转向系统设计计算匹配
- 格式:doc
- 大小:2.22 MB
- 文档页数:24
1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。
对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。
装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。
这时,基本上是角输入。
而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。
1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。
这种反馈,通常称为路感。
驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。
反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。
2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。
不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。
实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。
2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。
目录1.系统概述........................................... 错误!未定义书签。
系统设计说明.................................... 错误!未定义书签。
系统结构及组成.................................. 错误!未定义书签。
系统设计原理及规范.............................. 错误!未定义书签。
2.输入条件........................................... 错误!未定义书签。
标杆车基本参数.................................. 错误!未定义书签。
LF7133确定的整车参数........................... 错误!未定义书签。
3.系统计算及验证..................................... 错误!未定义书签。
方向盘转动圈数.................................. 错误!未定义书签。
齿轮齿条式转向系的角传动比...................... 错误!未定义书签。
车轮实际最大转角................................ 错误!未定义书签。
静态原地转向阻力矩.............................. 错误!未定义书签。
静态原地转向时作用于转向盘的力.................. 错误!未定义书签。
最小转弯半径的校核.............................. 错误!未定义书签。
4.总结............................................... 错误!未定义书签。
参考文献.............................................. 错误!未定义书签。
本人从事转向系统设计工作,今赋闲在家,偶然发现这个论坛,获益颇丰。
但见很多朋友所求助的问题得到的解答不是特别透彻,遂想从转向系统布置、匹配、零部件8D整改等方面分别做一个全面的总结。
希望对新手有所帮助,不对的地方也希望能得到各位前辈的指正。
言归正传,先介绍转向系统的匹配。
匹配篇:0 ? W6 I! m& P! \( A7 Q1、以循环球整体式转向器为例,首先要确定转向系统的载荷,根据转向系统的载荷确定出相应输出力矩的循环球转向器。
转向系的载荷计算方法多种多样,有公式计算法,也有图表法。
常用公式有原苏联半经验公式、雷雷索夫公式、塔布莱克公式等,各个公式的侧重点各有不同(不同的因素分别为有的考虑主销偏置距,轮胎静力半径,有的分别考虑计算左右轮的最大转向阻力矩然后叠加,有的考虑轮胎接地面积等)。
根据自己对各个方法的对比,载荷计算结果差别不是很大。
本人常用苏联半经验公式:Mr =[f×(G 13÷P)1/2]÷3: @# a# r" y. W; {0 N PMr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm;+ ?/ e1 f7 a& P$ ]' Gf--------轮胎与地面间的滑动摩擦系数,取0.7;+ k3 M+ n' w. Z5 lG1-----转向轴负荷,N;P-------轮胎气压,MPa;9 h+ M9 }: J( Q该公式适用于中轻型汽车,其悬挂为钢板弹簧时,用于计算最大转向阻力矩(即汽车的原地转向阻力矩)。
该公式仅考虑了前桥负荷和轮胎气压的影响。
公式中,转向轴荷G一般按设计轴荷超载30%计算。
在计算载荷确定之后,可根据载荷选取适合的动力转向器。
这里顺便介绍下转向器的选型,现在的动力转向器配套供应商做了大量的研究和实验,提出了适应不同轴荷的其产品系列,你只要按照你计算出的前轴负荷提供给他,他即可推荐给你相匹配的型号的转向器。
密级:编号: “中国高水平汽车自主创新能力建设”项目名称:“中气”底盘研究与开发转向系统设计计算书编制: 张 璐、田 野 日期: 校对: 日期: 审核: 日期: 批准: 日期:上海同济同捷科技股份有限公司长春孔辉汽车科技有限公司2008年12月目 录1 概述.........................................................................................................................- 1 -2 主要设计参数.........................................................................................................- 1 -3 转向梯形机构校核.................................................................................................- 2 -3.1 阿克曼理论..........................................................................................................- 2 -3.2 实际转角关系......................................................................................................- 3 -3.3 实际转角差与理想转角差的比率关系..............................................................-4 -3.4 模拟分析校核转向梯形机构..............................................................................- 4 -3.5 转向梯形参数......................................................................................................- 6 -4 转向传动轴等速性校核.........................................................................................- 6 -4.1 转向传动轴的夹角..............................................................................................- 7 -4.2 转向传动轴的仿真运动......................................................................................- 8 -5 转向系统匹配计算.................................................................................................- 8 -5.1 静态原地转向阻力矩..........................................................................................- 8 -5.2 转向系传动比......................................................................................................- 9 -5.3 静态原地转向无助力时方向盘手力.................................................................- 11 -5.4 最小转弯直径.....................................................................................................- 11 -6 转向系统的选型计算............................................................................................- 11 -6.1 动力转向器的选型计算.....................................................................................- 11 -6.2 动力转向泵的选型计算....................................................................................- 13 -6.3 动力转向油罐的选型计算................................................................................- 15 -6.4 动力转向管路的选型计算................................................................................- 16 -参考文献...................................................................................................................- 17 -1 概述本车型为液压助力转向系统;采用齿轮齿条式转向器,转向器形式为侧面输入、两端输出,转向器位于前轴后方,为后置梯形结构;转向操纵机构采用四辐条式转向盘和双万向节式传动轴。
大客车转向系统设计方法摘要:简要介绍大客车转向系统零件选型及匹配设计方法关键词:大客车;转向系统;设计方法;前言转向系统作为汽车的重要系统之一,直接决定着车辆的操纵稳定性,安全性。
而大客车作为大型生命载体,对转向系统可靠性要求更高,设计时来不得半点马虎,下面就以WG6120CHAE 型车辆转向系统设计为例从客车装配厂家的角度简要介绍一下大型客车转向系统的设计方法。
1、转向器的选型1.1根据前轴的轴荷选定方向机类型一般转向轴轴荷超过3.5吨,推荐使用动力转向器,动力转向器液压缸的缸径要求大于m 5.42(m 为前轴轴荷),对比厂家转向器的参数选择即可。
转向轴轴荷小于3.5吨的车辆,原则上可以不使用动力转向器,但应特别注意转向垂臂长度,车桥转向节上臂的回转半径,注意力矩计算,使转向盘不至沉重。
1.2国内转向器厂家一般根据转向轴轴来对应相关转向器产品,例如东风转向器厂IPS45的转向器对应的前轴是4.5吨,IPS55的转向器对应的前轴是5.5吨,IPS65的转向器对应的前轴是6.5吨,所以选型时可以直接对应选择就是了。
对于我司生产的WG6120CHAE 型车,因前轴载荷为6.5吨,所以选用了东风的IPS65型转向器,并根据布置形式选定了左旋左输出旋向,传动比为21.48:1,摇臂轴转角为±47.5°,方向盘总圏数为5.67圏。
IPS65型转向器2、转向系统匹配设计2.1确定内外轮转角,转向梯形及最大转弯直径选定转向器之后,我们首先要根据车辆的转弯直径的要求计算实际所需转向轮转角。
老标准以外轮中心画出来的轨迹为车辆的最大转弯直径,不太准确,新标准以通道圆直径不大于25m ,通道宽度不大于6.7米来定义转弯直径则更合理。
WG6120CHAE 型车相关参数首先找出车轮的旋转中心,转向轮的旋转中心是主销延长线与地面的交点。
现求出左右转向轮旋转中心联线的距离:中L =销B +2×r ×tg ɑ=1974.4 ①式考虑了主销后倾角的轴距:轴L =L+ r ×sin β=6312.9 ②式计算车辆的外轮转角外β=ctg 内β+B/L ③式车辆最内点的最小转弯半径 内r =轴L / tg 外β-[B-( B-中L )/2] ④式车辆最外点的最小转弯半径 外r =22)()B r L L +++内前( ⑤式计算出车辆最外点的最小转弯半径后直接乘以2倍,便计算出了车辆的最大转弯直径,而通道宽度见下式:通道B =外r -[B L L r r -+-⨯2)(前外外] ⑥式对于WG6120CHAE 型车,我们设定前内轮转角为47°,那么依据①式和③式,我们可以算出前外轮转角为38.8° ,这可做为给车桥厂签订协议时转向梯形的依据。
转向系统设计规范1规范本规范介绍了转向系统的设计计算、匹配、以及动力转向管路的布置。
本规范适用于天龙系列车型转向系统的设计2.引用标准:本规范主要是在满足下列标准的规定(或强制)范围之内对转向系统设计和整车布置GB17675-1999 汽车转向系基本要求GB11557-1998防止汽车转向机构对驾驶员伤害的规定GB7258-1997 机动车运行安全技术条件GB9744-1997 载重汽车轮胎GB/T 6327-1996 载重汽车轮胎强度试验方法《汽车标准汇编》第五卷转向车轮3.概述:在设计转向系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。
先从《产品开发项目设计定义书》上猎取新车型在设计转向系统所必须的信息。
然后布置转向传动装置,动力转向器、垂臂、拉杆系统。
再进行拉杆系统的上/下跳动校核、与轮胎的位置干涉校核,以及与悬架系统的位置干涉、运动干涉校核。
最小转弯半径的估算,方向盘圈数的计算。
最后进行动力转向器、动力转向泵,动力转向油罐的计算与匹配,以满足整车与法规的要求;确定了动力转向器、动力转向泵,动力转向油罐匹配之后,再完成转向管路的连接走向。
4车辆类型:以EQ33868X4为例,6X4或4X2类似5杆系的布置:根据《产品开发项目设计定义书》上所要求的、车辆类型、车驾宽、高、轴距、空/满载整车重心高坐标、轮距、前/后桥满载轴荷、最小转弯直径、最高车速、发动机怠速、最高转速,空压机接口尺寸,轮胎规格等,确定前桥的吨位级别、轮胎气压、花纹等。
考虑梯形机构与第一轴、第二轴、第三轴、第四轴之间的轴距匹配及各轴轮胎磨损必需均匀的原则,确定第一前桥、第二前桥内外轮转角、第一垂臂初始角、摆角与长度、中间垂臂的长度、初始角、摆角,确定上节臂的坐标、长度等确定的参数如下第一、二轴选择7吨级规格轮胎型号:12.00-20、轮胎气压0.74Mpa花纹第一轴外轮转角35°;内轮转角44°第二轴外轮转角29°;内轮转角34°第一轴上节臂参数上节臂球销坐标上节臂有效长度垂臂参数垂臂长度315mm中间球销长度187m(接中间拉杆),初台角向后2°第二轴上节臂参数上节臂球销坐标上节臂有效长度中间垂臂参数中间垂臂长度330 mm(接第二直拉杆),中间球销长度230m(接中间拉杆),中间球销长度269.5mm (接助力油缸活塞),初台角向后6°上述主要参数确定后,便可布置转向机支架、第一直拉杆、第二直拉杆、中间拉杆。
编号北奔威驰8×4宽体矿用车1950轴距转向系统开发计算说明书编制审查审定标准化审查批准包头北奔重型汽车有限公司研发中心2010年7月22日1 计算目的双前桥四轴车在转向过程中,理论上要求所有车轮都处于纯滚动,或只有极小滑动,为达到这一目的,要求所有车轮绕一瞬时转动中心作圆周运动。
每个转向桥的梯形角匹配设计,是为满足车轮的理论内外转角特性曲线与实际内外转角特性曲线尽可能的接近;第一、二转向前桥转向摇臂机构设计是为了让第一、二转向前桥最大内转角与轴距之间的理论关系与实际关系尽可能的相匹配。
本次计算是为新开发的8×4宽体车XC3700KZ 匹配北奔高位宽体前桥的转向系统中转向传动机构和转向动力机构中各元件的选型及尺寸提供理论依据。
2 采用的计算方法、公式来源和公式符号说明符号定义及赋值如下:1α为第一转向前桥外转角,1β为第一转向前桥内转角 2α为第二转向前桥外转角,2β为第二转向前桥内转角1L 为第一转向前桥主销中心线与地面的交点到第三桥轴线的距离 2L 为第二转向前桥主销中心线与地面的交点到第三桥轴线的距离3 计算过程及结果 3.1 转向动力系统参数计算3.1.1 原地转向阻力矩计算① 状态一:第一、二转向桥载荷按标准载荷13T 计算 已知参数如下:第一转向桥、第二转向桥的轴荷为1G =2G =13000×9.8=127400 N 轮胎气压1P =0.77Mpa滑动摩擦系数μ=0.6(干燥土路)滚动摩擦系数f =0.035(干燥压紧土路推荐0.025-0.035) 轮胎自由半径0r =685mm 轮胎静力半径1r =670mm 侧偏距a =204mm内轮最大转角max α=35.74°[借用现有一桥拉杆及垂臂W3400112AE 极限内转角](新设计垂臂936 463 00 01使转角能达到车轮极限转角38度)轮胎宽度1B =375mm轮胎接地面积8212BK ==175782mm ,K=132.6mm主销内倾角Φ=6°对于单桥的原地转向阻力矩,有如下计算方式: A.按半经验公式计算131P G 3μ=半M =77.012740036.03 =10364271 N.mm =10364 N.mB.按采用雷索夫公式()2s 201r r 0.5a f G -+⋅⨯μ=雷M=127400×(0.035×204+0.5 ×0.6×22670685-)=6358499 N.mm =6358 N.mC.采用经验公式max11sin sin a G a G αφμ=经⋅⋅⋅+⋅⋅M=127400×204×0.6+127400×204×sin6°×sin35.74° =17181 N.mD.算术平均求阻力矩为了使计算更趋合理,避免上述四种公式单独使用时与实际工造成的误差,故用以上三种方式求得的阻力矩的算术平均值作为静态原地转向阻力矩0s M 。
8*4双前轴转向系统设计校核第一部分8*4自卸汽车的双转向系统校核根据《4048D/QX3340自卸汽车底盘(欧四)设计任务书》及客户的要求,伊朗4048D欧四自卸汽车底盘为双转向前桥,转向系统采用循环球液压助力转向系统,第二转向前桥采用液压缸助力,一、二桥轴距为1950mm。
转向桥初步采用陕西汉德车桥生产的曼系列7.5吨盘式制动前轴,具体参数见表1;转向垂臂初步选用中国重汽豪沃A7双转向系统,具体尺寸见图1;转向器采用ZF公司生产的图号为8098.957.111的转向器,转向油泵采用ZF公司生产的图号为7077.955.636的叶片泵;转向油罐采用株洲湘火炬生产的产品。
表1 曼系列7.5吨盘式制动前桥图1重汽豪沃A7双转向系统布置图一、对一、二桥转向运动干涉进行校核根据转向系统的布置,用作图法分别作出转向节臂球销中心A点绕摆动中心O’和转向垂臂下端球销中心的运动轨迹圆弧JJ’、KK’,测量在板簧动、静挠度范围内的最大误差值,从以上结果可以看出一、二桥的转向节臂轨迹误差都在10mm以内,符合要求。
二、分别计算出一、二桥的内外转角关系1、根据作图可得出两主销中心线延长线到地面交点之间的距离K=1879.52、校核梯形臂的长度根据经验,梯形臂长度m一般取(0.11~0.15)K故m=(0.11~0.15)*K=(0.11~0.15)*1879.5=206.75~281.93m=255.7是符合要求的3、初步选择梯形底角θ0根据式tgθ0=(4*L)/(3*K),可以得出一桥梯形底角θ0为77.5°,二桥梯形底角为72.3°根据计算出的梯形底角与实际车桥的梯形底角有较大的差异,建议采用作图法或计算的方法进行校核。
4、校核梯形底角a、用作图法作出第一桥梯形底角为77°时,内外转角关系图2b、用作图法作出第二桥梯形底角为72°时,内外转角关系图3c、根据第一、二桥内外转角的关系分别作出一、二桥转向梯形的实际特性曲线图4由以上曲线可以看出:转向梯形的实际特性曲线在0~30°范围内比较接近理论转向梯形特性曲线。
1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。
对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。
装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。
这时,基本上是角输入。
而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。
1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。
这种反馈,通常称为路感。
驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。
反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。
2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。
转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。
不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。
实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。
2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。
转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。
2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。
2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。
汽车转弯行驶时,作用在汽车质心处的离心力的作用,内轮载荷减小,外轮载荷增加,使悬架上的载荷发生相应变化。
若转向桥采用非独立悬架、钢板弹簧机构时,则内侧板簧因载荷减小而长度缩短,外侧板簧因载荷增加而长度增加,导致车轴在水平面内相对车身转过一个角度,产生轴转向效应。
转向直拉杆和纵拉杆的运动关系必须与之适应,使轴转向效应趋于不足转向。
当转向桥为独立悬架、螺旋弹簧机构时,内侧弹簧因载荷减小而长度增加,车轮相对车身下跳,外侧弹簧因载荷增加而长度减小,车轮相对车身上跳,因转向横拉杆外球头从运动学上来说,是转向轮的一部分,内球头属于车身的一部分,外球头随车轮上下跳动所形成的轨迹必须与内球头所在中心点相适应。
这就是传统转向理论中所说的断开点校核。
实际上,现代汽车设计中,合理利用这个运动轨迹的干涉,使得运动干涉造成的车轮偏转方向(侧倾转向)与转向方向相反,有助于实现不足转向。
2.5 良好的机动性为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮轨迹计算,使其最小转弯半径能达到汽车轴距的2~2.5倍。
最小转弯直径是汽车机动性的评价指标。
影响最小转弯直径的因素有:汽车轮距、轴距、轮胎侧偏刚度、有效转向节臂长,转向器行程(齿轮齿条式转向器)、转向摇臂摆角(循环球式转向器)、转向摇臂长(循环球式转向器)、转向梯形的布置形式等。
2.6 转向操纵轻便性转向操纵轻便性的评价指标通常有两项:驾驶者作用在方向盘上的切向力大小和方向盘总圈数。
机械转向系统的轿车,在行驶中转向时的切向力应为50~100N.有助力转向系统的轿车,此力为20~50N。
K1哈弗为27N±3N。
轿车方向盘总圈数不得大于4圈,货车不得大于6圈。
M11机械转向系统方向盘总圈数3.825,液压助力转向系统方向盘总圈数3.083。
对于无助力系统,方向盘上的切向力大小由转向系力传动比决定,方向盘总圈数等于转向器总圈数。
方向盘总圈数多和切向力越大都容易使驾驶者疲劳。
根据机械原理,方向盘总圈数越多,切向力就越小,两者成反比。
只有合理对方向盘总圈数和切向力取值,才能有一个好的转向操纵轻便性。
对于有助力转向系统,可以实现少的方向盘总圈数和小的方向盘切向力。
但需要注意助力特性,虽然实现了好的转向操纵轻便性,却容易出现转向高速发飘、转向发贼现象,破坏操纵稳定性。
2.7直线行驶稳定性转向系统和悬架系统密切相关,必须使转向系统与悬架系统合理匹配,使汽车具有良好的直线行驶稳定性,良好路面不得出现的行驶跑偏。
行驶跑偏与车辆的制造装配有很大关系。
当转向轮遇到一个小的障碍物时,车轮发生偏转,这时汽车应具有快速回到直线行驶位置的能力。
循环球式转向器设计成变传动比,摇臂轴扇齿的中间齿(转向器的中位)齿厚比两边的大,与螺母齿条啮合时,转向器中间位置有相当于锁紧的功能。
以达到维持直线行驶稳定的目的。
齿轮齿条式转向器将齿条中间常用几齿的齿间设计得比较小,与小齿轮啮合时,转向器中间位置有相当于锁紧的功能。
以达到维持直线行驶稳定的目的,同时也达到间隙补偿的目的。
2.8 转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小。
转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小,否则会出现“打手”现象。
避免“打手”现象的有效措施有:在转向操纵机构中增加挠性万向节,加装转向阻尼器(减振器),提高转向系统逆效率等手段。
2.9 应当有汽车碰撞时对驾驶者的防伤机构当发生车祸时,一方面,车辆前端被压溃,使得转向管柱和转向轴向上向后移动(也就是向窜向驾驶者头胸部)。
另一方面,驾驶者紧急制动或则被撞时汽车骤然停止,驾驶者在强大惯性力作用下,上半身冲向方向盘,伤害驾驶者。
为避免这种危害,就要求转向管柱在轴向不能是刚性的,在转向管柱两个方向应具有溃缩和吸能功能,缓冲车身前部的冲击和驾驶者的冲击。
顺便提一下,系安全带是非常有效的一个措施。
2.10 转向轮与方向盘偏转方向一致转向系统必须做运动分析,最起码要保证的是:汽车在前进时,往左转动方向盘时,汽车应向左转,右打右转。
2.11适宜的不足转向度(了解)汽车等速行驶时,迅速给方向盘一个角度输入,使转向轮迅速发生偏转,汽车进入一个稳态响应---等速圆周行驶。
这时,汽车产生一个绕Z轴线的横摆角速度,横摆角速度与转向轮转角的(或者方向盘的转角)的比值称为转向灵敏度。
横摆角速度增益---横摆加速度与车速成线性关系时,即它们函数关系为一直线,斜率为定值,称汽车具有中性转向特性。
表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径维持在一个恒定值。
横摆加速度与车速成非线性关系,其斜率呈减小趋势,称汽车具有不足转向特性。
表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越大。
横摆加速度与车速成非线性关系,其斜率呈增加趋势,当车速度超过临界车速时,横摆角速度趋于无穷大,称汽车具有过多转向特性。
表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越小。
中性转向很容易转化为过多转向,过多转向汽车达到临界车速时将失去稳定性,由于其转弯半径越来越小,横摆加速度越来越大,汽车将发生激转而侧滑摔尾或者翻车,因此汽车都应具有适宜的不足转向特性。
转向灵敏度和转向特性主要影响因素:悬挂系统、转向系统以及整车的质心位置、轴距、轮距等参数。
3 转向轮定位参数主销的概念:转向节绕车身(或车架)转动的轴线。
对于大多数货车客车的非独立悬挂,其主销是转向节与转向桥拳部连接的实实在在的主销。
对于独立悬挂的轿车,双摆臂结构的主销是下摆臂外球心与上摆臂球心的连线。
麦弗逊悬挂的主销是下摆臂外球心与前滑柱与车身铰接点的连线。
3.1 主销后倾角当汽车水平停放时,在汽车的纵向垂面内,主销上部向后倾斜一个角度r,称为主销后倾角。
当主销具有后倾角时,主销轴线与路面交点A 将位于车轮与路面接触点的前面。
当汽车直线行驶时,若转向轮偶然受到外力作用而稍有偏转(例如向右偏转,如图中箭头所示),能产生回正作用。
也就是说,因为主销后倾角,汽车具有了维持直线行驶的能力。
轮胎接地点B向主销作垂线,B点与垂足点的距离L是车轮产生回正力矩的力臂,因主销后倾角一般不大,如K1为3°±30’,M11为2.5°±30’,在三维模拟技术尚不成熟的传统设计理论中,便于计算,一般以主销穿地点A与B点距离作为评价回正力矩的主参数。
这个距离叫做后倾拖距ξ。
回正力矩M=ξ* Fy 附加转角δ= Fy/CsFy----汽车受到的侧向力,与汽车质量、侧向加速度成正比。
Cs----转向系统刚度,包括转向节、转向器、转向管柱的刚度。
回正力矩M,附加转角δ就是转向系统的力反馈和角反馈。
ξ越大回正力矩越大,同时,车辆转向时,这个力矩就成了转向需要克服的阻力矩,转向也变得困难。
回正力矩与后倾拖距ξ和车速v的平方都成正比例关系。
汽车中高速的回正力矩主要来自于后倾拖距ξ。
3.2 主销内倾角当汽车水平停放时,在汽车的横向垂面内,主销轴线与地面垂线的夹角为主销内倾角。
主销内倾角的作用是使车轮自动回正。
通常车轮轴线不在水平面,为了方便说明,这里假设直线行驶时车轮轴线在水平面上。
对于车轮轴线不在水平面的情况,只要把下图的水平面改为锥面。
如下图所示,考虑该水平面上和主销有交点的直线,主销与这些直线的夹角有一个最大值。
而汽车直线行驶时,车轮轴线与主销的交角恰为这个最大值。
车轮轴线与主销夹角在转向过程中是不变的,当车轮转过一个角度,车轮轴线就离开水平面往下倾斜,致使车身上抬,势能增加。
这样汽车本身的重力就有使转向轮回复到原来中间位置的效果。
由于主销内倾,前轮转向时将使车身有抬高的倾向,这种系统位能的提高产生回正力矩M'。
假设Q为轮荷,δ为前轮转角,有如下关系:M'=(Q*C*sin(2β)*sinδ)/2无关,有:M比M'在高速时大得多,低速时,M'可以看出,M'与侧向力Fy比M大得多。
所以说:汽车低速时回正主要由主销内倾角决定。
同样主销内倾角β越大,转向越困难。
3.3 车轮外倾角当汽车水平停放时,在汽车的横向垂面内,车轮平面与地面垂线的夹角为前轮外倾角。
如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。
另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。
因此,为了前轮有一个外倾角。
但是外倾角也不宜过大,否则也会使轮胎产生偏磨损。
现代汽车设计中也有将车轮外倾角α取为负值,比如M11的车轮外倾角α为-1°±30’,其目的是使转向轮在转向时,车轮上下跳动引起的车轮偏转方向与车身在离心力作用下的偏转方向一致,提高操作稳定性。