第11章脂代谢
- 格式:ppt
- 大小:6.12 MB
- 文档页数:108
第十一章非营养物质代谢一、内容提要肝是人体多种物质代谢的重要器官,它不仅在蛋白质、氨基酸、糖类、脂类、维生素、激素等代谢中起着重要作用,同时还参与体内的分泌、排泄、生物转化等重要过程。
(一)肝的物质代谢特点1.肝的糖、脂类、蛋白质代谢特点(1)糖代谢肝通过肝糖原的合成、分解与糖异生作用来维持血糖浓度的相对恒定。
确保全身各组织,特别是脑和红细胞的能量供应。
(2)脂类代谢肝在脂类的消化、吸收、分解、合成及运输等过程中均起着重要的作用。
肝将胆固醇转化为胆汁酸,以协助脂类物质及脂溶性维生素的消化、吸收;肝是进行脂肪酸β–氧化、脂肪合成、改造及合成酮体的主要场所;肝是合成磷脂、胆固醇、脂肪酸的重要器官,并以脂蛋白的形式转运到脂肪组织储存或其它组织利用。
(3)蛋白质代谢肝在人体蛋白质合成、分解和氨基酸代谢中起着重要作用。
除γ-球蛋白外,几乎所有的血浆蛋白质均来自肝,包括全部的清蛋白、部分球蛋白、大部分凝血因子、纤维蛋白原、多种结合蛋白质和某些激素的前体等;肝含有丰富的氨基酸代谢酶类,氨基酸在肝内进行转氨基作用、脱氨基作用和脱羧基作用;氨基酸代谢产生的氨主要在肝生成尿素。
2.肝在维生素、激素代谢的特点(1)维生素代谢肝在维生素的吸收、储存、运输及代谢中起重要作用,肝是人体内含维生素A、K、B1、B2、B6、B12、泛酸与叶酸最多的器官;肝可将很多B族维生素转化为相应辅酶或辅基。
(2)激素代谢许多激素在发挥其作用后,主要在肝内被分解转化、降低或失去其生物活性,此过程称为激素的灭活。
(二)肝的生物转化1.生物转化的概念非营养物质经过氧化、还原、水解和结合反应,使其毒性降低、水溶性和极性增强或活性改变,易于排出体外的这一过程称为生物转化作用。
2.生物转化的物质①内源性:系体内物质代谢产物,如氨、胺、胆红素等,以及发挥作用后有待灭活的激素、神经递质等;②外源性:系有外界进入体内的各种异物,如药物、毒物、色素、食品添加剂、环境污染物等。
11章.蛋白质的降解和氨基酸的代谢1.蛋白质的酶促降解1.1.细胞内蛋白质的降解一般认为真核细胞对蛋白质的降解有两个体系.其一是溶酶体降解.其二是依赖ATP,在细胞溶胶中以泛素标记的选择性蛋白质的降解.1.2外源蛋白质的酶促降解外源蛋白质进入体内,必须先经过水解作用变为小分子的氨基酸,然后才能被吸收.就高等动物来说,外界食物蛋白质经消化吸收的氨基酸和体内合成及组织蛋白质经降解的氨基酸,共同组成体内氨基酸代谢库.所谓氨基酸代谢库即指体内氨基酸的总量.氨基酸代谢库中的氨基酸大部分用于合成蛋白质,一部分可以作为能源,体内有一些非蛋白质的含氮化合物也是以某些氨基酸作为合成的原料.2.氨基酸的分解代谢氨基酸的共同分解代谢途径包括脱氨基作用和脱羧基作用两个方面.氨基酸经脱氨基作用生成氨及α-酮酸.氨基酸经脱羧基作用产生二氧化碳及胺.胺可随尿直接排出,也可在酶的作用下,转化为可被排出的物质和合成体内有用的物质.氨基酸脱氨基的方式有氧化脱氨基作用、转氨基作用、联合脱氨基作用、非氧化脱氨基作用和脱酰胺基作用.3.氨的排泄方式水生动物排氨鸟类及爬行动物排尿酸哺乳动物排尿素尿素是哺乳动物蛋白质代谢的最终产物10章.脂质代谢1脂质的酶促水解1.1三酰甘油的酶促水解三酰甘油是重要的储能物质.在脂肪酶的作用下水解为甘油和脂肪酸.甘油可氧化供能也可糖酵解途径生成糖.脂肪酸可彻底氧化供能.1.2磷脂的酶促水解磷脂酶A1和A2分别专一的出去Sn-1位或sn-2位上的脂肪酸,生成的仅含有一个脂肪酸的产物称溶血磷脂.溶血磷脂是一种很强的表面活性剂,能使细胞膜和红细胞膜溶解.2.脂肪酸的β-氧化作用2.1脂肪酸的β-氧化作用是指:脂肪酸在氧化分解时,碳链的断裂发生在脂肪酸的β位,即脂肪酸的碳链的断裂方式是每次切除2个碳原子.细胞溶胶中的长链脂肪酸首先被活化为脂酰辅酶A,然后长链脂酰辅酶A在肉碱的携带下进入线粒体.需要肉碱脂酰转移酶脂肪酸的β-氧化作用四步:脱氢、加水、再脱氢、硫解.循环一次,产生少两个碳原子的脂酰辅酶A和一分子乙酰辅酶A.1mol软脂酸彻底氧化需要进行7次β-氧化,产生8mol乙酰辅酶A.每次β-氧化产生1mol FADH2 和1mol NADH+H+ ,则共产生7molFADH2和7molNADH+H+ .进入呼吸链氧化生成28mol ATP1.5×7+2.5×7=28;8mol 乙酰辅酶A进入TCA循环氧化可生成80molATP10×8;这样1mol软脂酸彻底氧化一共产生108molATP,因活化时消耗2molATP,故净得106molATP.不饱和脂肪酸的氧化与饱和脂肪酸基本相同,单不饱和脂肪酸氧化需要△3-顺,△2-反烯脂酰辅酶A异构酶;多不饱和脂肪酸氧化还需要△2-反,△4-顺二烯脂酰辅酶A还原酶和△3-反,△2-反烯脂酰辅酶A异构酶的共同作用.3.酮体乙酰乙酸、β-羟丁酸和丙酮,统称为酮体.酮体在肝中产生,可被肝外组织利用.酮体的生成:在肝中脂肪酸的氧化不是很完全,二分子的乙酰辅酶A可以缩合成乙酰乙酰辅酶A;乙酰乙酰辅酶A再与一分子乙酰辅酶A缩合成β-羟-β-甲戊二酸单酰辅酶A,后者裂解成乙酰乙酸;乙酰乙酸在肝线粒体中可以还原生成β-羟丁酸,乙酰乙酸可以脱羧生成丙酮.酮体的氧化:在肝中形成的乙酰乙酸和β-羟丁酸进入血液循环后送至肝外组织,通过三羧酸循环循环氧化.β-羟丁酸首先氧化成乙酰乙酸,然后乙酰乙酸在β-酮脂酰辅酶A转移酶或乙酰乙酸硫激酶的作用下,生成乙酰乙酸辅酶A,再与第二个辅酶A作用形成两分子一线辅酶A,乙酰辅酶A可进入三羧酸循环循环进行氧化.9.糖的分解代谢1.淀粉的酶促水解1.1 α-淀粉酶可以水解淀粉中任何部位的α-1,4糖苷键,β-淀粉酶只能从非还原端开始水解.,β-淀粉酶不能水解α-1,6糖苷键.水解淀粉中的α-1,6糖苷键的酶是α-1,6糖苷酶.2.糖的分解代谢途径包括糖酵解、三羧酸循环、戊糖磷酸途径、葡萄糖醛酸途径、乙醛酸途径.3.糖酵解无氧条件下,1mol葡萄糖变成2mol丙酮酸并伴随ATP生成的过程称为糖酵解.丙酮酸的三条代谢去路:①在组织缺氧情况下丙酮酸还原为乳酸;②酵母菌可以使丙酮酸还原为乙醇;③有氧条件下,丙酮酸转化为乙酰辅酶A,进入三羧酸循环,彻底氧化为二氧化碳和水.糖酵解从葡萄糖开始,分为10步酶促反应,均在细胞液中进行.糖酵解的调控:从单细胞生物到高等动植物都存在糖酵解过程,其生理意义主要是释放能量,使机体在缺氧情况下仍能进行生命活动.糖酵解的中间产物可为机体提供碳骨架.糖酵解主要受3中酶的调控:①果糖磷酸激酶;①果糖磷酸激酶是最关键的限速酶.1.ATP/AMP比值对该酶活性的调节具有重要的生理意义.当ATP浓度较高时,果糖磷酸激酶几乎无活性,糖酵解作用减弱;当AMP积累,ATP减少时,酶活性恢复,糖酵解作用增强.2.氢离子H可抑制果糖磷酸激酶的活性,防止肌肉中形成过量乳酸而使血液酸中毒.3.柠檬酸可增加ATP对酶活性的抑制作用.果糖-2,6-二磷酸能消除ATP对酶的抑制效应,使酶活化.②己糖激酶活性的调节.果糖-6-磷酸是的别构抑制剂.③丙酮酸激酶活性的调节.果糖-1,6-二磷酸是丙酮酸激酶的激活剂;丙氨酸是该酶的别构抑制剂.ATP、乙酰CoA 也可以抑制该酶的活性.糖酵解中ATP的变化:糖酵解阶段中,由己糖激酶和果糖磷酸激酶催化的两步反应,各消耗1分子的ATP.在丙糖阶段,甘油酸—1,3—二磷酸和烯醇丙酮酸磷酸经底物水平磷酸化反应,个生成1分子ATP,由于果糖—1,6—二磷酸在醛缩酶催化下裂解,相当于生成2分子甘油醛—3—磷酸.因此,每分子葡萄糖在糖酵解阶段净生成2分子ATP.在糖酵解过程中有3步不可逆反应,分别由己糖激酶、果糖磷酸激酶和丙酮酸激酶.其中果糖磷酸激酶是最关键的限速酶,其活性被ATP、柠檬酸所抑制;被AMP和果糖-2,6-二磷酸变构激活.2.糖的有氧分解将糖的有氧分解分为3个阶段,第一是糖酵解阶段,第二是丙酮酸进入线粒体被氧化脱羧成乙酰辅酶A.第三阶段是乙酰辅酶A进入柠檬酸循环生成二氧化碳和水.三羧酸循环循环:乙酰CoA和草酰乙酸缩合为柠檬酸进入三羧酸循环循环.丙酮酸经三羧酸循环循环途径能形成12.5个ATP,每分子葡萄糖能产生2分子的丙酮酸,将产生25个ATP.柠檬酸合酶、异柠檬酸脱氢酶与α-酮戊二酸脱氢酶系是调控三羧酸循环循环的限速酶.其活性受ATP、NADH等物质的抑制.葡萄糖在有氧条件下氧化分解为二氧化碳和水净生成32分子ATP.乙醛酸途径两种关键酶是苹果酸合酶和异柠檬酸裂解酶.戊糖磷酸途径:两个5碳糖相加生成3碳和7碳糖,后二者相加在生成6碳和4碳糖,5碳与4碳糖相加生成3碳和6碳糖.糖原的分解与合成的关键酶是磷酸化酶与糖原合酶.糖异生:糖异生作用是指非糖物质如甘油,生糖氨基酸和乳酸等合成葡萄糖或糖原的过程.为什么糖异生并非完全是糖酵解的逆转反应8新陈代谢总论和生物氧化1ATP是生物细胞内能量代谢的偶联剂.从低等的单细胞生物到高等的人类,能量的释放、贮存和利用都是以ATP 为中心.ATP含有一个磷酯键和两个由磷酸基团形成的磷酸酐键.6 酶1酶的概念与特点:酶是具有高效性与专一性的生物催化剂.三层含义:一,酶是催化剂;二,酶是生物催化剂;三,酶在行使催化剂功能时,具有高效性与专一性的特点酶的催化效率可以用转换数来表示.2酶的化学本质与组成除核酶外,酶都是蛋白质.酶可以分为单纯蛋白质与缀合蛋白质.缀合蛋白质除了氨基酸残基外,还含有金属离子、有机小分子等化学成分,这类酶称为全酶.全酶中蛋白质部分称为辅酶.非蛋白质部分称为辅因子.酶的分类:1.氧化还原酶类;2.转移酶类;3.水解酶类;4裂合酶类;5异构酶类;6合成酶类.酶的专一性分类:①结构专一性分为绝对专一性与相对专一性;②立体异构专一性旋光异构专一性和几何异构专一性酶的作用机制:活化分子:反应物一种更高能量的状态.过渡态:活化分子所处的这种需要更多能量的状态.基态:与活化分子相对应的普通反应物分子所处的状态.活化能:处于过渡态的分子比处于基态的分子多出来的Gibbs 自由能.酶通过降低反应活化能使反应速率加快.酶活性部位的结构是酶作用机理的结构基础.酶具有高效催化效率的分子机制:酶分子的活性部位结合底物分子形成酶—底物复合物,在酶的帮助下,底物分子进入一种特定的状态,形成此类过渡态所需的活化能远小于非酶促反应所需的活化能,使反应能够顺利进行,形成产物释放出游离的酶,使其能够参与其余底物的反应.与该分子机理相关的因素:1.邻近效应:邻近效应指酶与底物结合以后,使原来游离的底物集中于酶的活性部位,从而减少底物之间或底物与酶的催化基团之间的距离,使反应更容易进行.2.定向效应:指底物的反应基团之间、酶的催化基团与底物的反应基团之间的正确定位与取向所产生的增进反应速率的效应.3.促进底物过渡态形成的非共价作用:当酶与底物结合后,酶与底物之间的非共价可以使底物分子围绕其敏感键发生形变,从而促进底物过渡态的形成.4.酸碱催化:5.共价催化:酶促反应动力学:酶底物中间复合物学说:即酶首先和底物结合生成中=v 间复合物,中间复合物再生成产物.米氏方程:m K S S v v +=][][max ;K m 物理意义:K m 值是反应速率为最大值的一半时的底物浓度.其单位是mol/l影响酶促反应速率的因素包括:抑制剂、温度、ph 值,激活剂.1,通过改变酶必需基团的化学性质从而引起酶活力的降低或丧失的作用称为抑制作用.酶的抑制剂包括不可逆抑制剂与可逆抑制剂.可逆抑制剂可分为:竞争性抑制剂、非竞争性抑制剂、反竞争性抑制剂.氯离子是唾液淀粉酶的激活剂.酶活性的调节酶活性的调节方式:1.通过改变酶的分布于数量来调节酶的活性.2.通过改变细胞内已有的酶分子的活性来调节酶的活性.酶的别构调控许多酶具有活性部位外,还具有调节部位.酶的调节部位可与某些化合物可逆的非共价结合,使酶的结构发生改变,进而改变酶的活性,这种酶活性的调节方式称为别构调节.对别构酶加热或用化学试剂处理,可以使别构酶解离并失去调节活性,称为脱敏作用.对酶分子具有别构调节作用的化合物称为效应物.效应物对别构酶的调节作用可分为同促效应与异促效应.同促效应中,酶的活性部位与调节部位是相同的,效应物是底物,底物与别构酶的某一活性部位相结合可促使剩余底物与其它剩余活性部位相结合,导致酶促反应速率增加,这称为正协同效应.如果底物与酶的某一活性部位结合导致剩余底物更难与其余剩余活性部位结合,则称为负协同效应.异促效应中,酶的活性部位与调节部位是不同的.效应物是非底物分子.酶原的激活酶原:指的是生活物体内合成的无活性的酶的前体.酶原激活:在特定蛋白水解酶的催化作用下,酶原的结构发生改变,形成酶的活性部位,变成有活性的酶.酶原的激活是一个不可逆的过程.5脂质与生物膜1.1.1动植物油的化学本质是脂酰甘油.1.1三酰甘油的理化性质:1.3磷脂分为甘油磷脂与鞘磷脂.最简单的甘油磷脂是磷脂酸.1.4生物膜主要由蛋白质与脂质.4糖类单糖一般是含有3--6个碳原子的多羟基醛或多羟基酮.最简单的单糖是甘油醛和二羟丙酮.单糖的构型以距离醛基最远端不对称碳原子为准,羟基在左边的为L构型,羟基在右边的为D构型.单糖分子中醛基和其他碳原子上羟基成环反应生成的产物为半缩醛.六元环是吡喃糖,五元环为呋喃糖.六元环更稳定.连接半缩醛羟基的碳称为异头碳.异头物的半缩醛羟基与决定构型的羟基在同侧着为α型,在相反者为β构型.单糖的构型:椅式构象更稳定.糖类衍生物甘露醇在临床上用来降低颅内压和治疗急性肾衰竭.葡糖醛酸是人体一种重要的解毒剂.寡糖寡糖是少数单糖2-10缩合的聚合物,低聚糖是指20个以下单糖缩合的聚合物.麦芽糖成键类型:α1-4糖苷键,多糖多糖是由多个单糖基以糖苷键相连而成的高聚物.多糖没有还原性和变旋性.淀粉天然淀粉一般由直链淀粉与支链淀粉组成.直链淀粉是D—葡萄糖基以α—1,4糖苷键连接的多糖链.直链淀粉分子的空间构象是卷曲成螺旋形的,每一回旋为6个葡萄糖基.显色螺旋构象是碘显色的必要条件,碘分子进入淀粉螺旋圈内,糖游离羟基称为电子供体,碘分子成为电子受体,形成淀粉碘络合物,呈现颜色.其颜色与糖链的长度有关.直链淀粉成蓝色,支链淀粉成紫红色.纤维素自然界中最丰富的有机化合物是纤维素.纤维素是一种线性的由D—吡喃葡糖基以β—1,4糖苷键3.核酸RNA:核糖核酸DNA:脱氧核糖核酸A 腺嘌呤T 胸腺嘧啶G 鸟嘌呤C胞嘧啶U 尿嘧啶核苷:是戊糖和含氮碱基生成的糖苷.核苷酸间的连接键是3,5—磷酸二酯键.碱基序列表示核酸的一级结构,DNA双链的螺旋形空间结构称DNA的二级结构.A与T配对形成2个氢键,G与C配对形成3个氢键.增色效应:核酸水解为核苷酸,紫外吸收值增加.核酸结构的稳定性因素:1 碱基对间的氢键.2 碱基堆积力.3 环境中的正离子核酸变性在核酸变性时,将紫外吸收的增加量达到最大增量的一半时的温度值称溶解温度,即Tm.影响Tm的因素:1.G—C对含量,G—C对含量越高,Tm也越高.2.溶液的离子强度离子强度较低的介质中,Tm较低.3.溶液的Ph4.变性剂复性:变性核酸的互补链在适当的条件下重新缔合成双螺旋的过程成为复性.变性核酸复性时需要缓慢冷却,故又称退火.变性核酸复性后,核酸的紫外吸收降低,这种现象称为减色效应.影响复性的因素:1 复性的温度 2单链片段的浓度 3 单链片段的长度 4 单链片段的复杂度 5 溶液的离子强度分子杂交:在退火条件下,不同来源的DNA互补区形成双链,或DNA单链和RNA单链的互补区形成DNA—RNA杂合双链的过程称为分子杂交.2蛋白质1.蛋白质的分类蛋白质的平均含氮量为16%.2.蛋白质的组成蛋白质的水解产物为氨基酸等电点:。
第八章生物氧化1. 生物氧化:物质在生物体内进行氧化称生物氧化,主要指糖、脂肪、蛋白质等在体内彻底分解时逐步释放能量,最终生成C02和H2O的过程。
2. 生物氧化中的主要氧化方式:加氧、脱氢、失电子3. CO2的生成方式:体内有机酸脱羧4. 呼吸链:代谢物脱下的成对氢原子通过位于线粒体内膜上的多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水,这一系列酶和辅酶称为呼吸链,又称电子传递链。
组成(1) N ADH 氧化呼吸链:苹果酸-天冬氨酸穿梭NADH —复合物I —CoQ —复合物III —Cyt c —复合物IV f O 产2.5个ATP(2) 琥珀酸氧化呼吸链:3-磷酸甘油穿梭琥珀酸—复合物II —CoQ —复合物III —Cyt c —复合物IV —O 产1.5个ATP含血红素的辅基:血红蛋白、肌红蛋白、细胞色素、过氧化物酶、过氧化氢酶5. 细胞质NADH 的氧化:胞液中NADH必须经一定转运机制进入线粒体,再经呼吸链进行氧化磷酸化。
转运机制(1 ) 3-磷酸甘油穿梭:主要存在于脑和骨骼肌的快肌,产生 1.5个ATP(2 )苹果酸-天冬氨酸穿梭:主要存在于肝、心和肾细胞;产生2.5个ATP6. ATP的合成方式:(1 )氧化磷酸化:是指在呼吸链电子传递过程中偶联ADP磷酸化,生成ATP,又称为偶联磷酸化。
偶联部位:复合体I、III、IV(2 )底物磷酸化:是底物分子内部能量重新分布,通过高能基团转移合成ATP。
磷/氧比:氧化磷酸化过程中每消耗1摩尔氧原子(0.5摩尔氧分子)所消耗磷酸的摩尔数或合成ATP的摩尔数。
7. 磷酸肌酸作为肌肉中能量的一种贮存形式第九章糖代谢寸一、糖的生理功能:(1 )氧化供能(2 )提供合成体内其它物质的原料(3 )作为机体组织细胞的组成成分吸收速率最快的为-半乳糖二、血糖1. 血糖:指血液中的葡萄糖正常空腹血糖浓度:3.9~6.1mmol/L2. 血糖的来源:(1)食物糖消化吸收(2)肝糖原分解(3)糖异生去路:(1 )氧化分解供能(2)合成糖原(3)转化成其它糖类或非糖物质3. 血糖调节:肝脏调节、肾脏调节(肾糖阈)、神经调节、激素调节体内主要升血糖激素:胰高血糖素、糖皮质激素、肾上腺素、生长激素、甲状腺素三、糖代谢1. 无氧酵解(无氧或缺氧;生成乳酸;释放少量能量)关键酶:己糖激酶、6- 磷酸果糖激酶1、丙酮酸激酶反应部位:胞液产能方式:底物磷酸化净生成2ATP⑴ 葡萄糖磷酸化为6- 磷酸葡萄糖-1ATP⑵ 6- 磷酸葡萄糖转变为6- 磷酸果糖⑶ 6- 磷酸果糖转变为1,6- 二磷酸果糖-1ATP⑷ 1,6- 二磷酸果糖裂解⑸ 磷酸丙糖的同分异构化⑹ 3- 磷酸甘油醛氧化为1,3- 二磷酸甘油酸【脱氢反应】⑺ 1,3- 二磷酸甘油酸转变成3- 磷酸甘油酸【底物磷酸化】+1*2ATP⑻ 3- 磷酸甘油酸转变为2- 磷酸甘油酸⑼ 2- 磷酸甘油酸转变为磷酸烯醇式丙酮酸⑽ 磷酸烯醇式丙酮酸转变成丙酮酸,并通过底物水平磷酸化+1*2ATP(11)丙酮酸加氢转变为乳酸生理意义:(1)是机体在缺氧情况下获取能量的有效方式。
第十一章肾上腺素受体阻断剂肾上腺素受体阻断药能阻断肾上腺素受体从而拮抗去甲肾上腺素能神经递质或肾上腺素受体激动药的作用。
第一节α肾上腺素受体阻断剂α受体阻断药能选择性地与α肾上腺素受体结合,其本身不激动或较弱激动肾上腺素受体,却能阻碍去甲肾上腺素能神经递质及肾上腺素受体激动药与α受体结合,从而产生抗肾上腺素作用。
它们能将肾上腺素的升压作用翻转为降压作用,这个现象称为“肾上腺素作用的翻转”。
这可解释为α受体阻断药选择性地阻断了与血管收缩有关的α受体,与血管舒张有关的β受体未被阻断,所以肾上腺素的血管收缩作用被取消,而血管舒张作用得以充分地表现出来。
主要作用于血管α受体的去甲肾上腺素,它们只取消或减弱其升压效应而无“翻转作用”。
主要作用于β受体的异丙肾上腺素的降压作用则无影响。
根据这类药物对α1、α2受体的选择性不同,可将其分为三类:1.非选择性α受体阻断药(1)短效类:酚妥拉明、妥拉唑林(2)长效类:酚苄明2.选择性α1受体阻断药:哌唑嗪3.选择性α2受体阻断药:育亨宾一、非选择性α受体阻断剂酚妥拉明和妥拉唑啉【体内过程】酚妥拉明生物利用度低,口服效果仅为注射给药的20%。
口服后30分钟血药浓度达峰值,作用维持3-6小时。
肌内注射作用维持30-45分钟。
大多以无活性的代谢物从尿中排泄。
妥拉唑林口服吸收缓慢,排泄较快,以注射给药为主。
【药理作用】酚妥拉明和妥拉唑林与α受体以氢键、离子键结合,较为疏松,易于解离,故能竞争性地阻断α受体,对α1、α2受体具有相似的亲和力,可拮抗肾上腺素的α型作用,使激动药的量-效曲线平行右移,但增加激动药的剂量仍可达到最大效应。
妥拉唑林作用稍弱。
1.血管酚妥拉明具有阻断血管平滑肌α1受体和直接扩张血管作用。
静脉注射能使血管舒张,血压下降,静脉和小静脉扩张明显,舒张小动脉使肺动脉压下降,外周血管阻力降低。
2.心脏酚妥拉明可兴奋心脏,使心肌收缩力增强,心率加快,心排出量增加。
第十一章代谢和代谢调控总论一、名词解释1.新陈代谢:是机体与外界环境不断进行物质交换的过程;2.同化作用:从外界环境摄取营养物质,通过消化吸收并在体内进行一系列复杂而有规律的化学变化,转化为自身物质,就是同化作用;3.异化作用:机体自身原有的物质也不断转化为废物而排出体外的作用;4.基础代谢:指人体处于适宜温度以及清醒而安静的状态中,同时没有食物消化与吸收活动的情况下,所消耗的能量称为基础代谢;5.抗代谢物:指在化学结构上与天然代谢物类似,进入人体可与正常代谢物相拮抗,从而影响正常代谢的物质;6.代谢激活剂:指能激活机体代谢某一反应或某一过程的物质;7.代谢抑制剂:指能抑制机体代谢某一反应或某一过程的物质;8.激素:指体内的某一细胞、腺体、或者器官所产生的可以影响机体内其他细胞活动的化学物质。
二、填空题1.生物体内物质代谢的特点主要有整体性、途径多样性、阻止特异性、可调节性。
2.体内能量的直接利用形式是ATP 。
在生物体内可产生能量的物质有糖、脂肪、蛋白质等。
3.常用的物质代谢研究方法主要有利用正常机体方法、使用病变动物方法、器官切除法、立体组织器官法、组织切片或匀浆法、酶及其抑制剂法、同位素示踪法、使用亚细胞成分的方法、致突变法、分子生物法。
4.细胞或酶水平的调节方式有两种:一种是酶活力的调节,属快调节;另一种是酶含量的调节,属慢调节。
三、简答题1.简述蛋白质与糖代谢的相互联系。
答:①糖是蛋白质合成的碳源和能源:如糖代谢过程中,产生的许多α-酮酸,通过氨基化或者转氨作用可以生成对应氨基酸;②蛋白质分解产物进入糖代谢:组成蛋白质的20种氨基酸除亮氨酸和赖氨酸外,均可产生糖异生的中间产物,经糖异生作用生成糖。
2.简述糖与脂类代谢的联系。
答:①糖转变为脂肪:如乙酰CoA是唐分解的重要中间产物,正是合成脂肪酸与胆固醇的主要原料;②脂肪转变为糖:脂肪分子中的甘油可通过糖的异生作用转变为糖;③能量的相互利用。
姓名______________学号________________ 成绩_____________第十一章脂质代谢一、是非判断题1. 脂肪酸的β-氧化和α-氧化都是从羧基端开始的。
2. 只有偶数碳原子的脂肪才能经β-氧化降解成乙酰CoA.。
3. 脂肪酸β-氧化酶系存在于胞浆中。
4. 肉毒碱可抑制脂肪酸的氧化分解。
5. 萌发的油料种子和某些微生物拥有乙醛酸循环途径,可利用脂肪酸α-氧化生成的乙酰CoA 合成苹果酸,为糖异生和其它生物合成提供碳源。
6. 烯脂酰CoA异构酶的作用是将△2反十二烯脂酰CoA转化为△3顺十二烯脂酰CoA。
7. 脂酰CoA 脱氢酶是一种黄素蛋白。
8. β-羟脂酰CoA 脱氢酶催化L、D 型β-羟脂酰CoA 脱氢。
9. 肉碱脂酰转移酶是一种限速酶,受丙二酸单酰ACP 抑制。
10.脂肪酸的氧化是从分子的羧基端开始的。
11.脂肪酸从头合成中,将糖代谢生成的乙酰CoA从线粒体内转移到胞液中的化合物是苹果酸。
12.脂肪酸的从头合成需要柠檬酸裂解提供乙酰CoA.。
13.在真核细胞内,饱和脂肪酸在O2的参与下和专一的去饱和酶系统催化下进一步生成各种长链脂肪酸。
14.脂肪酸的生物合成包括二个方面:饱和脂肪酸的从头合成及不饱和脂肪酸的合成。
15.甘油在甘油激酶的催化下,生成α-磷酸甘油,反应消耗ATP,为可逆反应。
16.真核生物脂肪酸合成酶系各成员共价串联成一条多肽链发挥作用。
17.硫脂酶是脂肪酸合成酶系中的重要成员。
18.β-羟脂酰ACP脱水酶催化下产生△2反丁烯酰ACP。
19.脂肪酸合成的直接前体是丙二酸单酰CoA。
20.在脂肪酸合成过程中,中间产物以非共价键与载体ACP 相联。
21.从乙酰CoA 合成1 分子棕榈酸,必须消耗8 分子ATP。
22.酰基载体蛋白(ACP)是饱和脂肪酸碳链延长途径中二碳单位的活化供体。
23.如果动物长期饥饿就要动用体内的脂肪,这时分解酮体的速度大于生成酮体的速度。
脂质是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。
脂质是脂肪和类脂的总称。
脂肪是三脂酯甘油酯或甘油三酯(triglyceride),脂肪的主要生理功能是分解供能和储能。
类脂包括磷脂、胆固醇及其酯和糖脂等,是细胞膜结构的重要组分。
膳食中脂质大多是三酰甘油,还有少量的磷脂及胆固醇,本章首先分别对脂肪,磷脂和胆固醇的降解吸收进行了详细的阐述,并介绍了脂质的转运和贮存。
三酰甘油和磷脂水解后都能生成甘油和脂肪酸,本章分别介绍了甘油和脂肪酸的分解代谢。
β-氧化是脂肪酸的主要氧化分解方式,此外还存在α-氧化和w-氧化。
本章着重对β-氧化的各步反应及能量转化进行了详细阐述,对酮体和磷脂的分解代谢以及胆固醇的转化也进行了介绍。
高等动物需要大量合成脂质物质,脂肪酸合成在细胞质中进行,所需的主要碳源为乙酰-CoA。
本章主要对脂肪酸的合成代谢进行了详细阐述,并介绍了三酰甘油、磷脂和胆固醇的合成过程。
本章对脂质代谢的调节进行了详细阐述,包括激素对脂肪代谢的调节,脂肪酸代谢的调节以及胆固醇代谢的调节。
最后本章从食品工业、脂肪酸发酵和生物柴油制备三个方面对脂质代谢的应用进行了介绍。
二、自测题(一)单项选择题:1.[]酮体在肝外组织氧化利用时,需要下列哪种物质参加?A.乙酰CoA;B.琥珀酰CoA;C.丙二酸单酰CoA D.脂酰CoA2.[]属于必需脂肪酸的是:A.亚麻酸;B.软脂酸;C.油酸;D.月桂酸3.[]下列哪种酶是脂肪分解的限速酶?A.蛋白激酶;B.甘油二酯脂肪酶 C.激素敏感脂肪酶 D.甘油激酶4.[]下列哪一条途径不是乙酰CoA的代谢去路?A.生成柠檬酸;B.生成苹果酸;C.合成胆固醇D.生成丙酮酸5.[]携带软脂酰CoA通过线粒体内膜的载体为:A.固醇载体蛋白;B.酰基载体蛋白;C.肉碱;D.载脂蛋白6.[]参与脂肪酸合成的维生素是:A.核黄素;B.叶酸;C.生物素;D.硫辛酸7.[]1分子10碳饱和脂肪酸经β-氧化分解为5分子乙酰CoA,此时可净生成多少分子ATP?A.62 B.64;C.66;D.708.[]脂肪酸在肝脏进行β-氧化不生成下列哪种化合物A.乙酰CoA;B.H2O;C.FADH2;D.脂酰CoA9.[]与脂肪酸活化有关的酶是:A.HMG-CoA合成酶;B.乙酰乙酰CoA合成酶;C.脂酰CoA合成酶;D.甘油三酯脂肪酶10.[]胆固醇合成的限速酶是:A.乙酰基转移酶;B.HMG-CoA还原酶;C.G-6-P酶; D.HMG-CoA合成酶11.[]在血液中,转运游离脂肪酸的物质为:A.脂蛋白;B.糖蛋白;C.清蛋白;D.球蛋白12.[]甘油磷脂的合成必须有下列哪种物质参加?A.CTP;B.UTP;C.UMP;D.GMP13.[]下列哪种激素能使血浆胆固醇升高?A.皮质醇;B.肾上腺素;C.胰岛素;D.甲状旁腺素14.[]下列物质彻底氧化时,哪一项生成的ATP最多?A.2分子葡萄糖;B.1分子硬脂酸;C.3分子草酰乙酸; D.8分子乙酰CoA15.[]关于脂肪酸合成的叙述,下列哪项是正确的?A.只能合成10碳以下的短链脂肪酸;B.不能利用乙酰CoA为原料;C.需丙二酸单酰CoA作为活性中间物; D.在线粒体中进行16.[]由3-磷酸甘油和脂酰CoA合成甘油三酯的过程中,生成的第一个中间产物是:A.甘油一酯;B.甘油二酯;C.磷脂酸;D.磷脂酰胆碱17.[]关于酮体的叙述,哪项是正确的?A.酮体是肝内脂肪酸大量分解产生的异常中间产物,可造成酮症酸中毒B.各组织细胞均可利用乙酰CoA合成酮体,但以肝内合成为主C.合成酮体的关键酶是HMG-CoA还原酶D.酮体只能在肝内生成,肝外氧化18.[]关于脂肪酸合成的叙述,不正确的是:A.在胞浆中进行B.关键酶是乙酰CoA羧化酶C.脂肪酸合成酶为多酶复合体或多功能酶D.脂肪酸合成过程中碳链延长需乙酰CoA提供乙酰基19.[]胆固醇在体内不能转化生成A.胆汁酸B.肾上腺素皮质素C.胆色素D.维生素D320.[]β-氧化的酶促反应顺序为:A.脱氢、再脱氢、加水、硫解B.脱氢、加水、再脱氢、硫解C.脱氢、脱水、再脱氢、硫解D.加水、脱氢、硫解、再脱氢21.[]下列关于脂类的叙述哪个是错误的?A.是细胞内能源物质; B.很难溶于水;C.是细胞膜的结构成分;D.仅由碳、氢、氧三种元素组成22.[]下列哪种激素能抑制脂肪动员和脂解作用?A.生长素;B.胰高血糖素;C.胰岛素;D.肾上腺素23.[]下列哪种组织不能利用酮体?A.心脏;B.肝脏;C.脑;D.肾24.[]脂肪酸生物合成所需的氢由下列哪一递氢体提供?A.NADPH+H+;B.NADH+H+ ;C.NADP ;D.FADH225.[]密度最低的血浆脂蛋白是:A.乳糜微粒;B.β脂蛋白;C.前β脂蛋白;D.α脂蛋白26.[]下列哪一生化反应在线粒体内进行?A.脂肪酸合成;B.脂肪酸β-氧化;C.脂肪酸w氧化;D.胆固醇合成27.[]下列哪种情况机体能量的提供主要来自于脂肪分解?A.空腹;B.剧烈运动;C.进食后;D.禁食(二)判断题(用✓x表示):1.[]脂肪酸合成的碳源可以通过酰基载体蛋白穿过线粒体内膜进入胞浆。
第十一章代谢调节—、知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调iT作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调右而起作用的:多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调肖方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方而对代谢进行调节的。
细胞是一个髙效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数虽庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三竣酸循环、脂肪酸B ■氧化和氧化磷酸化的酶主要存在于线粒体中:与核酸生物合成有关的酶大多在细胞核中:与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调^在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调巧基因产生的降解物基因活化蛋白(CAP)促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P人操纵基因(0)和在功能上相关的几个结构基因组成:转录后的调节包括,真核生物mRNA转录后的加工,转录产物的运输和在细胞中的泄位等;翻译水平上的调节包括,mRNA 本身核苜酸组成和排列(如SD序列),反义RNA 的调节,inRNA的稳宅性等方而。
第十一章物质代谢的相互联系及其调节第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系二、糖、脂、蛋白质及核酸代谢之间的相互联系第二节物质代谢的调节一、细胞水平的代谢调节二、激素水平的代谢调节三、整体水平的代谢调节第十一章物质代谢的相互联系及其调节物质代谢、能量代谢与代谢调节是生命存在的三大要素。
生命体都是由糖类、脂类、蛋白质、核酸四大类基本物质和一些小分子物质构成的。
虽然这些物质化学性质不同,功能各异,但它们在生物体内的代谢过程并不是彼此孤立、互不影响的,而是互相联系、互相制约、彼此交织在一起的。
机体代谢之所以能够顺利进行,生命之所以能够健康延续,并能适应千变万化的体内、外环境,除了具备完整的糖、脂类、蛋白质与氨基酸、核苷酸与核酸代谢和与之偶联的能量代谢以外,机体还存在着复杂完善的代谢调节网络,以保证各种代谢井然有序、有条不紊地进行。
第一节物质代谢的相互联系一、糖、脂、蛋白质在能量代谢上的相互联系糖类、脂类及蛋白质都是能源物质均可在体内氧化供能。
尽管三大营养物质在体内氧化分解的代谢途径各不相同,但乙酰CoA是它们代谢的中间产物,三羧酸循环和氧化磷酸化是它们代谢的共同途径,而且都能生成可利用的化学能ATP。
从能量供给的角度来看,三大营养物质的利用可相互替代。
一般情况下,机体利用能源物质的次序是糖(或糖原)、脂肪和蛋白质(主要为肌肉蛋白),糖是机体主要供能物质(占总热量50%~70%),脂肪是机体储能的主要形式(肥胖者可多达30%~40%)。
机体以糖、脂供能为主,能节约蛋白质的消耗,因为蛋白质是组织细胞的重要结构成分。
由于糖、脂、蛋白质分解代谢有共同的代谢途径限制了进入该代谢途径的代谢物的总量,因而各营养物质的氧化分解又相互制约,并根据机体的不同状态来调整各营养物质氧化分解的代谢速度以适应机体的需要。
若任一种供能物质的分解代谢增强,通常能代谢调节抑制和节约其它供能物质的降解,如在正常情况下,机体主要依赖葡萄糖氧化供能,而脂肪动员及蛋白质分解往往受到抑制;在饥饿状态时,由于糖供应不足,则需动员脂肪或动用蛋白质而获得能量。