氧化锌晶体生长研究进展
- 格式:doc
- 大小:10.50 KB
- 文档页数:1
纳米氧化锌的制备现状及研究进展摘要:本文综述了近几十年来纳米氧化锌制备的发展现状及各自的优缺点,提出了目前研究中存在的问题并对其发展方向进行了展望。
关键词:纳米氧化锌制备研究进展一、引言纳米氧化锌是21世纪的一种多功能新型无机材料,其粒径介于1~100nm之间。
由于粒径比较微小,使得比表面积、表面原子数、表面能较大,产生了如表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等一系列奇异的物理效应。
它的特殊性质使其在陶瓷、化工、电子、光学、生物、医药等许多领域都有着重要的应用。
近年来,国内外对其制备和应用的研究较为广泛,且取得了不少成果。
二、纳米氧化锌的制备方法目前,制备纳米氧化锌主要有物理法、化学法及一些兴起的新方法。
1.物理法物理法是采用光、电技术使材料在惰性气体或真空中蒸发,然后使原子或分子形成纳米微粒,或使用喷雾、球磨等力学过程为主获得纳米微粒的制备方法[1]。
用来制备纳米zno的物理方法主要有脉冲激光沉积(pld)、分子束外延(mbe)、磁控溅射、球磨合成、等离子体合成、热蒸镀等。
此法虽然工艺简单,所得的氧化锌粉体纯度高、粒度可控,但对生产设备要求高,且得不到需要粒径的粉体,因此工业上不常用此法。
2.化学法2.1液相法2.1.1直接沉淀法直接沉淀法就是向可溶性锌盐溶液中加入沉淀剂,经过反应形成沉淀物,再通过过滤、洗涤、干燥、煅烧从而制得超细的纳米zno 粉体。
选用的沉淀剂有氨水(nh3·h2o)、碳酸铵((nh4)2 co3)、碳酸氢铵(nh4hco3)、草酸铵((nh4)2 c2o4)、碳酸钠(na2co3)等。
该法操作简便易行、所得产品纯度高、对设备要求低且易规模生产,但是存在在洗涤的过程中阴离子难以洗尽、产物粒度分布不均匀、分散性较差、粉体易团聚等缺点。
2.1.2 均匀沉淀法均匀沉淀法是缓慢分解的沉淀剂与溶液中的构晶阳离子(阴离子)结合而逐步、均匀地沉淀出来。
东南大学硕士学位论文ZnO纳米线的生长与排列姓名:赵茂聪申请学位级别:硕士专业:物理电子学指导教师:徐春祥20090301ZnO纳米线的生长与排列作者:赵茂聪学位授予单位:东南大学1.学位论文张献祥钨针尖上氧化锌纳米线的制备和场发射性能研究2009氧化锌(ZnO)纳米材料作为一种宽禁带半导体材料,具有场发射材料所需要的许多性质。
氧化锌纳米材料已经成为场发射材料的研究热点。
虽然有关氧化锌纳米材料的研究已经很多,但是对几根氧化锌纳米线的研究很少。
<br> 本研究的重点和目的就是研究氧化锌纳米线端口和侧壁场发射特性。
为了达到此目的,本实验采用的样品是生长在钨针尖上的氧化锌纳米线。
为了制备适合场发射研究的样品,本研究采用了最简易的生长设备和最常用的制备氧化锌纳米线的方法:直接加热锌粉的方法。
<br> 选取适宜进行氧化锌纳米线场发射性能测试的样品:钨针尖上定向ZnO纳米线和钨针尖上非定向ZnO纳米线。
并对这两种样品分别测试ZnO纳米线端口场发射性能和ZnO纳米线侧壁场发射性能。
获得了令人满意地结果:清晰的氧化锌纳米线端口场发射图像(正六边形的环)。
这一结果是比较新颖的,目前还没有类似的文章报道。
这一结果同时也说明了氧化锌纳米线正六边形端口(0001)面的场发射来自边和角,电场在端面各处分布不均。
对此结果还用ANSYS对氧化锌纳米线端口电场分布进行模拟。
结果显示氧化锌纳米线端口正六边形的角和边处的电场比其他地方大得多。
这正就证明了氧化锌纳米线正六边形端口(0001)面的场发射来自边和角,电场在端面各处分布不均。
<br> 重点分析了一下热处理对端口场发射性能的影响。
结果发现热处理具有正反两面的作用:使场发射稳定和使场发射性能下降。
<br> 氧化锌纳米线侧壁场发射性能测试结果显示相同电压下侧壁发射性能不如端口发射好。
加热处理产生的热量容易使得这些较细的氧化锌纳米线蒸发。
纳米氧化锌光催化降解性能影响因素研究进展摘要:纳米氧化锌因为纳米材料本身独特的效应,使其有着独特的物理和化学性能,在日益重视环境的现在来说,纳米氧化锌的光催化降解性能越来越使人重视,本文对纳米氧化锌光催化降解性能的研究进行综述。
关键词:纳米氧化锌光催化性能影响1引言近年来随着社会科技的不断发展,社会污染也越来越严重,一些污染物自然降解较慢,随着人们的深入研究发现作为半导体的氧化锌因其独特的物理和化学性能,可使污染物在光催化下分解,自半导体的光催化效应发现以来,一直引起人们的重视,原因在于这种效应在环保、水质处理、有机物降解、失效农药降解等方面有重要的应用。
作为一种重要的光催化剂,纳米氧化锌有着比块体氧化锌更强的光催化能力。
一方面,这是因为量子尺寸效应会使半导体能隙变宽,导带电位变得更负,而价带电位变得更正,从而使纳米氧化锌获得了更强的氧化还原能力;另一方面,纳米氧化锌有比块体氧化锌大得多的比表面积,高比表面积使得纳米材料具有强大的吸附污染物的能力,这对提高催化反应的速度是十分有利的。
[1]2纳米氧化锌的光催化性能影响因素2.1形貌对光催化性能的的影响纳米氧化锌的制备技术决定了纳米氧化锌的微观形貌,进一步决定了其不同的光催化性能,纳米氧化锌的主要形貌有花状、棒状、片状、颗粒状等其他特殊结构。
周小岩等[2制备出三种不同形貌的纳米ZnO粉体,分别为纺锤状,棒状和片状。
纺锤状和棒状显露的(001)晶面相对非极性面其面积很小。
片状ZnO显露的(001)晶面相对非极性面其面积较大。
因此3种相貌的ZnO样品显露(001)晶面的大小顺序依次是:片状>棒状>纺锤状,其光催化活性大小也是片状>棒状>纺锤状。
经比较得出片状ZnO呈现出较高的光催化活性的结论。
其原因是ZnO晶体显露极性面的面积相对非极性面越大,其光催化活性越高。
特殊形貌的纳米氧化锌也同样受到重视,余花娃等[3],以乙酸锌和氢氧化钾为原料合成纳米ZnO,该产物呈现形貌均一的海胆状结构。
氧化锌晶体生长研究进展
当前生长氧化锌体单晶的方法主要有助熔剂法、水热法、气象沉积法、坩锅下降法等等。
11助熔剂法.助熔剂法是利用助熔剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发熔剂,使熔体过饱和而结晶的方法。
最先采用这种方法制备氧化镁的是美国的Nielsen等[12]人,得到(0001)取向的透明略微带浅黄色的呈平板状晶体(25mm!1mm)。
1967年,美国的A.B.Chase和JudithA.Osmer用同样的助熔剂应用区域冷却法(LocalizedColling)在不同的温度梯度下,以不同的降温速率,利用氧化镁的自发成核制成了5mm!5mm!3mm的晶体。
2002年,日本的KunihikoOka等人分别用顶部籽晶溶液法(TSSG)和溶液传输浮区法(TSFZ)生长出22mm!4mm及4mm!12mm的晶体。
这是目前报道用助熔剂法生长的尺寸最大的晶体体单晶。
实验3 氧化锌纳米阵列的制备【摘要】水热法是合成氧化锌纳米阵列的基本方法之一,通过本实验进一步研究氧化锌纳米线的制备工艺,学会氧化锌纳米线透射率的测量方法,并掌握半导体材料禁带宽度的基本计算方法。
【关键字】水热法纳米线禁带宽度0.引言氧化锌(ZnO)是一种具有纤锌矿结构的Ⅱ-Ⅵ族化合物半导体,由于其具有优异的光电性质而有很大的使用价值和研究价值,如它对可见光的高透过率,能用作透明导电涂层;具有光电效应,能用于紫外激光器件和太阳能电池等[1]。
为了获得或改善其某一方面的性质,利用各种方法掺杂或制备具有特定形貌的氧化锌纳米材料成为近年来研究的热点。
而水热法制备ZnO纳米材料,以其设备简单、原料廉价、条件易控、适合大面积生长等优点而被广泛采纳。
本实验主要是采用水热法合成氧化锌纳米线,并测量纳米线的透射率,通过计算得出制备的氧化锌禁带宽度为3.34eV,与理论值基本吻合。
1.实验目的1.了解水热合成氧化锌纳米线的原理以及基本操作方法;2.独立制备出氧化锌纳米线;3.掌握纳米线透射率的表征方法和半导体禁带宽度的计算方法;4. 掌握实验数据处理方法,并能利用Origin绘图软件对实验数据进行处理和分析。
2.实验仪器设备和材料清单1.水浴锅、紫外可见分光光度计、量筒、样品瓶、PH试纸、2.试剂:硝酸锌、乙醇胺、正丁醇、高锰酸钾、氨水、酒精、稀硝酸3.实验原理3.1纳米氧化锌概述[2]氧化锌(ZnO):直接宽禁带半导体材料,室温下禁带宽度为3.37 eV ,激子束缚能为60meV。
纳米氧化锌具有非迁移性、压电性、荧光性、吸收和散射紫外线能力等特殊能力,ZnO一维材料的阵列能够加快光生电子、空穴的分离,使电子具有良好的运输性,所以纳米棒、纳米线阵列的制备备受关注。
氧化锌(ZnO)在自然界有两种晶体结构,即纤锌矿结构和闪锌矿结构。
其中稳定相是纤锌矿结构(如左图),属六方晶系,为极性晶体。
制备ZnO一维材料阵列的方法主要有气相沉积法、溅射法或外延法等,这些技术需要昂贵的仪器、苛刻的实验条件,而溶液法则具有设备简单、条件温和等优点。
目录摘要 (1)1.ZnO材料简介 (1)2.ZnO材料的制备 (1)2.1 ZnO晶体材料的制备 (1)2.2 ZnO纳米材料的制备 (2)3. ZnO材料的应用 (3)3.1 ZnO晶体材料的应用 (3)3.2 ZnO纳米材料的应用 (5)4.结论 (7)参考文献 (9)氧化锌材料的研究进展摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
关键词:ZnO;晶体材料;纳米材料1.ZnO材料简介氧化锌材料是一种优秀的半导体材料。
难溶于水,可溶于酸和强碱。
作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。
ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。
此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。
纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。
下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
2.ZnO材料的制备2.1 ZnO晶体材料的制备生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。
尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。
由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。
由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。
ZnO纳米线的快速生长机理及其场发射性能研究郑中华;林建平;杨智【摘要】为了快速制备具有优良场发射性能的ZnO纳米线,对ZnO纳米线的生长机理及场发射性能进行研究.首先采用优化的两步法制备出高长径比的ZnO纳米线,其次采用SEM对ZnO的微观形貌进行表征,然后,在分析形貌特点的基础上,说明了强碱体系下ZnO纳米线薄膜的快速生长机理.最后,对典型样品的场发射性能进行了测试.测试果表明,优化后的两步法,只需3 h即可获得直径为40~50nm,长度为2.2~2.7μm,长径比高达54的纳米线.薄膜的开启电场为3.6 V/μm,阈值场强为9.1 V/um,场增强因子β 高达3391.研究表明,高pH值溶液可以加快ZnO纳米线沿C轴方向的择优生长,获得高长径比的ZnO纳米线,进而获得优良的场发射性能.【期刊名称】《液晶与显示》【年(卷),期】2018(033)009【总页数】6页(P758-763)【关键词】ZnO;纳米线;生长机理;场发射【作者】郑中华;林建平;杨智【作者单位】福建师范大学协和学院 ,福建福州 350108;厦门理工学院福建省功能材料及应用重点实验室 ,福建厦门 361024;西安交通大学电子陶瓷与器件教育部重点实验室 ,陕西西安 710049【正文语种】中文【中图分类】O462.41 引言ZnO纳米材料具有丰富的表面形貌和有序排列的纳米结构,特别是其较大的禁带宽度和室温下较高的激子结合能,使其具有独特的气敏、光学、电学等性质。
特别地,对于一维ZnO纳米材料,其高比表面积、大的长径比以及表现出来的小尺寸效应、量子限域效应,能进一步提高器件的性能,在发展新颖的纳米器件中具有很好的应用潜力。
目前,在太阳能电池[1]、气体传感器[2-3]、紫外探测器[4]、发光二极管[5-6]、场发射显示[7-11]等技术领域中已成为国内外研究的热点。
目前ZnO纳米材料的制备方法可分为以下两大类:一是高温合成法:主要有热蒸发法,金属有机物化学气相沉积法;另一个是低温合成法:主要有液相合成法。
高质量氧化锌晶体的水热法合成及其光电性能研究目前尺寸较大的ZnO单晶的生长方法主要有助溶剂法、水热法、气相生长法和柑锅下降法。
1、助溶剂法助溶剂法是利用助溶剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发溶剂,使熔体过饱和而结晶的方法。
2、气相法气相法是利用蒸汽压较大的材料,在适当的条件下,使蒸汽凝结成晶体的方法,气相法适合于生长板状晶体。
3、坩埚下降法坩埚下降法是让熔体在柑锅中冷却而凝固,凝固过程从钳锅的一端开始逐渐扩散到整个熔体。
4、水热法水热法又称高温溶液法,其中包括温差法、降温法(或升温法)及等温法。
为了提高晶体的生长速度,水热法一般采用双温区高压反应釜,主要依靠容器内的溶液维持温差对流形成过饱和状态(通过隔板和加热来调整温差)。
水热法需要选择合适的矿化剂,并控制好矿化剂浓度,溶解区和生长区的温度和温度差、填充度(控制生长压力)、生长区的预饱和、合理的元素掺杂、升温恒温程序、籽晶的质量以及营养料的纯度等工艺要素,优化各个工艺条件。
微波辅助加热法制备纳米材料研究进展一、微波及其特征与常规加热不同,微波加热是以体加热的方式进行,反应物对微波能量的吸收与分子的极性有关。
微波加热是通过微波与物质相互作用而转变的。
在电磁场的作用下,物质中微观粒子能产生极化。
极性介质在微波场作用下随其高速旋转从而被均匀地加热;对于许多不能直接明显地吸收微波的物质,可选用适当的能强烈吸收微波的催化剂,通过在其表面形成比周围温度更高的“热点”(hotsPot)而加速反应。
利用微波加热,许多反应的速度往往是常规加热的数十倍,甚至数千倍。
微波能在很短的时间内均匀加热,大大消除了温度梯度,使沉淀相瞬间成核,从而获得均匀的超细粉体。
微波辅助加热对化学反应非常复杂的,除了具有热效应外(tharmal effects),还存在一种不是由温度引起的非热效应(加nontharmal effects),它能改变反应的动力学性质,降低反应的活化能,即微波对化学反应存在着选择性加热的影响(物质分子结构与微波频率的匹配关系),存在着某些特定的非热效应的影响。
水热法生长ZnO∶Ga晶体过程及性能研究张一骐;王金亮;任孟德;雷威;左艳彬【摘要】采用水热法于36#水热反应釜中在四种条件下制备了ZnO:Ga晶体,对比了四种参数条件下晶体的生长速度及生长质量,深入分析了过快生长速度工艺下晶体产生微孔的原因.在D工艺条件下(4MKOH +0.25M LiOH+1.25mlH2O2,360-340℃)获得了生长速度适宜、高质量的ZnO:Ga单晶,晶体最大尺寸达到32.36 mm×27.46 mm×5.52 mm.Ga:ZnO晶体的生长习性为形成一个单锥六棱具有显露p锥面即(101-1)和负极面(0001-)的柱体,而柱显露m面(101-0)发生退化.测试ZnO:Ga晶体的双晶摇摆曲线显示晶体具有优良的结晶质量,其中+c[002]晶面的FWHM为11arc sec,而-c晶面的结晶质量略低于+c方向,FWHM为17arc sec.较之纯ZnO晶体,Ga:ZnO晶体在750nm处透过率曲线开始下降,其在大于750nm 波长的可见及红外光区的特异吸收性能将具有广泛的应用前景.【期刊名称】《超硬材料工程》【年(卷),期】2016(028)003【总页数】6页(P57-62)【关键词】ZnO∶Ga;水热法;晶体;过程;性能【作者】张一骐;王金亮;任孟德;雷威;左艳彬【作者单位】中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;桂林理工大学地球科学学院,广西桂林 541006;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004;桂林理工大学地球科学学院,广西桂林 541006;中国有色桂林矿产地质研究院有限公司,国家特种矿物材料工程技术研究中心,广西超硬材料重点实验室,广西桂林 541004【正文语种】中文【中图分类】TQ174氧化锌作为一种重要的金属氧化物半导体陶瓷材料,在光电、压电、气敏等方面的性能和应用受到了相关领域研究人员的广泛关注。
目录摘要 (1)1.ZnO材料简介 (1)2.ZnO材料的制备 (1)2.1 ZnO晶体材料的制备 (1)2.2 ZnO纳米材料的制备 (2)3. ZnO材料的应用 (3)3.1 ZnO晶体材料的应用 (3)3.2 ZnO纳米材料的应用 (5)4.结论 (7)参考文献 (9)氧化锌材料的研究进展摘要介绍了氧化锌(ZnO)材料的性质,简单综述一下近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
关键词:ZnO;晶体材料;纳米材料1.ZnO材料简介氧化锌材料是一种优秀的半导体材料。
难溶于水,可溶于酸和强碱。
作为一种常用的化学添加剂,ZnO广泛地应用于塑料、硅酸盐制品、合成橡胶、润滑油、油漆涂料、药膏、粘合剂、食品、电池、阻燃剂等产品的制作中。
ZnO的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,在半导体领域的液晶显示器、薄膜晶体管、发光二极管等产品中均有应用。
此外,微颗粒的氧化锌作为一种纳米材料也开始在相关领域发挥作用。
纳米ZnO粒径介于1-100nm之间,是一种面向21世纪的新型高功能精细无机产品,表现出许多特殊的性质,如非迁移性、荧光性、压电性、吸收和散射紫外线能力等,利用其在光、电、磁、敏感等方面的奇妙性能,可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等[1–5]。
下面我们简单综述一下,近几年ZnO周期性晶体材料和ZnO纳米材料的新进展。
2.ZnO材料的制备2.1 ZnO晶体材料的制备生长大面积、高质量的ZnO晶体材料对于材料科学和器件应用都具有重要意义。
尽管蓝宝石一向被用作ZnO薄膜生长的衬底,但它们之间存在较大的晶格失配,从而导致ZnO外延层的位错密度较高,这会导致器件性能退化。
由于同质外延潜在的优势,高质量大尺寸的ZnO晶体材料会有利于紫外及蓝光发射器件的制作。
由于具有完整的晶格匹配,ZnO同质外延在许多方面具有很大的潜力:能够实现无应变、没有高缺陷的衬底-层界面、低的缺陷密度、容易控制材料的极性等。
ZnO和ZnS一维纳米结构的生长与性能研究的开题
报告
一、研究背景
随着纳米科技的不断发展,人们对于一维纳米材料的兴趣越来越大。
其中,氧化锌(ZnO)和硫化锌(ZnS)是两种广泛应用于光电子学和催化学领域的半导体材料,其一维纳米结构展现出了一些独特的性质,如
高比表面积、低维带结构、量子限制等。
因此,研究ZnO和ZnS一维纳
米结构的生长和性能对于纳米技术的发展具有重要意义。
二、研究内容
本文将重点研究ZnO和ZnS一维纳米结构的生长和性能,具体包括以下几个方面:
1.采用溶剂热法、电化学法等方法制备不同形态的ZnO和ZnS一维
纳米结构。
2.使用SEM、TEM等技术对ZnO和ZnS一维纳米结构进行形貌和结构表征。
3.通过XRD、PL等技术对ZnO和ZnS一维纳米结构的物理性质进行分析,如晶体结构、能带结构和发光特性等。
4. 探究ZnO和ZnS一维纳米结构的应用潜力,包括光电子学和催化学领域等。
三、研究意义
本研究通过制备不同形态的ZnO和ZnS一维纳米结构,以及对其结构和性能的表征和分析,可以深入了解纳米结构对材料性质的影响,为
纳米技术的发展提供理论依据。
同时,通过研究其应用潜力,可以为相
关领域的技术创新提供一定的参考和借鉴。
氧化锌纳米结构的热蒸发沉积合成及生长机理田蜜;侯丽珍;喻博闻;宋春蕊;苏耿;王世良;贺跃辉【摘要】以ZnO粉末为原料,用N 2作为载气,采用无催化辅助的热蒸发法沉积制备ZnO纳米结构,分别用X线衍射仪、扫描电镜和透射电镜对ZnO的物相、形貌和结构进行表征,并结合晶体生长理论和实验条件,对ZnO产物的形貌变化和纳米带生长方向进行研究.结果表明:离气源较近的位置到离出口较近的位置,ZnO纳米结构的形貌由连续颗粒膜逐渐向纳米带、直径大于100 nm和直径小于100 nm 的纳米线变化.特别是发现ZnO纳米带除了常见的[001]生长方向外,还有[101]和[203]两种极为罕见的生长方向,这些纳米带都具有上下表面均由(±010)晶面组成的特点.ZnO产物的形貌变化是其生长过程由动力学控制为主转向热力学控制为主的结果,纳米带生长方向不同,可能与其晶核形成过程中的竞争生长有关.【期刊名称】《粉末冶金材料科学与工程》【年(卷),期】2016(021)001【总页数】7页(P18-24)【关键词】ZnO;纳米结构;热蒸发沉积;纳米带;纳米线;生长方向【作者】田蜜;侯丽珍;喻博闻;宋春蕊;苏耿;王世良;贺跃辉【作者单位】中南大学物理与电子学院,先进材料超微结构与超快过程研究所,长沙410083;湖南师范大学物理与信息科学学院,长沙 410081;中南大学粉末冶金国家重点实验室,长沙 410083;中南大学物理与电子学院,先进材料超微结构与超快过程研究所,长沙 410083;中南林业科技大学材料科学与工程学院,长沙 410004;中南大学物理与电子学院,先进材料超微结构与超快过程研究所,长沙 410083;中南大学粉末冶金国家重点实验室,长沙 410083【正文语种】中文【中图分类】O781ZnO作为II-VI族宽禁带半导体材料, 室温下带隙为3.37 eV,具有大的激子束缚能60 meV,在室温条件下表现出近紫外光[1]和透明导电性能[2]。
氧化锌晶体生长研究进展
当前生长氧化锌体单晶的方法主要有助熔剂法、水热法、气象沉积法、坩锅下降法等等。
11助熔剂法.助熔剂法是利用助熔剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发熔剂,使熔体过饱和而结晶的方法。
最先采用这种方法制备氧化镁的是美国的Nielsen等[12]人,得到(0001)取向的透明略微带浅黄色的呈平板状晶体(25mm!1mm)。
1967年,美国的A.B.Chase和JudithA.Osmer用同样的助熔剂应用区域冷却法(LocalizedColling)在不同的温度梯度下,以不同的降温速率,利用氧化镁的自发成核制成了5mm!5mm!3mm的晶体。
2002年,日本的KunihikoOka等人分别用顶部籽晶溶液法(TSSG)和溶液传输浮区法(TSFZ)生长出22mm!4mm及4mm!12mm的晶体。
这是目前报道用助熔剂法生长的尺寸最大的晶体体单晶。