BD+DC
例2:如图,在四边形ABCD 中,∠ABC=30°,∠ADC=60°,AD=DC . 求证:BD 2=AB 2+BC 2
.
D A C B
E C E
例3、正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上
(1)如图连结DF 、BF ,试问:当正方形AEFG 绕点A 旋转时,DF 、BF 的长度是否始终相等?若相等请证明;若不相等请举出反例。
(2)若将正方形AEFG 绕点A 顺时针方向旋转,连结DG ,在旋转过程中,能否找到一条线段的长度与线段DG 的长度相等,并画图加以说明。
例4、如图,一个等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条直角边分别重合在一起。
现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 中点O (点O 也是BD 中点)按顺时针方向旋转。
(1)如图1,当EF 与AB 相交于点M 、GF 与BD 相交于点N 时,猜想BM 、FN 满足的数量关系,并证明你的猜想。
A B C
D A B C D G
F A B C
(2)若三角尺
GEF 旋转到线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?请画出图形,若成立,给予证明;若不成立,举出反例。
例5、已知:点P 是正方形ABCD 内的一点,连结PA 、PB 、PC ,
(1) 若PA=2,PB=4,∠APB=135°,求PC 的长.
(2) 若2222PB PC PA =+,请说明点P 必在对角线AC 上.
练习1、边长为4的正方形ABCD 绕D 点旋转30°后能与四边形'
'''D C B A 重合。
(1)能确定旋转中心吗? (2)能判断四边形''''D C B A 的形状吗?(3)连结C A ',能判断C DA '
的
O N M G E D C A B F O
N
M G E D C A B F
O
G E D C B
形状吗?
练习2、如图:ΔABC 是等腰直角三角形,其中CA=CB ,四边形CDEF 是正方形,连接AF 、BD 。
(1)观察图形,猜想AF 、BD 之间有怎样的关系,并证明你的结论;
(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在ΔABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中的结论是否仍然成立?若成立,直接写出结论;若不成立说明理由.
A'C'B'C
D
A F E A C
B D。