p13第十三章 数字高程模型(简版)
- 格式:ppt
- 大小:2.87 MB
- 文档页数:87
数字高程模型的创建与分析数字高程模型(Digital Elevation Model,简称DEM)是用于描述地表地形形态的重要工具。
创建和分析DEM可以帮助我们更好地理解地表地形,对于地理科学、城市规划、水资源管理等领域具有重要意义。
本文将介绍数字高程模型的创建和分析方法,并探讨其在不同领域的应用。
一、数字高程模型的创建数字高程模型的创建主要包括数据采集、数据处理和数据插值三个步骤。
首先,需要收集地形数据,常用的数据来源有航空航天遥感数据、地面测量数据和卫星遥感数据等。
这些数据可以包括高程点、地形曲线、高程线等。
其次,在数据处理阶段,需要对收集到的数据进行预处理,包括去除噪声、填补数据空缺等。
最后,在数据插值阶段,需要使用插值算法将离散的数据点插值为连续的高程表面。
常用的插值方法有反距离加权法、样条插值法等。
二、数字高程模型的分析数字高程模型的分析主要包括可视化分析、剖面分析和地形指数分析三个方面。
首先,可视化分析可以将数字高程模型以立体、等高线、坡度等方式可视化展示,帮助我们更好地理解地表地形的分布特征。
其次,剖面分析是通过选择两点,提取其之间的剖面线数据,并进行分析。
这可以帮助我们研究地表地形的变化趋势、地形起伏程度等信息。
最后,地形指数分析通过计算一系列地形指数,如坡度指数、坡向指数等,来探究地形特征的空间分布规律。
三、数字高程模型的应用数字高程模型在各个领域都有广泛的应用。
在地理科学领域,数字高程模型可以帮助我们研究地表地形的形成和演化,探索地球科学的基本规律。
在城市规划领域,数字高程模型可以模拟城市的地形特征,为城市规划和土地利用提供科学依据。
在水资源管理领域,数字高程模型可以用于水文模拟和水资源评估,帮助我们合理规划水资源利用。
此外,数字高程模型还可以应用于环境保护、农业生产等领域,为相关研究提供支持。
总结起来,数字高程模型的创建和分析是一项重要的地理科学研究工具。
通过数字高程模型的创建,可以真实、准确地描述地表地形的形态,为后续的分析提供基础数据。
数字高程模型1.DTM:以数字形式储存的地球表面上所有信息的总和,是描述地面特征和空间分布的数值的集合,是地形表面型态等多种信息的一种数字表示2.DEM:对二维地理空间上具有连续变化特征地理现象通过有限的地形高程数据实现对地形曲面的数字化模拟--模型化表达和过程模拟。
特点:(1)精度的恒定性(2)表达的多样性(3)更新的是实时性(4)尺度的综合性3.DEM和DTM的关系:DEM是DTM的子集,是DTM最基本的部分;DTM中地形属性为高程是即为DEM4.一般要素:随机点、随机线特征要素(含特征信息的要素):特征点(山顶,鞍部,谷底)、特征线5. 地形图:现势性差、但物美价廉摄影测量和遥感影像数据:现势性好,大范围数据精度高、相对成本低地面测量:精度高、成本高工作量大、周期长既有DEM数据6.决定DEM数据精度的条件:原始地形采样点的分布和密度。
7.DEM的数据结构:正方形网结构(Gird),不规则三角网结构(TIN),混合结构(Gird和TIN 混合结构)8.DEM的三种表示模型:规则格网模型(GRID),等高线模型(Contour),不规则三角网模型(TIN)9.表面建模:根据采用的数据模型,使用一个或多个数学函数对地形表面进行表达和处理。
即DEM表面生成或重建。
表面建模的方法:基于点的建模,基于三角形的建模,基于格网的建模,混合方法(以上任意两种混合)10.数字表面建模的方法1.基于点的表面建模2.基于三角形的表面建模3.基于格网的表面建模4.混合表面建模11.TIN模型的优点:(1)能以不同层次的分辨率来表述地形表面。
(2)在某一特定分辨率下能用较少的空间和时间更精确地表示更复杂的表面。
(3)能更好地顾及这些特征如断裂线、构造线等,更精确合理地表达地形表面。
(4)精度高、速度快、效率高和容易处理断裂线和地物等12.在所有可能的三角网中, 狄洛尼(Delaunay)三角网最适合用于拟合地形方面,常常被用于TIN的生成。
数字高程模型的建立与分析数字高程模型(Digital Elevation Model,DEM)是一种用数字方式储存地形表面海拔信息的技术,对于地理信息系统(Geographic Information System,GIS)的应用具有重要意义。
本文将探讨数字高程模型的建立与分析,并介绍其在地理科学、土地利用规划、环境保护等领域的应用。
一、数字高程模型的建立将地球表面的地形信息转化为数字数据,需要借助遥感、测量和数学等技术手段。
其中之一是激光雷达测量技术。
这种技术通过激光器向地面发射脉冲激光,测量激光从发射到反射返回所需时间,从而得到地面特定点的高程数据。
通过这种方式,可以获取大范围、高精度的数字高程模型数据。
此外,卫星遥感数据也可用于数字高程模型的建立。
利用卫星遥感影像,通过对图像中地物的位置和形态进行解译,可以得到地表的海拔高度信息。
结合先进的影像处理算法,可以精确地提取地表特征,并构建数字高程模型。
二、数字高程模型的数据处理与分析获得数字高程模型数据后,需要进行数据处理和分析,以便提取有效的地形信息。
其中最基本的处理包括数据清洗、插值和分类。
数据清洗是指对数字高程模型数据中的噪声和异常值进行去除。
这些噪声和异常值可能是由于测量误差、遮挡物、地物干扰等原因引起的。
通过对数据进行滤波、平滑处理等,可以得到更可靠的地形信息。
插值是指通过有限数量的高程点,推断出整个地形表面的高程变化情况。
常见的插值方法包括反距离加权法、Kriging法等。
通过插值,可以得到地形表面的连续变化,方便后续的分析和应用。
分类是指按照高程值将地形进行分组,以便进行特定目的的研究和分析。
例如,在土地利用规划中,可以将地形根据适宜农业、适宜林业、适宜城市建设等进行分类,为土地合理利用提供依据。
在环境保护中,可以将地形根据降水量分组,以便开展水资源管理和防洪工作。
三、数字高程模型的应用数字高程模型在地理科学、土地利用规划、环境保护等领域具有广泛的应用价值。
一、数字高程的定义数字高程模型(Digital Elevation Model,简称DEM)是DTM中最基本的部分,它是对地球表面地形地貌的一种离散的数学表达。
DEM表示区域D上的三维向量有限序列,用函数的形式描述为:V i=(X i,Y i,Z i);i=1,2,…,n式中, X i, Y i是平面坐标, Z i是(X i, Y i)对应的高程。
二、数字高程的特点1)表达的多样性,容易以多种形式显示地形信息。
2)精度的恒定,常规地图对着时间的推移,图纸将会变形,而DEM采用数字媒介,能够保持精度不变。
3)更新的实时性,容易实现自动化,实时化。
4)具有多比例尺特性。
三、数字地面模型(DTM)、数字高程模型(DEM)和数字地形模型(DGM)的区别表 1 三者的区别与联系四、数字高程数据1.来源:DEM数据包括平面和高程两种信息,常用的数据来源有:影像,现有的地形图,地球本身,其他数据源。
2.数字高程数据类型1)分辨率①.10米DEM数据全国10米数字高程模型数据,为栅格图像数据,图像分辨率为10米,数学基础采用2000国家大地坐标系(CGCS2000)及Albers投影。
数据像素值记录了点位高程。
高程值计量单位为米。
②.12.5米DEM数据12.5米DEM数据是由ALOS的PALSAR传感器采集。
该传感器具有高分辨率、扫描式合成孔径雷达、极化三种观测模式。
该数据水平及垂直精度可达12米。
ALOS(AdvancedLand Observing Satellite)卫星于2006年1月24日由日本发射升空,载有3个传感器:全色测绘体例测绘仪(PRISM),主要用于数字高程测绘;先进可见光与近红外辐射计-2(A VNIR-2),用于精确陆地观测;相控阵型L波段合成孔径雷达(PALSAR),用于全天时全天候陆地观测。
③.不同分辨率下的晕渲图对比图 1 不同分辨率下的晕渲图2)遥感测量方法a)SRTM数据SRTM(Shuttle Radar Topography Mission),由美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量。
1.概念:(1)地形特征要素:主要是指对地形在地表的空间分布特征具有控制作用的点、线或面状要素。
(2)地形坡度:过该点的切平面与水平地面的夹角,表示了该局部地表坡面的倾斜程度,坡度大小直接影响着地表物质流动与能量转换的规模与强度,是制约生产力空间布局的重要因子。
(3)坡向:地表面上一点的切平面的法线矢量在水平面的投影与过该点的正北方向的夹角。
是决定地表面局部地面接收阳光和重新分配太阳辐射量的重要地形因子之一,直接造成局部地区气候特征的差异,同时,也直接影响到诸如土壤水分、地面无霜期以及作物生长适宜性程度等多项重要的农业生产指标。
(4)L OD模型:(5)元数据:(6)汇水流域:(7)可视化:可视化(Visualization)是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。
(8)纹理映射:是把二维的纹理图像映射到三维物体表面,其关键就是建立物体空间坐标与纹理空间坐标之间的对应关系。
(9)平面曲率:指在地形表面上的任何一点P,指用过该点的水平面沿水平方向切地形表面所得的曲线在该点的曲率值。
(10)剖面曲率:是对地面坡度的沿最大坡降方向地面高程变化率的度量。
(11)地表粗糙度:是反映地表的起伏变化和侵蚀程度的指标,一般定义为地表单元的曲面面积S曲面与其在水平面上的投影面积S水平之比。
(12)地表起伏度:是在指定区域内最大高程与最小高程的差。
(13)地表切割深度:是指地面某点的临域范围的平均高程与该临域范围内的最小高程的差值。
2.数字高程模型的研究内容:(1)地形数据采样(2)地形建模与内插:(3)数据组织与管理(4)地形分析与地学应用(5)DEM可视化(6)不确定性分析与表达。
3.数字高程模型:是定义在二维地理空间上的连续曲面函数,当此高程模型用计算机来表达。
特点:(1)精度的恒定性(2)表达的多样性(3)更新的实时性(4)尺度的综合性4.(1)格网DEM:优点:1)简单的数据存储结构2)与遥感影像数据的相合性3)良好的表面分析功能。
第一章1.2数字高程模型1)狭义概念:DEM是区域地表面海拔高程的数字化表达。
(2)广义概念:DEM是地理空间中地理对象表面海拔高度的数字化表达。
(3)数学意义:DEM是定义在二维空间上的连续函数H=f(x,y)地理空间是三维的,但DEM是叠加在二维地理空间上的一维特征(高程)的向量空间,其本质是地理空间定位和数字描述。
DEM是2.5维的。
2.分类:1.范围:局部DEM ( Local )地区DEM (Regional )全局DEM ( Global )2.连续性:不连续DEM ( Discontinuous )连续DEM (Continuous )光滑DEM ( Smooth )3.结构(1).点:散点DEM(2)线:等高线DEM断面DEM(3)面:格网DEM不规则DEM混合DEM3.特点:(1)精度恒定性(2)表达多样性(3)更新实时性(4)尺度综合性4.DEM与DTM区别DTM范围更广。
5.我国不同比例尺的DEM(四种不同比例尺DEM与分辨率)1:1,000,000(1000m)1:250,000(100m)1:50,000(25m)1:10,000(5m)第二章一、DEM数据模型1、镶嵌数据模型2、规则镶嵌数据模型3、不规则镶嵌数据模型4、特征嵌入式数据模型(1)简单矩阵结构含义按行(或列)逐一记录每个格网单元的高程值。
记录项高程,格网西南角坐标值,格网间距浮点型数据的处理:转为整型数据无数据区-9999数据文件包含数据头,数据体第三章DEM数据获取方法1、DEM数据来源及其特征(1)数据源:地形图覆盖面广,可获取性强,是丰富、廉价的建立DEM的主要数据源。
⏹特点:⏹现势性较差(经济发达地区往往不满足现势性要求)⏹存储介质易变形⏹精度:与比例尺、等高线密度、成图方式有关(2)数据源:摄影测量/遥感影像⏹大范围、速度快⏹航空影像是高精度大范围DEM生产最有价值的数据源⏹航天遥感影像⏹LandSat上的MSS、TM,Spot上的HRV适合于小比例尺DEM⏹IKONOS、Lidar、机载激光扫描仪适合于大比例DEM(3)数据源:地面测量⏹小范围的数据采集与数据更新⏹精度高,周期长,成本较高⏹适用于精度要求较高的工程项目(4)数据源:既有DEM数据⏹数据存储格式⏹数据尺度⏹数据现势性⏹数据精度与可信度2、DEM数据采样理论基础基于不同观点的采样.(1)地形曲面的几何特征特征点:地形表面的局部极值点。
数字高程模型(Digital Elevation Models, DEM)主要用于描述地面起伏状况,可以用于各种地形信息提取,如坡度、坡向等,并进行可视化分析等应用分析。
DEM在土木工程设计、军事指挥等众多领域被广泛使用。
一、基于DEM的信息提取(一)、坡度的计算地表单元的坡度就是其切平面的法线方向与Z轴的夹角。
若需求格网点上的坡度时,可取3×3的格网单元进行计算。
也可求出该格网点八个方向上的坡度,再取其平均值。
(详细的计算方法)(二)、坡向的计算坡向是地表单元的法向量在OXY平面上的投影与X轴之间的夹角。
(详细的计算方法)二、基于DEM的可视化(一)、剖面分析研究地形剖面,常常可以以线代面,研究区域的地貌形态、轮廓形状、地势变化、地质构造、斜坡特征、地表切割强度等等。
如果在地形剖面上叠加上其它地理变量,例如坡度、土壤、植被、土地利用现状等,可以提供土地利用规划、工程选线和选址等的决策依据。
坡度图的绘制应在格网DEM或三角网DEM上进行。
已知两点的坐标A(x1,y1),B(x2,y2),则可求出两点连线与格网或三角网的交点,以及各交点之间的距离。
然后按选定的垂直比例尺和水平比例尺,按距离和高程绘出剖面图。
在格网或三角网交点的高程通常可采用简单的线性内插算出,且剖面图不一定必须沿直线绘制,也可沿一条曲线绘制,但其绘制方法仍然是相同的。
(剖面分析例图)(二)、通视分析通视分析是指以某一点为观察点,研究某一区域通视情况的地形分析。
通视分析的核心是通视图的绘制。
绘制通视图的基本思路是:以以O为观察点,对格网DEM或三角网DEM上的每个点判断通视与否,通视赋值为1,不通视赋值为0。
由此可形成属性值为0和1的格网或三角网。
对此以0.5为值追踪等值线,即得到以O为观察点的通视图。
因此,判断格网或三角网上的某一点是否通视成为关键。
(通视分析例图)另一种利用DEM绘制通视图的方法是,以观察点O为轴,以一定的方位角间隔算出0°~360°的所有方位线上的通视情况。
第一章1.DTM .Digital Terrain Model 的简称,它是描述地球表面形态多种信息空间分布的有序数值阵列。
DEM .Digital Elevation Model 的简称,当DTM 中所表示的第三维属性为高程时,DTM 即为DEM ,它是DTM 的一个子集,是对地球表面地形地貌的一种离散的数字表达。
其间关系.DEM 是DTM 子集,是DTM 的一个部分,它是DTM 的基础数据,其它的地形数据可由DEM 直接或间接导出,因此又称DTM 是DEM 的派生数据。
2.数字高程模型特点.1)精度的恒定性;2)表达的多样性;3)更新的实时性;4)尺度的综合性。
3. DEM 的表示方法(,)(,)DEM ⎧⎧⎧⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎧⎧⎪⎪⎪⎪⎨⎪⎨⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎩⎩傅里叶级数全局多项式函数数学方式规则的分块函数局部不规则的分块函数规则密度一致密度可变点方式不规则三角形网邻近网的表示方法典型特征(山峰,洼坑,隘口,边界等)剖面线图象方式线方式等高线特征线(山脊线,山谷线海岸线等)其他方式(绘画,影像等)4.数字高程模型的研究内容.1)地形数据采样;2)地形建模与内插;3)数据组织与管理;4)地形分析与地学应用;5)DEM可视化;6)不确定分析和表达。
5.DEM的应用.课本P19。
第二章1.规则镶嵌数据模型.用规则的小面块集合来逼近不规则分布的地形曲面。
不规则镶嵌数据模型.用来进行镶嵌的小面块具有不规则的形状和边界。
2.规则格网DEM数据结构(五种)1)简单矩阵结构.按行或列逐一记录每一个格网单元的高程值。
规则格网DEM数据文件一般包括对DEM数据进行说明的数据头和DEM数据体部分。
数据头:包括定义西南角起点坐标、坐标类型、格网间距、行列数、最低高程以及高程放大系数等。
数据体:按行或列分布记录的高程数字阵列。
2)行程编码结构.只在各行(或列)数据的代码发生变化时依次记录该代码以及相同代码重复的个数或着逐个记录各行(列)代码发生变化的位置和相应代码。