给水水力计算与管径确定
- 格式:ppt
- 大小:546.00 KB
- 文档页数:58
一般工程上计算时,水管路,压力常见为,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=管内径的平方X流速 (立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy 公式Chezy这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2/s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
沿程水头损失水力计算公式和摩阻系数表1达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。
给排水系统中的水力计算与管径选择水力计算是设计给排水系统中不可或缺的一项工作。
通过合理的水力计算,可以确定给排水管道的管径大小,以确保系统正常运行并满足设计要求。
本文将介绍给排水系统中的水力计算方法和管径选择准则。
一、给排水系统的水力计算方法在给排水系统中,水力计算通常包括两个关键参数:流量和水力损失。
流量是指液体在管道中的体积流动率,而水力损失则是液体在流动过程中由于阻力而损失的能量。
下面是一些常用的水力计算方法:1. Manning公式Manning公式是用于计算开放渠道中流速和水深之间的关系的经验公式。
在给排水系统中,这个公式可以用于计算自由涌流的流速,从而确定水流在管道中的流量。
2. Hazen-Williams公式Hazen-Williams公式是一种常用的计算给排水系统中水力损失的公式。
它通过管道材料的粗糙度系数、管道长度和流量来估算水力损失。
这个公式适用于中小口径管道和常规流量条件下的水力计算。
3. Darcy-Weisbach公式Darcy-Weisbach公式是一种基于雷诺数的计算方法,更适用于大口径管道和复杂流量条件下的水力计算。
该公式考虑了液体的粘度和摩擦阻力,可以更准确地计算水力损失。
二、管径选择准则正确的管径选择对于给排水系统的正常运行至关重要。
通常情况下,管径的选择应满足以下准则:1. 最小速度准则为了避免给排水系统中的沉积物沉淀,需要保证流速不低于一定的限制值。
通常情况下,给水系统的最小速度为0.6 m/s,排水系统的最小速度为0.9 m/s。
2. 最大速度准则过高的流速会导致水流对管道产生冲击和噪声,并增加管道的磨损和压力损失。
因此,给排水系统的设计速度应控制在一定的范围内,一般为1.5-3 m/s。
3. 总阻力准则给排水系统中的管道总阻力应小于一定的限制值,以确保系统能够正常运行。
总阻力包括管道阻力和局部阻力。
管道阻力可以通过水力计算得出,而局部阻力则包括弯头、三通、阀门等附件带来的额外阻力。
给水管管径的计算方法流体在一定时间内通过某一横断面的容积或重量称为流量。
用容积表示流量单位是L/s或(m3/h);用重量表示流量单位是kg/s 或t/h。
流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为m/s。
流量与管道断面及流速成正比,三者之间关系:Q = (πD2)/4·v·3600 (m3/ h )式中Q —流量(m3/h或t/h );D —管道内径(m);V —流体平均速度(m/s)。
根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方可代用。
例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。
暖通南社给水管道经济流速:影响给水管道经济流速的因素很多,精确计算非常复杂。
对于单独的压力输水管道,经济管径公式:D=(fQ^3)^[1/(a+m)]式中:f—经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q—管道输水流量;a—管道造价公式中的指数;m—管道水头损失计算公式中的指数。
为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为:D=Q^0.42例:管道流量22 L/S,求经济管径为多少?解:Q=22 L/S=0.022m^3/s经济管径D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。
水头损失:没有压力与流速的计算公式,管道的水力计算包括长管水力计算和短管水力计算。
区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。
(水头损失可以理解为固体相对运动的摩擦力)以常用的长管自由出流为例,则计算公式为:H=(v^2*L)/(C^2*R),其中H为水头,可以由压力换算,L是管的长度,v是管道出流的流速,R是水力半径R=管道断面面积/内壁周长=r/2,C 是谢才系数C=R^(1/6)/n。
第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
给排水设计怎么计算管径在给排水系统设计中,计算管径是一个重要的步骤。
合理的管径选择可以保证系统的正常运行,减少材料和成本的浪费。
下面将介绍一种常用的计算管径的方法。
首先,我们需要了解设计的基本要求和参数。
这些参数包括流量、管道材料和斜率。
流量是指单位时间内通过管道的液体或废液的体积。
管道材料可以根据需要选择PVC、铸铁等。
斜率是指管道的倾斜程度,它对于水流畅通非常重要。
然后,我们可以按照下面的步骤进行计算:1.确定管道的流量:根据使用情况和需要,我们可以计算出单位时间内通过管道的流量。
一般通过研究先前的使用情况、参考国家规范或者进行实验来确定。
2.选择管道材料:根据具体情况,选择适合的管道材料。
不同的材料有不同的流速和管径范围。
3.计算管道的最大流速:根据管道的材料以及水流的特性,确定管道的最大流速。
这个流速应该在管道的设计范围内,不会对管道和系统产生不利影响。
4.计算管道的最小倾斜率:根据管道中流体的性质和流速,选择一个适当的最小倾斜率。
这个倾斜率可以确保管道内的液体流动顺畅,并防止积聚气体或固体杂质。
5.根据最大流速和最小倾斜率计算管道的直径:通过使用公式或者计算软件,根据流量、流速和倾斜率确定管道的直径。
这个计算可以根据流量和流速来调整,以确保管道系统的效率。
6.算法验证和优化:对计算结果进行验证和优化。
这可以通过推导公式或者使用计算软件进行验证。
通过多次优化计算,选择最合适的管径。
以上是计算管径的一般方法。
需要注意的是,在实际设计中,还需要考虑许多因素,例如支撑结构、管道连接和系统可用空间等。
此外,还应遵守相关的国家和地区管道设计标准,以保证整个系统的安全运行。
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。
住宅建筑给水管水力计算算例及讨论住宅建筑的设计总用水量为10m³/h,给水管道的起始水压为0.4MPa,终点水压为0.3MPa。
首先我们需要确定给水管道的管径,然后计算管道的水力参数,最后根据水力参数来选择合适的给水管道材料和规格。
1.确定给水管道的管径根据设计总用水量,我们可使用以下公式计算给水管道的流量Q:Q=V/t其中,V为设计总用水量,单位为m³/h;t为给水管道使用的小时数。
假设给水管道使用24小时,代入之前的数值,可得:Q=10/24=0.4167m³/h下一步是根据给水管道的流量来确定其管径。
我们将使用流量速度法进行计算。
首先,我们假设给水管道的流速为2m/s。
根据流量速度法公式:Q=A×v其中,Q为流量,单位为m³/h;A为管道横截面积,单位为m²;v为流速,单位为m/s。
代入之前的计算结果,可得:0.4167=A×2解得给水管道的横截面积为0.4167/2=0.2084m²由于给水管道一般选用圆形管道,其横截面积A可通过以下公式进行计算:A=π×(d/2)²其中,π取3.14,d为管道的直径,单位为m。
代入横截面积的计算结果,可得:0.2084=3.14×(d/2)²解得给水管道的直径d为0.515 m,即51.5 cm。
2.计算管道的水力参数根据给水管道的直径,我们可计算出其横截面积和周长:A=π×(d/2)²=3.14×(0.515/2)²=0.2084m²C=π×d=3.14×0.515=1.62m接下来,我们将计算流量速度和雷诺数来确定水力参数。
流量速度v的计算公式为:v=Q/A代入之前的计算结果,可得:v=0.4167/0.2084≈2m/s雷诺数Re的计算公式为:Re=v×d/ν其中,ν为水的运动黏度,单位为m²/s,一般取10⁻⁶m²/s。
流量与管径、压力、流速的一般关系一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管内径的平方X流速(立方米/小时)。
其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
水头损失计算Chezy 公式Chezy这里:Q ——断面水流量(m3/s)C ——Chezy糙率系数(m1/2/s)A ——断面面积(m2)R ——水力半径(m)S ——水力坡度(m/m)根据需要也可以变换为其它表示方法:Darcy-Weisbach公式由于这里:h f——沿程水头损失(mm3/s)f ——Darcy-Weisbach水头损失系数(无量纲)l ——管道长度(m)d ——管道内径(mm)v ——管道流速(m/s)g ——重力加速度(m/s2)水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。
输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。
1.1 管道常用沿程水头损失计算公式及适用条件管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。
输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。
紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。
管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。
水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。
沿程水头损失水力计算公式和摩阻系数表1达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。
第2章建筑内部给水系统2.4给水管网的水力计算在求得各管段的设计秒流量后,根据流量公式,即可求定管径:给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。
υπ42dq g =πυgq d 4=式中 q g ——计算管段的设计秒流量,m 3/s ;d j ——计算管段的管内径,m ;υ——管道中的水流速,m/s 。
(2-12)当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。
而流速过小,又将造成管材的浪费。
考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。
但最大不超过2m/s。
工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。
生活给水管道的水流速度 表2-122.4.2 给水管网和水表水头损失的计算2.4.2 给水管网和水表水头损失的计算给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。
1. 给水管道的沿程水头损失(2-13)——沿程水头损失,kPa;式中 hyL——管道计算长度,m;i——管道单位长度水头损失,kPa/m,按下式计算:2.4 给水管网的水力计算2.4.2 给水管网和水表水头损失的计算式中i——管道单位长度水头损失, kPa/m ;dj——管道计算内径,m;q g——给水设计流量,m3/s;Ch——海澄-威廉系数:塑料管、内衬(涂)塑管C h = 140;铜管、不锈钢管C h = 130;衬水泥、树脂的铸铁管C h = 130;普通钢管、铸铁管Ch = 100。
(2-14)设计计算时,也可直接使用由上列公式编制的水力计算表,由管段的设计秒流量,控制流速在正常范围内,查出管径和单位长度的水头损失。
“给水钢管水力计算表”、“给水铸铁管水力计算表”以及“给水塑料管水力计算表”分别见附表2-1、附表2-2和附表2-3。
关于如何确定管径的问题
管道输水工程设计最关键最主要的问题就是管径大小的选择。
在压力管道输、供水工程中无论采用什么材质的管材,其管径大小直接影响到工程造价。
那么,如何确定管径呢?
管网设计的终极目的其实就是选择经济合理的管径。
影响管径大小的有四个要素:管道设计流量、流速、水损及节点之间的高差。
在流量、节点之间的高差为定值的前提下,如何选择流速就是关键了。
根据目前较成熟的且得到广范应用的理论就是根据经济流速试算。
什么是经济流速呢?满足工程设计输水流量要求、且符合不淤、不冲的流速。
如果是大流量、长距离、高落差的项目,要选得一个经济合理的管径,往往要经过数学模型分析计算。
我们接触的这些小项目,经济流速在规范提供的范围选择一下就行了。
计算步骤如下:
根据我上传的“管道水力计算表”把管长、流量、节点高程填入相应的单元格,拟定1个流速值填好,看最后一栏末端自由水压是多少,如果是单纯的输水管(水源到蓄水池),只要满足自由水压不为负数就行了(如果自由水压太大,说明流速值选得太小,不经济)。
如果是配水管网请按树枝状管网计算方法计算,确保各节点水压满足要求。
不同压力等级管材壁厚不一样,为方便,现把1.25Mpa 的PE管实际内径统计如下:(供大家选择公径外径使用)
DN20-15.4;DN25-19.9;DN32-26;DN40-32.6;DN50-40. 8;
DN63-51.4;DN75-61.4;DN90-73.6;DN110-90;DN125-1 02.2;。
住宅套内给水排水管道水力计算住宅套内给水排水管道水力计算是为了确保住宅内的供水和排水系统能够正常运行和满足日常生活的需求。
在进行水力计算之前,需要确定以下几个参数:供水流量、管道直径、管道材质、管道长度以及管道的高差。
下面将详细介绍住宅套内给水排水管道水力计算的步骤。
第一步:确定供水流量供水流量可以根据住宅内每个用水设备的流量和同时使用的设备数量来计算。
常用的用水设备包括洗手盆、厨房水槽、淋浴等。
根据每个设备的流量和同时使用的设备数量,可以得到总的供水流量。
第二步:确定管道直径管道直径的选择需要考虑供水流量、管道材质和最小流速等因素。
管道直径通常使用公称直径(DN)来表示,常用的管道材质有PVC管材、PE管材和铜管材等。
根据供水流量和管道材质,可以选择合适的管道直径。
第三步:确定管道长度管道长度是指水源与用水设备之间的管道长度,包括直线长度和弯头长度。
在确定管道长度时,需要考虑水源到最远用水设备的距离以及管道的走向。
通常情况下,管道长度越长,管道的阻力越大,供水流量也会相应减小。
第四步:确定管道高差管道高差是指管道起点和终点之间的高度差。
管道高差的大小对供水和排水的影响很大。
在供水系统中,管道高差越大,供水压力越高;在排水系统中,管道高差越大,排水速度越快。
第五步:进行水力计算在进行水力计算时,需要考虑供水和排水的流动速度、流量、管道阻力和管道压力等因素。
常用的水力计算方法有哈瓦德公式和多项式公式。
通过水力计算,可以确定管道的流量、流速和水压等参数,以确保管道系统满足设计要求。
第六步:校核管道尺寸在完成水力计算后,需要对管道尺寸进行校核,检查所选的管道直径是否满足管道流量和压力的要求。
如果校核结果不满足设计要求,需要重新选择合适的管道直径。
综上所述,住宅套内给水排水管道的水力计算是确保供水和排水系统正常运行的重要环节。
通过确定供水流量、管道直径、管道长度和管道高差等参数,并进行水力计算和校核,可以确保管道系统能够满足住宅日常生活的需求。
为了向更多的用户供水,在给水工程上往往将许多管路组成管网。
管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。
管网内各管段的管径是根据流量Q和速度v来决定的,由于Q Av (d2/4)v所以管径d .. 4Q/ v 1.13 Q/v。
但是,仅依靠这个公式还不能完全解决问题,因为在流量Q一定的条件下,管径还随着流速v的变化而变化。
如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。
反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。
图1管网的形状(a)枝状管网;(b)环状管网因此,在确定管径时,应该作综合评价。
在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。
应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。
但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为:--- 当直径d= 100~400mm 经济流速v= -1.0ms ;--- 当直径d>400mm经济流速v=~1.4m/s。
一、枝状管网枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。
它的特点是管网内任一点只能由一个方向供水。
若在管网内某一点断流,则该点之后的各管段供水就有问题。
因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。
技状管网的水力计算•可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。
1 •新建给水系统的设计对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。
怎样确立雨水管管径【篇一:给排水管径的计算】给水管径的估量:步骤: 1,绘制计算草图。
2:确立节点,并进行编号(阿拉伯数字)。
节点,有流量变化的地方。
以最不利点为开端点。
3:查表确立管段当量总数(当量,计算单位。
以污水池上的一般水龙头的出水量为一个当量)。
并列表。
4:查表确立管径,并依据现场实质状况进行修正。
一、如图,为jl-1 计算草图,并进行编号。
计算以下表。
二、如图,为jl-3 计算草图,并进行编号。
计算以下表。
卫生用具的给水当量表 1给排水当量与管径比较表表 2【篇二:雨水管道设计重点】雨水管道设计重点:221 降雨强度:采纳以上计量单位时,因为1mm/min =l(l/m )/min =10000 (l/min )/hm ,可得 i 和 q 之间的换算关系为:式中q —降雨强度,( l/s ) /hm ;i —降雨强度, mm/min 。
2(9-2 )2暴雨强度的计算:式中—设计暴雨强度,( l/s ) /hm ;—设计重现期, a;2(9-9 )—降雨历时, min 。
—地方参数(待定参数),依据统计方法进行计算确立雨水设计流量计算公式雨水管渠的设计流量按下式计算:(9-12 )式中—雨水设计流量, l/s ;—径流系数,径流量和降雨量的比值,其值小于1;—汇水面积, hm ;假设:( 1)暴雨强度在汇水面积上的散布是均匀的;(2)单位时间径流面积的增加为常数;(3)汇水面积内陆面坡度均匀;径流系数确实定设计规范》 gb50101-2005中相关径流系数的取值见表9-3 。
径流系数值表9-322实质设计计算中,在同一块汇水面积上,兼有多种地面覆盖的状况,需要计算整个汇水面积上的均匀径流系数值。
(9-14 )式中-汇水面积上的均匀径流系数;-汇水面积上各种地面的面积,hm ;-相应于各种地面的径流系数;-所有汇水面积,hm。
22在设计中可采纳地区综合径流系数。
国内部分城市采纳的综合径流系数值见表 9-5 。
使用天正软件进行水力计算时,需要根据工程的实际需求和管材的规格,先设定一个初始的管径。
然后,通过水力计算,可以得出在该管径下的水头损失、流速、流量等参数。
如果这些参数不满足工程要求,就需要增大或减小管径,重新进行水力计算。
在这个过程中,“最大管径”通常是指满足工程需求的管径上限。
这个值需要根据具体工程的要求和实际情况来确定,例如管道的安装空间、泵的扬程、用户的用水需求等。
如果你正在使用天正进行水力计算,并需要设定最大管径,你可能需要查阅相关的工程设计规范或咨询专业的工程师,以确保你的设计既经济又合理。