转向系统设计计算报告
- 格式:doc
- 大小:301.00 KB
- 文档页数:12
1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。
对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。
装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。
这时,基本上是角输入。
而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。
1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。
这种反馈,通常称为路感。
驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。
反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。
2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。
不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。
实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。
2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。
目录1.系统概述........................................... 错误!未定义书签。
系统设计说明.................................... 错误!未定义书签。
系统结构及组成.................................. 错误!未定义书签。
系统设计原理及规范.............................. 错误!未定义书签。
2.输入条件........................................... 错误!未定义书签。
标杆车基本参数.................................. 错误!未定义书签。
LF7133确定的整车参数........................... 错误!未定义书签。
3.系统计算及验证..................................... 错误!未定义书签。
方向盘转动圈数.................................. 错误!未定义书签。
齿轮齿条式转向系的角传动比...................... 错误!未定义书签。
车轮实际最大转角................................ 错误!未定义书签。
静态原地转向阻力矩.............................. 错误!未定义书签。
静态原地转向时作用于转向盘的力.................. 错误!未定义书签。
最小转弯半径的校核.............................. 错误!未定义书签。
4.总结............................................... 错误!未定义书签。
参考文献.............................................. 错误!未定义书签。
动力转向系统设计方案编制:审批:转向系统设计说明书设计原则:通过对所开发车型与已开发同类车型(或标杆车)的比较及所开发车型的前桥负荷,初步确定转向器总成的结构和相关参数。
故在选取时应遵循以下原则;1、转向器结构选型原则:1)、根据整车布置尺寸,确定转向器结构尺寸。
2)、根据使用和成本状况,确定是否使用通气螺塞。
2、转向器参数选型原则:1)、根据转向盘布置形式,确定是左置转向器或右置转向器。
2)、根据前桥负荷,选定转向器输出扭矩及输入轴花键。
3)、根据车型的最小转弯半径确定转向摇臂输出摆角能否满足使用要求。
4)、根据产品信函(或项目描述书)所描述的整车的使用情况,确定转向传动比是否采用变传动比形式。
5)、根据产品信函(或项目描述书)所描述的整车的使用情况,确定传动间隙特性。
3、转向摇臂选型原则:1)、根据标杆车进行类比。
2)、根据车型的最小转弯半径确定转向摇臂在转向器上的中间位置。
3)、根据车型总布置,确定转向摇臂的偏距和长度。
4、转向传动轴及管柱的选型原则:1)、根据标杆车进行类比。
2)、根据点火开关和组合开关确定转向传动轴及管柱的形式。
3)、根据整车需要或成本考虑确定是否采用双万向节结构,转向盘可调结构或缓冲吸能结构。
5、转向盘选型原则:1)、根据标杆车进行类比。
2)、根据总布置确定转向盘直径。
3)、根据整车需要或成本考虑,是否采用防伤转向盘。
一、转向机部分一.设计目标1.满足日本转向器样件的安装尺寸。
2.在结构上我们参考样件和恒隆公司现有的成熟产品的结构,确定为分体式结构。
3.产品性能达到或超过同类产品标准。
二.方案说明2.1扭杆与齿轮轴采用花键联结方式,其优点:a. 此结构利用花键过盈联结,省去了打销过程,简化了工艺。
b. 增大了密封空间。
2.2 齿条的支承型式齿条的一端通过常规的齿条支承座来支承,齿条支承座垫的材料选取的是含油聚甲醛,齿条的另一端通过缸端限位套总成来支承,在缸端限位套总成内含有聚甲醛材料的衬套,其主要优点是磨擦系数小,耐磨性好。
矿用自卸车转向设计计算说明书设计:陈琼校核:审核:批准:目录一、转向系统相关参数 (2)二、最小转弯半径计算 (3)三、理论转角和实际转角关系 (4)四、转向阻力矩计算 (5)五、转向机的选择计算 (5)六、转向动力缸的选择计算 (8)七、转向油泵的匹配计算 (9)1、转向机理论流量计算2、动力缸理论流量计算3、油泵排量计算4、油泵的选择八、转向升缩轴升缩量计算 (13)九、动力缸行程计算 (14)十、转向系的运动校核 (17)设计原则本车转向系统的设计应使得整车具有良好的操纵稳定性,转向轻便性,并使得上述性能达到国外同类车型的先进水平,保证车辆行驶安全性。
一、转向系统相关参数表一整车参数前轮胎采用14.00-25,轮辋偏置距207.5mm,负荷下静半径为640mm,满载下前胎充气压力850kpa二、最小转弯半径:对于只用前桥转向的三轴汽车,由于中轮和后轮的轴线总是平行的,故不存在理想的转向中心。
计算转弯半径时,可以用一根与中、后轮轴线等距离的平行线作为似想的与原三轴汽车相当的双轴汽车的后轮轴线。
图一转弯半计算图最小转弯半径R=9975+(2471-2100)/2=10160.5mm二、理论转角和实际转角关系图2 内外轮实际转角关系图图3 内外轮理论转角关系图根据图2和图3得出表二数据表二外轮转角(°) 0 5 10 15 20 25 27.3 阿克曼理论内轮转角(°) 0 5.1 10.6 16.4 22.8 30.7 34.1由上图可见在外轮转角在0°—27.3°范围内,实际转角关系与阿克曼转角关系较接近,与阿克曼理论值差值在2°以内,转向桥梯形臂符合设计要求。
四、转向力计算1.转向阻力矩计算转向时驾驶员作用到转向盘上的手力与转向轮在地面上回转时产生的转向阻力矩有关。
影响转向阻力矩的主要因素有转向轴的负荷、轮胎与地面之间的滑动摩擦系数和轮胎气压。
毕业论文(设计)转向系统设计随着科技的不断发展,计算机系统已经成为人们生活中必不可少的一部分,其在各个领域的应用也日渐广泛,如企业管理、医疗卫生、教育和科研等。
而计算机系统中最为重要的组成部分就是系统设计,它是整个系统的核心,是保证系统正常运行的重要保障。
本篇论文将会从系统设计的角度对计算机系统进行详细讲解,阐述其基本概念、设计流程、设计原则以及实际应用等方面。
同时,本文还将以实际案例为例,对系统设计的流程和具体实现进行分析,帮助读者更好地理解系统设计的重要性以及应用意义。
一、系统设计的基本概念系统设计是指针对某一特定的需求或问题,通过对系统进行规划、设计、实现和测试等一系列操作的过程。
其具有系统性、协调性和综合性等特点,旨在构建一个高效、可靠、可维护和易于扩展等优秀的系统。
系统设计主要包括以下几个方面:1. 系统规划:确定系统的基本目标、要求和主要功能,为后续的设计提供方向和基础。
2. 系统分析:对系统进行分析,确定系统所包括的各个模块、组件及其之间的交互关系。
3. 系统设计:根据系统分析的结果,设计系统的各个模块、组件的具体实现方案,并进行整体设计和集成。
4. 系统实现:根据设计方案进行代码编写和测试等操作,保证系统能够正常运行。
5. 系统维护:在系统投入使用之后,对系统进行监控和维护,及时发现和处理系统中出现的问题。
以上几个方面是系统设计中比较重要的环节,其并不是一成不变的,不同的系统和需求有不同的设计方案和实现方式。
二、系统设计的流程1. 系统需求分析系统设计的第一步是进行需求分析,即了解客户或使用人员对系统的需求和应用场景,并确定系统的功能点和性能指标等。
2. 系统架构设计根据需求分析的结果,确定系统的总体架构和模块划分,确定模块之间的交互关系和数据流向。
3. 模块设计根据系统架构设计的结果,对各个模块进行设计,包括结构设计、算法设计、数据结构设计等。
4. 界面设计基于用户体验和交互设计的原则,对系统的界面进行设计,使其易于操作和友好。
采用齿轮齿条式转向器的转向梯形机构优化设计报告指导老师:***学生:黄志宇学号:********专业班级:车辆工程04班重庆大学方程式赛车创新实践班二〇一七年二月赛车转向系统是关系到赛车性能的主要系统,它是用来改变或恢复汽车行驶方向的系统的总称,通常,车手通过转向系统使转向轮偏转一定角度实现行驶方向改变。
赛车转向系统一股由方向盘、快拆、转向轴、转向柱、万向节、转向器、转向拉杆、梯形臂等部分组成。
其中,方向盘用于输入转向角度,快拆用于快速分离方向盘与转向柱,转向柱、转向轴、万向节共同将方向盘输入角度传递到转向器,转向器通过内部传动副机构将旋转运动转化为转向拉杆的直线运动,转向拉杆与梯形臂作用于转向节,实现车轮转向。
图1展示了转向系梯形结构,图2展示了赛车转向系统构成。
图1转向梯形机构图2赛车转向系统构成由于大赛组委会规则里面明确规定不允许使用线控或者电动转向,考虑到在赛车转向系统布置空间有限,且有严格的成本限制,以及轻量化的赛车设计目标,将赛车转向器范围限定机械式转向器。
目前,国内外的大多数方程式赛车采用齿轮齿条式转向器和断开式转向梯形结构。
●齿轮齿条式转向器齿轮齿条式转向器的传动副为齿轮齿条,其中,齿轮多与转向柱做成一体,齿条多与转向横拉杆直接连接,连接点即为断开点位置。
根据输出位置不同,分为两端输出式和中间输出式。
其主要优点是:结构简单,体积小,易于设计制作;转向器可选材料多样,壳体可选用招合金,质量轻;传动效率较高;容易实现调隙,当齿轮齿条或者齿条与壳体之间产生间隙时,可以通过安装在齿条背部的挤压力可调的弹簧来消除间隙;转向角度大,制造成本低。
其主要缺点是:传动副釆用齿轮齿条,正效率非常髙的同时,逆效率非常高,可以到达当汽车在颠簸路面上行驶时,路感反馈强烈,来自路面的反冲力很容易传递到方向盘;转向力矩大,驾驶员操纵费力,对方向盘的反冲容易造成驾驶员精神紧张,过度疲劳。
●断开式转向梯形结构根据转向器和梯形的布置位置的不同,断开式转向梯形又分为四类,分别为:转向器前置梯形前置,转向器后置梯形后置,转向器前置梯形后置,转向节后置梯形前置。
附件一毕业设计任务书设计(论文)题目FSAE赛车转向系统设计及性能分析学院名称汽车与交通工程学院专业(班级)车辆工程姓名(学号)胡嗣林指导教师张代胜系(教研室)负责人卢剑伟一、毕业设计(论文)的主要内容及要求(任务及背景、工具环境、成果形式、着重培养的能力)背景:中国汽车工业已处于大国地位,但还不是强国。
从制造业大国迈向产业强国已成为中国汽车人的首要目标,而人才的培养是实现产业强国目标的基础保障之一。
中国大学生方程式汽车大赛(以下简称"FSAE")是中国汽车工程学会及其合作会员单位,在学习和总结美、日、德等国家相关经验的基础上,结合中国国情,精心打造的一项全新赛事。
FSAE活动由各高等院校汽车工程或与汽车相关专业的在校学生组队参加。
FSAE要求各参赛队按照赛事规则和赛车制造标准,自行设计和制造方程式类型的小型单人座休闲赛车,并携该车参加全部或部分赛事环节。
比赛过程中,参赛队不仅要阐述设计理念,还要由评审裁判对该车进行若干项性能测试项目。
在比赛过程中,参赛队员能充分将所学的理论知识运用于实践中。
同时,还学习到组织管理、市场营销、物流运输、汽车运动等多方面知识,培养了良好的人际沟通能力和团队合作精神,成为符合社会需求的全面人才。
大学生方程式赛车活动将以院校为单位组织学生参与,赛事组织的目的主要有:一是重点培养学生的设计、制造能力、成本控制能力和团队沟通协作能力,使学生能够尽快适应企业需求,为企业挑选优秀适用人才提供平台;二是通过活动创造学术竞争氛围,为院校间提供交流平台,进而推动学科建设的提升;大赛在提高和检验汽车行业院校学生的综合素质,为汽车工业健康、快速和可持续发展积蓄人才,增进产、学、研三方的交流与互动合作等方面具有十分广泛的意义。
任务:调研国内外赛车转向系统结构及原理,遵循FSAE竞赛规则完成赛车转向系统设计,转向梯形优化,系统建模与转向性能分析。
工具环境:CATIA/UG AutoCAD ADAMS Visio MATLAB Office办公软件等成果形式:①翻译相关外文文献不少于5000字②优化设计说明书一份③赛车转向系统三维模型一份能力培养:培养和锻炼学生搜集相关资料,综合运用所学汽车设计知识解决实际问题的能力、提高学生软件应用能力、独立完成赛车转向系统设计及相关问题的能力,为从事本专业有关工作打下坚实基础。
收稿日期:2012-09-14作者简介:刘庚寅(1970—),男,汉,湖南邵东人,硕士研究生,研究方向:汽车电动助力转向系统。
E-mail :lgy960@ 。
电动助力转向系统中齿轮齿条传动设计与计算刘庚寅,刘晟昱,彭微君,葛阳清,康永升(株洲易力达机电有限公司,湖南株洲412002)摘要:介绍了P-EPS 电动助力转向系统的传动原理及其主要零部件。
特别是就某一车型的P-EPS 齿轮齿条的设计计算进行了详细的分析。
对不同载荷车型的齿轮齿条模数和齿数的匹配分别进行了计算,为新产品的开发提供了参考和指导。
关键词:电动助力转向系统;P-EPS ;齿轮轴;齿条轴Design and Calculation on Transmission between Pinion andRack in Electric Power Steering SystemLIU Gengyin ,LIU Shengyu ,PENG Weijun ,GE Yangqing ,KANG Yongsheng (Zhuzhou Elite Electro Mechanical Co.,Ltd.,Zhuzhu Hunan 412002,China )Abstract :The theory and main components of P-EPS electric power steering system were introduced here.Especially ,the design and calculation for rack and pinion of P-EPS about one car were analyzed in detail.Also ,matching relation between modulus and teeth number of rack and pinion were separately calculated for different car types with different weight ,so the reference and guides were provided for the devel-opment of new products.Keywords :Electric power steering system ;P-EPS ;Pinion ;Rack0前言国产电动助力转向系统(EPS )经过十几年的探索与研究,技术日趋成熟,并以其相对传统液压转向系统的突出优点而得到众多汽车厂家的认可,并在中小排量汽车上得到了广泛应用。
密级:编号: “中国高水平汽车自主创新能力建设”项目名称:“中气”底盘研究与开发转向系统设计计算书编制: 张 璐、田 野 日期: 校对: 日期: 审核: 日期: 批准: 日期:上海同济同捷科技股份有限公司长春孔辉汽车科技有限公司2008年12月目 录1 概述.........................................................................................................................- 1 -2 主要设计参数.........................................................................................................- 1 -3 转向梯形机构校核.................................................................................................- 2 -3.1 阿克曼理论..........................................................................................................- 2 -3.2 实际转角关系......................................................................................................- 3 -3.3 实际转角差与理想转角差的比率关系..............................................................-4 -3.4 模拟分析校核转向梯形机构..............................................................................- 4 -3.5 转向梯形参数......................................................................................................- 6 -4 转向传动轴等速性校核.........................................................................................- 6 -4.1 转向传动轴的夹角..............................................................................................- 7 -4.2 转向传动轴的仿真运动......................................................................................- 8 -5 转向系统匹配计算.................................................................................................- 8 -5.1 静态原地转向阻力矩..........................................................................................- 8 -5.2 转向系传动比......................................................................................................- 9 -5.3 静态原地转向无助力时方向盘手力.................................................................- 11 -5.4 最小转弯直径.....................................................................................................- 11 -6 转向系统的选型计算............................................................................................- 11 -6.1 动力转向器的选型计算.....................................................................................- 11 -6.2 动力转向泵的选型计算....................................................................................- 13 -6.3 动力转向油罐的选型计算................................................................................- 15 -6.4 动力转向管路的选型计算................................................................................- 16 -参考文献...................................................................................................................- 17 -1 概述本车型为液压助力转向系统;采用齿轮齿条式转向器,转向器形式为侧面输入、两端输出,转向器位于前轴后方,为后置梯形结构;转向操纵机构采用四辐条式转向盘和双万向节式传动轴。
目录1.系统概述 (1)1.1系统设计说明 (1)1.2系统结构及组成 (1)1.3系统设计原理及规 (2)2.输入条件 (2)2.1标杆车基本参数 (2)2.2LF7133确定的整车参数 (4)3.系统计算及验证 (4)3.1方向盘转动圈数 (4)3.2齿轮齿条式转向系的角传动比 (5)3.3车轮实际最大转角 (5)3.4静态原地转向阻力矩 (6)3.5静态原地转向时作用于转向盘的力 (6)3.6最小转弯半径的校核 (7)4.总结 (8)参考文献 (9)1.系统概述1.1系统设计说明LF7133是在标杆车的基础上开发设计的一款全新车型,其转向系统是在标杆车转向系统为依托的前提下,根据总布置设计任务书而开发设计的。
根据项目要求,需要对转向系统各参数进行计算与较核,以确保转向系统的正常使用,使系统中各零部件之间参数匹配合理,并且确保其满足国家相关法律法规的要求。
1.2系统结构及组成LF7133转向系统是在标杆车的基础上,根据驾驶室和发动机舱的布置,对转向管柱、方向盘和转向器等作相应调整与优化设计。
为提高汽车行驶的安全性,转向系必须转向轻便、灵活,以减轻司机的疲劳。
LF7133电动助力转向系统中转向器采用齿轮齿条式转向器、电动助力转向管柱的结构方式。
该结构紧凑,布置方便,降低油耗,工作可靠,维修方便,并且满足了整车的各项指标。
1).转向系统的结构简图32图1 转向系统结构简图1、转向器2、电动助力转向管柱3、转向盘2).转向系统的转向梯形示意简图由于LF7133转向系结构与布置情况参照标杆车设计,所以LF7133与标杆车转向梯形示意图一致,如下图2所示。
1.3系统设计原理及规对于液压动力转向系的设计,在保证系统拥有正常助力功用的情况下,还应满足如下的技术要求:1).根据GB17675-1999 汽车转向系基本要求的规定,同样要求在不带助力转向时转向力应小于254N。
2).对于乘用车来说,还要求转向盘转动在总圈数一般不超过4圈。
3).在转向系最大转角时,要求其最小转弯直径满足整车总布置参数。
2.输入条件2.1标杆车基本参数对于标杆车其参数采集可分为为直接测量参数和间接计算参数,对于标杆车具体的参数如下:1).直接测量参数表1 标杆车基本参数2). 标杆车转向系统主要计算参数 转向器小齿轮节圆半径:4.820cos 14.325.49cos 2cos 222=︒⨯⨯==⇒⋅=θπθπL r r L mm转向器小齿轮旋转圈数:07.35.491521===S S n 圈 标杆车角传动比:46.137.414.4036007.3360=+⨯=⇒+⨯=⇒==--wo Ri L i wo kk w wo i n i d d i δδβϕωω通过标杆车逆向数据其最大转角标i δ=42.8°。
则由于转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失可以直接进行估算。
其转向系统转向行程损失:%9.95%1008.422/7.414.40=⨯+==⇒⋅=)(标标i i wowoi i δδηηδδ 2.2 LF7133整车参数根据对标杆车数据的综合分析,结合LF7133整车的实际情况,对LF7133车型转向系统参数设计取值如下表所示:3. 系统计算及验证3.1 方向盘转动圈数︒⨯⨯⨯==⇒=20cos 4.814.32152cos 2cos 2θπθπr S n r n S n =3.065圈3.2 齿轮齿条式转向系的角传动比转向系理论角传动比可用三维数模模拟的最大转角直接求出,当转向齿条行程152 mm 时,通过三维运动分析可以得出前轮最大转角外分别为:i δ=42.0°,Aa δ=35.5°。
则理论角传动比i :14.1320.42360065.32360=⨯⨯=⇒⨯=⇒==i n i d d i ikk w δβϕωω实际上,转向系在转向拉杆连接球头、转向器齿轮齿条啮合间隙以及万向传动轴、方向盘连接等转向系连接结构中存在转向行程损失。
由于LF7133转向系统基于标杆车进行设计,这里以标杆车计算所得转向行程损失ηwo =95.9%进行计算。
则转向系实际传动比70.13%9.9514.13===⇒⋅=wowo wo wo ii i i ηη 3.3 车轮实际最大转角已知转向系实际传动比以及方向盘圈数的情况下,则其最大转角为:︒=⨯︒⨯=⨯=⇒︒⨯=⇒==3.4070.132360065.323602360wo i iwo kk w wo i n n i d d i δδβϕωω最大外转角:%9.950.36K ⨯︒=⋅=-ηδδAa Aa =34.5°3.4 静态原地转向阻力矩静态原地转向阻力矩是汽车中最大极限转向所需力矩,比行驶中转向所需的力矩大2到3倍。
目前采用半经验公式计算p G fM r 313=22.04.772237.03==3.38×105 N ·mm 式中:M r : 在沥青或混凝土路面上的原地转向阻力矩,N ·mm ; f : 轮胎与地面间的滑动摩擦系数,一般取0.7; G 1 : 转向轴负荷,788.00×9.8=7722.4 N ; P :轮胎气压,0.22Mpa ;3.5 静态原地转向时作用于转向盘的力αηsin R i M F wo rh =式中: Mr :原地转向阻力矩,N ·mm ,M r =3.38×105 N ·mm ;F h :作用于转向盘的力;i wo :齿轮齿条式转向系的角传动比,i ow =13.70; R :方向盘半径 mm ,R =190mm ; α : 转向梯形底角 ( °),α=89.23°; η :转向器的效率,取η=75%。
即:23.89sin 190%7570.131038.3sin 5⨯⨯⨯⨯==αηR i M F wo r h =173.1 N 不带助力转向,汽车以10km/h 行驶时,作用在方向盘的手力不应超过245N ,Fh <245N ,所以此设计满足法规要求。
3.6 最小转弯半径的校核设定设计数据姿态处于空载情况下,通过上述模拟其外轮理论最大转角分别为:42.8°/36.0°,且左右转角相等,计算时采用该值为计算基础。
为计算最小转弯半径,根据对数模空载姿态下的测量,转向轮绕主销偏移距s r =0.004809m ,轴距L =2.55m 。
计算采取文献3推荐的一种计算方法校核最小转弯直径。
为保证车辆行驶转向的精确性,确保各车轮不发生侧滑,转向时通过4个车轮中心的车轮平面垂直线都相交于一点——转向中心M 。
如果后轮不转向,则2个前轮平面的垂线必须与后轮中心连线的延长线相交于M 点(如图2所示),从而使得在车身外侧的前轮上出现不同的转向角δi 和δAa 。
根据相对较大的侧车轮转向角δi 可以推算出外侧车轮的理论值,即所谓的阿克曼角。
. 1图2 转向原理图由文献3所载的经验公式可以计算出最小转弯直径:F s Aas r lD δαδ∆⨯-+⨯=)sin (2≈9.4 m式中:δAa : 外侧车轮推算理论转角值δAa =arc(cotδAa )= arc 1.649=31.25°; cotδAa :外侧车轮推算理论转角余切值l j i Aa /cot cot +=δδ=1.649 ;δi : 侧车轮理论最大转角值,δi = 42.8°; j : 为在地面测得的主销延长线与地面交点的距离j = b v - 2×r s =1.4494 ;r s : 主销偏移距,r s =0.004809 m ; b v : 为前轮距, b v = 1.459 m ; l : 汽车轴距, l = 2.550 m ; α : 经验因子, α = 0.1 m/°;ΔδF : 转向误差, ︒=︒-︒=-=∆75.4.251336.0F Aa a δδδ;由以上计算结果可以看出,其值与标杆车试验测量值(9.64m)相当接近,并且小于最小转弯直径值。
故此,LF7133转向系统各参数取值符合总布置对最小转弯直径的设计目标值9.64m 的要求。
4. 总结根据此报告的设计计算,此转向系统满足法规的要求,符合整车的设计需要,达到预期的目的。
但是其中很多数据为经验值,尚待装车做进一步优化。
其计算结果参数见表3所示。
5.参考文献1).惟信著.汽车设计.清华大学,20012).王望予.汽车设计.机械工业,20033).《汽车工程手册》编辑委员会.汽车工程手册:设计篇. 人民交通, 20014).GB 17675-1999:汽车转向系基本要求.中国标准,20015).GB 7258-2004:机动车运行安全技术条件.中国标准,2005。