2020—2021学年重庆市潼南县七年级数学下期中检测试卷
- 格式:doc
- 大小:222.00 KB
- 文档页数:4
2020-2021学年度第二学期期中考试试卷七年级数学满分:120分 时间:90分钟一、选择题(本大题共10分,每小题3分,共30分) 1.下列图中,∠1和∠2是对顶角的有( )个.A .1个B .2个C .3个D .4个 2.在平面直角坐标系中,点(-2,3)所在的象限是( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 3.已知点A (4,-3)到y 轴的距离为( )A 、4B 、-4C 、3D 、-3 4.下列说法错误的是( )A 、1)1(2=-B 、113-=-C 、2的平方根是2±D 、81-的平方根是9±5.在实数,,,0,﹣1.414,,中,无理数有( )A .2个B .3个C .4个D .5个6.下列命题是真命题的是( )A 、邻补角相等B 、对顶角相等C 、内错角相等D 、同位角相等 7.如题7图,能够判断AD ∥BC 的条件是( ) A .∠1=∠2 B .∠1=∠4C .∠B=∠DD .∠3=∠4 题7图8.将点P (2,1)向左平移2个单位后得到P ’,则P ’的坐标是( ) A 、(2,3) B 、(2,-1) C 、(4,1) D 、(0,1)9.如题9图,已知直线AB ,CD 相交于点O ,OE ⊥AB ,∠EOC=28°,则∠BOD 的度数为( ) A .28° B .52°C .62°D .118°题9图10.如题10图,原来是完全重叠的两个直角三角形,将其中一个直角三角形沿着BC 方向平移BE 的距离,就得到此图形,则阴影部分面积是( )平方厘米 A 、24 B 、20 C 、32.5 D 、60题10图 二、填空题(本大题共7小题,每小题4分,共28分) 11.如题11图,AB 、CD 相交于点O ,射线OE 在∠DOB 的内部, 则∠AOD 的邻补角是________________.12.9的平方根是_______,4的算术平方根是_________,13.如题13图,直线a 与直线b 、c 分别相交于点A 、B ,将直线b 绕点A 转动,当∠1=∠ 时,c ∥b ;14.5的相反数是______,绝对值是_______. 15.已知|x+1|+=0,则P (x,y )在第_____________象限.16.1+x 的算术平方根是3,则x =________. 题13图 17.在y 轴上且到点A (0,-3)的线段长度是4的点B 的坐标为_______________. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:2252383+--+19.如图题19图,将△ABC 向右平移5个单位长度,再向下平移2个单位长度,得到△A'B'C',请画出平移后的图形,并写出△A'B'C'各顶点的坐标。
分分32328273⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅-=x x 2020—2021学年第二学期期中测试七年级数学试题参 考 答 案一、选择题(本大题共10小题,每小题3分,共30分.)题号 1 2 3 4 5 6 7 8 9 10 答案ACBDACDBCD二、填空题(本大题每小题3分,共18分.) 11. 3-5 12. -2 13. 70 14. 515. 5516.(1010,1)三、解答题(本大题共8小题,共52分.) 17.(6分)计算: (1)4-8-1003++解:原式= 10+(-2)+4 ……………2分 =12 ……………3分(2)解:原式=3﹣6+3 ……………2分=0; ……………3分18.(6分)求下列各式中x 的值:(1)4x 2=49; (2)8x 3 + 27=0解:分分32724492⋅⋅⋅⋅⋅⋅±=⋅⋅⋅⋅⋅⋅=x x 解: 19.解:∵∠1=76°,∠2=76°,∴∠1=∠2=76°, ……………1分 ∴a ∥b , ……………3分 ∴∠5=∠3=70°, ……………4分5∴∠4=180°﹣∠5=110°.……………5分20. 解: (1)1(4,2)A--1(1,1)B--1(2,1)C-……3分(2)画图正确……………5分21.解:∵2a﹣1的算术平方根是3∴2a﹣1=32=9 ∴a=5 ……………1分∵a+2b+2的平方根是±5∴a+2b+2=(±5)2=25∴b=9,……………2分又∵c-3的立方根是2∴c-3=23,∴c=11,……………3分∴a+b+c=5+9+11=25.……………5分22. 证明:∵AB∥CD,∴∠1=∠CFE ……………2分∵AD∥BC.∴∠2=∠E,……………4分∵AE平分∠BAD,∴∠1=∠2,……………6分∴∠CFE=∠E,……………7分23.(1)证明:∵CB∥OA∴∠C+∠COA=180°……………1分∵∠C=∠OAB∴∠OAB+∠COA=180°……………3分∴AB∥OC ……………4分(2)解:∵CB ∥OA∴∠COA=180°-∠C=80° ……………5分 ∵∠FOB=∠AOB ,OE 平分∠COF ∴ ∠FOB+∠EOF=21 (∠AOF+∠COF)= 21∠COA=40° ……………8分 24.解:(1)∵A (4,0),C (0,8), ∴OA=4,OC=8.∵四边形OABC 是长方形, ∴BC=OA=4,AB=OC=8,∴点B 的坐标为(4,8). ……………2分 ∵OC=8,OA=4,∴长方形OABC 的周长为:2×(4+8)=24. ……………4分 (2)∵CD 把长方形OABC 的周长分为3:5两部分, ∴被分成的两部分的长分别为9和15. ……………5分 ①当点D 在AB 上时,如图, AD=15-8-4=3,所以点D 的坐标为(4,3). ……………7分 ②当点D 在OA 上时,如图, OD=9-8=1,所以点D 的坐标为(1,0). ……………8分 (3)D (3,0)和(4,2) ……………10分。
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。
七年级(下)期中数学试卷一、选择题(每小题4分,共48分)1.49的平方根是()A.7 B.﹣7 C.±7 D.2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C. D.3.在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2 B.3 C.4 D.54.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.5.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在同一平面内,下列说法正确的是()A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行7.(4分)下列运算正确的是()A. B.(﹣3)3=27 C.=2 D.=38.(4分)下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个 B.1个 C.2个 D.3个9.(4分)点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B 的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)10.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.911.(4分)若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y 轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)12.(4分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°二、填空题(每小题4分,共32分)13.(4分)的平方根为.14.(4分)把命题“对顶角相等”改写成“如果…那么…”的形式:.15.(4分)图中A、B两点的坐标分别为(﹣3,3)、(3,3),则C的坐标为.16.(4分)如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为.17.(4分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3= 度.18.(4分)已知x、y为实数,且+(y+2)2=0,则y x= .19.(4分)平方根等于它本身的数是.20.(4分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= .三、解答题(每题8分,共16分)21.(8分)计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.22.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.四、解答题(23-25题每题10分,26-27题每题12分,共54分)23.(10分)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).24.(10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.25.(10分)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.26.(12分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.27.(12分)探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.参考答案与试题解析一、选择题(每小题4分,共48分)1.49的平方根是()A.7 B.﹣7 C.±7 D.【分析】根据一个正数有两个平方根,它们互为相反数解答即可.【解答】解:∵(±7)2=49,∴±=±7,故选:C.【点评】本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根是解题的关键.2.如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C. D.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.【解答】解:根据平移的概念,观察图形可知图案B通过平移后可以得到.故选:B.【点评】本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.3.在下列各数:3.14,﹣π,,、、中无理数的个数是()A.2 B.3 C.4 D.5【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数.【解答】解:无理数有﹣π,,共3个.故选B.【点评】本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.4.下面四个图形中,∠1=∠2一定成立的是()A.B.C.D.【分析】根据对顶角、邻补角、平行线的性质及三角形的外角性质,可判断;【解答】解:A、∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B、∠1、∠2是对顶角,根据其定义;故本选项正确;C、根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D、根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B.【点评】本题考查了对顶角、邻补角、平行线的性质及三角形的外角性质,本题考查的知识点较多,熟记其定义,是解答的基础.5.在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】横坐标小于0,纵坐标大于0,则这点在第二象限.【解答】解:∵﹣2<0,3>0,∴(﹣2,3)在第二象限,故选B.【点评】本题考查了点的坐标,个象限内坐标的符号:第一象限:+,+;第二象限:﹣,+;第三象限:﹣,﹣;第四象限:+,﹣;是基础知识要熟练掌握.6.在同一平面内,下列说法正确的是()A.两直线的位置关系是平行、垂直和相交B.不平行的两条直线一定互相垂直C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行【分析】在同一平面内,两直线的位置关系有2种:平行、相交,根据以上结论判断即可.【解答】解:A、∵在同一平面内,两直线的位置关系是平行、相交,2种,∴在同一平面内,两直线的位置关系是平行、相交(相交不一定垂直),故本选项错误;B、在同一平面内,不平行的两条直线一定相交,故本选项错误;C、在同一平面内,不垂直的两直线可能平行,可能相交,故本选项错误;D、在同一平面内,不相交的两条直线一定平行,故本选项正确;故选D.【点评】本题考查了对平行线的理解和运用,注意:①在同一平面内,两直线的位置关系有2种:平行、相交,②相交不一定垂直.7.下列运算正确的是()A. B.(﹣3)3=27 C.=2 D.=3【分析】根据算术平方根、立方根计算即可.【解答】解:A、,错误;B、(﹣3)3=﹣27,错误;C、,正确;D、,错误;故选C【点评】此题考查算术平方根、立方根,关键是根据算术平方根、立方根的定义计算.8.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A.0个 B.1个 C.2个 D.3个【分析】根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.【解答】解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.点A(3,﹣5)向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1)D.(0,﹣1)【分析】根据向上平移,纵坐标加,向左平移,横坐标减进行计算即可.【解答】解:根据题意,∵点A(3,﹣5)向上平移4个单位,再向左平移3个单位,∴﹣5+4=﹣1,3﹣3=0,∴点B的坐标为(0,﹣1).故选D.【点评】本题考查了点的坐标平移,根据上加下减,右加左减,上下平移是纵坐标变化,左右平移是横坐标变化,熟记平移规律是解题的关键.10.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是()A.1 B.3 C.4 D.9【分析】依据平方根的性质列方出求解即可.【解答】解:∵一个正数的平方根是2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0.解得:a=﹣1.∴2a﹣1=﹣3.∴这个正数是9.故选:D.【点评】本题主要考查的是平方根的定义和性质,依据平方根的性质列出关于a的方程是解题的关键.11.若平面直角坐标系内的点M在第四象限,且M到x轴的距离为1,到y轴的距离为2,则点M的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(1,﹣2)【分析】可先根据到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,进而判断出点的符号,得到具体坐标即可.【解答】解:∵M到x轴的距离为1,到y轴的距离为2,∴M纵坐标可能为±1,横坐标可能为±2,∵点M在第四象限,∴M坐标为(2,﹣1).故选C.【点评】考查点的坐标的确定;用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.12.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°【分析】首先根据AD∥BC,求出∠FED的度数,然后根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,则可知∠FED=∠FED′,最后求得∠AED′的大小.【解答】解:∵AD∥BC,∴∠EFB=∠FED=65°,由折叠的性质知,∠FED=∠FED′=65°,∴∠AED′=180°﹣2∠FED=50°.故∠AED′等于50°.故选:A.【点评】本题考查了:1、折叠的性质;2、矩形的性质,平行线的性质,平角的概念求解.二、填空题(每小题4分,共32分)13.的平方根为±3 .【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.14.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.【点评】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.15.图中A、B两点的坐标分别为(﹣3,3)、(3,3),则C的坐标为(﹣1,5).【分析】首先根据A、B两点的坐标确定坐标系,然后确定出C的坐标即可.【解答】解:如图,,∵A,B两点的坐标分别为(﹣3,3),(3,3),∴线段AB的中垂线为y轴,且向上为正方向,最下面的水平线为x轴,且向右为正方向,∴C点的坐标为(﹣1,5).故答案为:(﹣1,5).【点评】此题主要考查了坐标确定位置,解题的关键是确定坐标原点和x,y轴的位置及方向.16.如图所示,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为平行.【分析】根据同位角相等,两直线平行判断.【解答】解:根据题意,∠1与∠2是三角尺的同一个角,所以∠1=∠2,所以,AB∥CD(同位角相等,两直线平行).故答案为:平行.【点评】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.17.如图,已知a∥b,∠1=70°,∠2=40°,则∠3= 70 度.【分析】把∠2,∠3转化为△ABC中的角后,利用三角形内角和定理求解.【解答】解:由对顶角相等可得∠ACB=∠2=40°,在△ABC中,由三角形内角和知∠ABC=180°﹣∠1﹣∠ACB=70°.又∵a∥b,∴∠3=∠ABC=70°.故答案为:70.【点评】本题考查了平行线与三角形的相关知识.18.已知x、y为实数,且+(y+2)2=0,则y x= ﹣8 .【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以,y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.平方根等于它本身的数是0 .【分析】根据平方根的定义即可求出平方根等于它本身的数.【解答】解:∵02=0,∴0的平方根是0.∴平方根等于它本身的数是0.故填0.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.20.在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g (2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= (3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.三、解答题(每题8分,共16分)21.计算(1)﹣+﹣;(2)|﹣|﹣(﹣)﹣|﹣2|.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=2﹣﹣+1=1;(2)原式=﹣+﹣2+=2﹣2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)解下列方程(1)4x2﹣16=0;(2)(x﹣1)3=﹣125.【分析】(1)根据平方根的定义计算即可;(2)根据立方根的定义计算即可.【解答】解:(1)4x2=16,x2=4,x=±2;(2)x﹣1=﹣5,x=﹣4.【点评】本题考查了平方根和立方根,掌握它们的定义是解题的关键.四、解答题(23-25题每题10分,26-27题每题12分,共54分)23.推理填空:如图:①若∠1=∠2,则AD ∥CB (内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD ∥BC (同旁内角互补,两直线平行);②当AB ∥CD 时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD ∥BC 时,∠3=∠C (两直线平行,同位角相等).【分析】根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.【解答】解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).【点评】在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.24.(10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A′、B′、C′的位置,然后顺次连接即可,再根据平面直角坐标系写出点A′、B′、C′的坐标;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)A(﹣2,﹣2),B (3,1),C(0,2);(2)△A′B′C′如图所示,A′(﹣3,0)、B′(2,3),C′(﹣1,4);(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣7.5﹣1.5,=20﹣13,=7.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.25.(10分)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.【分析】求出2<<3,根据的范围求出+1和﹣1的范围,求出a、b的值,代入求出即可.【解答】解:∵2<3∴3+1<4,1﹣1<2,∴a=3,b=﹣2,∴2a+3b=2×3+3×(﹣2)=3.【点评】本题考查了估算无理数的性质和二次根式的加减的应用,解此题的关键是求出a、b的值.26.(12分)已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:∠DGC=∠BAC.【分析】求出AD∥EF,推出∠1=∠2=∠BAD,推出DG∥AB即可.【解答】证明:∵AD⊥BC,EF⊥BC,∴∠EFB=∠ADB=90°,∴EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴DG∥AB,∴∠DGC=∠BAC.【点评】本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.27.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.【分析】(1)首先作EF∥AB,根据AB∥CD,可得EF∥CD,据此分别判断出∠B=∠1,∠D=∠2,即可判断出∠B+∠D=∠E,据此解答即可.(2)首先作EF∥AB,即可判断出∠B=∠1;然后根据∠E=∠1+∠2=∠B+∠D,可得∠D=∠2,据此判断出EF∥CD,再根据EF∥AB,可得AB∥CD,据此判断即可.(3)首先过E作EF∥AB,即可判断出∠BEF+∠B=180°,然后根据EF∥CD,可得∠D+∠DEF=180°,据此判断出∠E+∠B+∠D=360°即可.(4)首先根据AB∥CD,可得∠B=∠BFD;然后根据∠D+∠E=∠BFD,可得∠D+∠E=∠B,据此解答即可.(5)首先作EM∥AB,FN∥AB,GP∥AB,根据AB∥CD,可得∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,所以∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;然后根据∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,可得∠E+∠G=∠B+∠F+∠D,据此判断即可.【解答】解:(1)如图1,作EF∥AB,,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图2,作EF∥AB,,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图3,过E作EF∥AB,,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图4,,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.(5)如图5,作EM∥AB,FN∥AB,GP∥AB,,又∵AB∥CD,∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,∴∠E+∠G=∠B+∠F+∠D.【点评】此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.。
七年级下学期期中考试数学试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》 班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A. {x −y =3x +y =6B. {x +y =3x −y =6C. {3x +3y =16x −6y =1D. {3x −3y =16x +6y =1 2. 下列计算正确的是( )A. b 3⋅b 3=2b 3B. (a +b)2=a 2+b 2C. (a 5)2=a 10D. a −(b +c)=a −b +c3. 下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x −1=(x −1)2B. (a +b)(a −b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax −a +1=a(x −1)+14. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( ) A. −2 B. 2 C. −4 D. 45. 计算a 3⋅(a 3)2的结果是( )A. a 8B. a 9C. a 11D. a 186. 分别表示出如图阴影部分的面积,可以验证公式( )A. (a +b)2=a 2+2ab +b 2B. (a −b)2=a 2−2ab +b 2C. a 2−b 2=(a +b)(a −b)D. (a +2b)(a −b)=a 2+ab −2b 27. 下列方程组:①{x +y =−2y +z =3,②{2x +1y =1x −3y =0,③{3x −y =4y =4−x ,其中是二元一次方程组的是( )A. ①②B. ②③C. ①③D. ③8. 已知a =255,b =344,c =433,d =522,则这四个数从小到大排列顺序是( )A. a <b <c <dB. d <a <c <bC. a <d <c <bD. b <c <a <d9. 把代数式3x 3−12x 2+12x 因式分解,结果正确的是 ( )A. 3x(x 2−4x +4)B. 3x(x −4)2C. 3x(x +2)(x −2)D. 3x(x −2)210. 已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2−ab −ac −bc 的值是( )A. 0B. 1C. 2D. 3第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为______.12. 下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a +b)n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a +b)5=______.13. 因式分解:a 2b −10ab +25b = ______ .14. 若方程x −y =−1的一个解与方程组{x −2y =k 2x −y =1的解相同,则k 的值为______. 15. 已知a ,b ,c 为三角形的三边,若有(a +c)2=b 2+2ac ,则这个三角形的形状是______三角形.16. 在实数范围内因式分解:2x 2−4xy −3y 2=______.17. 若长方形的长为a ,宽为b ,周长为16,面积为15,则a 2b +ab 2的值为______ .18. 已知x 2−2(m +1)xy +16y 2是一个完全平方式,则m 的值是____.三、解答题(本大题共7小题,共78.0分)19. (10分)解下列二元一次方程组(1) {2x −y =−2x =5−y(2) {x −3y =62x +5y =120.(10分)计算该式,并用幂的形式表示结果:(1)[2(a−b)2]3(2)−(x3)4+3×(x2)4⋅x421.(10分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.22.(10分)用因式分解的方法进行简便运算:(1)1772+232+46×177;(2)20012−4002×2000+20002.23.(12分)若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)若3x×9x×27x=312,求x的值.(2)若x=5m−3,y=4−25m,用含x的代数式表示y.24.(12分)已知a2+a+1=0,求a4+2a3+5a2+4a的值.25.(14分)如图,将一张矩形纸板按照图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n,(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为___________________;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.答案1.C2.C3.C4.C5.B6.C7.D8.B9.D10.D11.{4x +6y =483x +5y =3812.a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 513.b(a −5)214.−415.直角16.2(x −2+√102y)(x −2−√102y) 17.12018.−5或319.解:{2x −y =−2①x =5−y②, 把②代入①,得2(5−y)−y =−2,解得y =4,将y =4代入②式得x =1,故方程组的解是{x =1y =4; (2){x −3y =6①2x +5y =1②, ①×2−②,得−11y =11,y =−1,则把y =−1代入①得x =3,故方程组的解是{x =3y =−1.20.解:(1)[2(a −b)2]3=8(a −b)6(2)−(x 3)4+3×(x 2)4⋅x 4=−x 12+3x 8·x 4=2x 12.21.解:(1)设1辆A 型车和1辆B 型车一次分别可以运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 则1辆A 型车和1辆B 型车一次分别可以运货3吨,4吨;(2)∵某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆, ∴3a +4b =31,则有{a ≥0b =31−3a 4≥0,解得:0≤a ≤1013,∵a 为整数,∴a =0,1,2, (10)∵b =31−3a 4=7−a +3+a 4为整数,∴a =1,5,9,∴a =1,b =7;a =5,b =4;a =9,b =1,∴满足条件的租车方案一共有3种,a =1,b =7;a =5,b =4;a =9,b =1;(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金120元/次,当a =1,b =7,租车费用为:W =100×1+7×120=940元;当a =5,b =4,租车费用为:W =100×5+4×120=980元;当a =9,b =1,租车费用为:W =100×9+1×120=1020元,∴当租用A 型车1辆,B 型车7辆时,租车费最少为940元.22.解:(1)1772+232+46×177=1772+2×23×177+232=(177+23)2=2002=40000.(2)20012−4002×2000+20002=20012−2×2001×2000+20002=(2001−2000)2=12=1.23.解:(1)3x×9x×27x=3x×(32)x×(33)x=3x×32x×33x=36x.∵36x=312,∴6x=12,∴x=2.(2)∵x=5m−3,∴5m=x+3,∵y=4−25m=4−(52)m=4−(5m)2=4−(x+3)2,∴y=−x2−6x−5.24.解:∵a2+a+1=0,∴a2+a=−1,∴a4+2a3+5a2+4a=a2(a2+a)+a(a2+a)+4(a2+a)=a2×(−1)+a×(−1)+4×(−1)=−a2−a−4=−(a2+a+4)=−(−1+4)=−3.25.解:(1)(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为6×7=42cm.。
七年级数学下册期中考试测试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》班级 姓名 得分第Ⅰ卷一、选择题:(本大题共10小题,每小题4分,共40.0分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上。
1. 下列因式分解正确的是( )A. 2ab 2−4ab =2a(b 2−2b)B. a 2+b 2=(a +b)(a −b)C. x 2+2xy −4y 2=(x −2y)2D. −my 2+4my −4m =−m(y −2)2 2. 计算(a 3)2⋅a 3的结果是( )A. a 8B. a 9C. a 10D. a 113. 已知方程组{a −b =62a +b =m中,a ,b 互为相反数,则m 的值是( )A. 0B. −3C. 3D. 94. 若{x =1y =2是方程组{x +y =32x +ay =6的解,则a 值为( )A. 1B. 2C. 3D. 4 5. 计算(−a)3(−a)2的结果是( )A. −a 5B. a 5C. −a 6D. a 66. 把多项式a 3−a 分解因式,结果正确的是( )A. a(a 2−1)B. a(a −1)2C. a(a +1)2D. a(a +1)(a −1)7. 把多项式3(x −y)−2(y −x)2分解因式结果正确的是( )A. (x −y)(3−2x −2y)B. (x −y)(3−2x +2y)C. (x −y)(3+2x −2y)D. (y −x)(3+2x −2y)8. 下列各式中,计算正确的是( )A. 8a −3b =5abB. (a 2)3=a 5C. a 8÷a 4=a 2D. a 2⋅a =a 3 9. 甲乙两位初三学生练习1000米跑步,如果乙先跑20米,则甲10秒钟可以追上乙,如果乙先跑2秒钟,则甲4秒钟可以追上乙,求甲、乙两人每秒钟各跑多少米.若设甲每秒钟跑x 米,乙每秒钟跑y 米,则所列方程组应该是( )A. {20=10(x −y),(2+4)y =4x B. {10x −10y =20,4x −4y =4C. {10x +20=10y,4x −4y =2D. {10x =10y +20,4x −2=4y10. 将下列多项式因式分解,结果中不含有因式a +1的是( )A. a 2−1B. a 2+aC. a 2+a −2D. (a +2)2−2(a +2)+1第Ⅱ卷二、填空题(本大题共8小题,共32.0分) 11. 分解因式:x 3−4xy 2=______. 12. 若2x+1=16,则x =______.13. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是______.14. 某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果是______千克.15. ______. 16. 把9m 2−36n 2分解因式的结果是______.17. 若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是______(写一个即可).18. 计算:(b −a)2(a −b)3=______(结果用幂的形式表示). 三、解答题(本大题共7小题,共78.0分)19. (10分)已知x m =3,x n =5,求 ①x 2m+n ②x 3m−2n 的值.20. (10分)因式分解(1)a 3b −ab ;(2)(x +y)2−(2x +2y −1).21. (10分)解下列方程组:(1){y =x +37x −5y =9;(2){2x −5y =−3−4x +y =−3;22. (10分)方程组{x +y =−13x −2y =7的解满足2x −ky =10(k 是常数).(1)求k 的值;(2)求出关于x ,y 的方程(k −1)x +2y =13的正整数解.23. (12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22−02,12=42−22,20=62−42,因此4,12,20都是“神秘数”.(1)28是“神秘数”吗?为什么?(2)设两个连续偶数为2k +2和2k(其中k 取非负整数),说明这两个连续偶数构造的“神秘数”是4的倍数。
七年级数学下册期中考试测试卷满分:150分考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》班级姓名得分第Ⅰ卷一、选择题:(本大题共10小题,每小题4分,共40.0分)本题每小题均有A、B、C、D四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上。
1.下列分解因式正确的一项是()A. x2−9=(x+3)(x−3)B. 2xy+4x=2(xy+2x)C. x2−2x−1=(x−1)2D. x2+y2=(x+y)22.下列多项式中,能用完全平方公式进行分解因式的是()A. x2+6x+9B. x2−2x−1C. 4x2+2x+1D. 4x2+13.下列运算,结果正确的是()A. m2+m2=m4B. (m+2)2=m2+4mn=4mC. (3mn2)2=6m2n4D. 2m2n÷124.甲乙丙三人做一项工作,三人每天的工作效率分别为a、b、c,若甲乙一天工作量和是丙2天的工作量,乙丙一天的工作量和是甲5天的工作量,下列结论正确的是()A. 甲的工作效率最高B. 丙的工作效率最高C. c=3aD. b:c=3:25.把一根长20米的钢管截成2米长和3米长两种规格的钢管,在不造成浪费.....的情况下,共有几种截法().A. 1种B. 2种C. 3种D. 4种6.如图,有正方形A类、B类和长方形C类卡片各若干张,如果要拼一个宽为(a+2b)、长为(2a+b)的大长方形,则需要C类卡片()A. 6张B. 5张C. 4张D. 3张7.把代数式3x3−12x2+12x因式分解,结果正确的是()A. 3x(x2−4x+4)B. 3x(x−4)2C. 3x(x+2)(x−2)D. 3x(x−2)28.已知x2−x−1=0,则x3−2x+1的值是()A. 1B. 2C. 3D. 49.比较355,444,533的大小正确是()A. 355<444<533B. 444<355<533C. 444<533<355D. 533<355<44410.现有如图①的小长方形纸片若干块,已知小长方形的长为a,宽为b.用3个如图②的图形和8个如图①的小长方形,拼成如图③的大长方形,若大长方形的宽为30cm,则图③中阴影部分面积与整个图形的面积之比为().A. 15B. 16C. 17D. 18 第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若方程组{ax +by =c a 1x +b 1y =c 1的解是{x =12y =45,那么{4ax 2−5by 3=3c 4a 1x 2−5b 1y 3=3c 1的解为______. 12. 若2a 2+b 2−2ab −6a ≤−9,则a b =______.13. 若a +b =−1,ab =−6,则代数式a 3b +2a 2b 2+ab 3的值为______.14. 任何一个正整数n 都可以进行这样的分解:n =s ×t(s 、t 是正整数,且s ≤t),如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并规定:F(n)=p q .例如,18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=36=12,给出下列关于F(n)的说法:①F(2)=12;②F(48)=13;③F(n 2+n)=nn+1;④若n 是一个完全平方数,则F(n)=1,其中正确的说法是_____.(填序号) 15.若x 2+2(m −3)x +16是关于x 的完全平方式,则m =______. 16.某文具店有5元一支和4元一支的钢笔,王老师带48元去买钢笔,钱正好全部用完,共有_______种购买方案。
2020-2021学年七年级下学期期中考试数学试卷一、选择题(每小题2分,共16分)1.(2分)计算a8÷a4的结果是()A.a2B.a4C.a12D.a322.(2分)下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3cm B.4cm C.7cm D.10cm3.(2分)下列方程中,是二元一次方程的是()A.x+3y=7B.2xy=3C.x+2y=z D.2x2+y=14.(2分)已知a>b,则下列不等式中错误的是()A.a+2>b+2B.a﹣5<b﹣5C.﹣a<﹣b D.4a>4b5.(2分)等式(x﹣2)0=1成立的条件是()A.x≠﹣2B.x≠2C.x≤﹣2D.x≥﹣26.(2分)下列各题中,不能用平方差公式进行计算的是()A.(a+b)(a﹣b)B.(2x+1)(2x﹣1)C.(﹣a﹣b)(﹣a+b)D.(2a+3b)(3a﹣2b)7.(2分)下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.(﹣3x)3÷(﹣3x)=9x2D.(﹣ab2)2=﹣a2b48.(2分)如图,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A'的位置,若∠A=35°,则∠1﹣∠2的度数为()A.35°B.70°C.55°D.40°二、填空题(每小题2分,共20分)9.(2分)计算:2﹣1=.10.(2分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为.11.(2分)已知a m=2,a n=3,则a m+3n=.12.(2分)命题“若a>b,则a2>b2”的逆命题是.13.(2分)计算:(﹣)100×3101=.14.(2分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=cm.15.(2分)某中学七年级一班的学生人数不足50人,设该班学生有x人,那么这个数量之间的关系可用不等式表示为.16.(2分)若二元一次方程kx+3y=﹣2的一个解,则k=.17.(2分)已知(a+b)2=7,ab=1,则a2+b2=.18.(2分)从如图的五边形ABCDE纸片中减去一个三角形,剩余部分的多边形的内角和是.三、解答题(共64分)19.(12分)计算:(1)x•(x2)3;(2)(m+2n)(m﹣2n);(3)(2a﹣1)2.20.(10分)(1)解方程组:;(2)解不等式:2x﹣1>,并把它的解集在数轴上表示出来.21.(5分)先化简,再求值:(x+2)(x﹣1)﹣2x(x+3),其中x=﹣1.22.(6分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移3格,其中每个格子的边长为1个单位长度.(1)画出△ABC边AB上的高;(2)请在图中画出平移后的三角形A′B′C′;(3)若连接BB′,CC′,则这两条线段之间的关系是.23.(6分)已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD证明∵CE平分∠ACD()∴∠=∠()∵∠1=∠2(已知);∴∠1=∠()∴AB∥CD()24.(6分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?25.(9分)学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.26.(10分)在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.{计算发现}(1)若∠B=70°,∠ADE=80°,则∠BAD=,∠CDE=.{猜想验证}(2)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系是,并证明你的猜想.{拓展思考}(3)①当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边上,若∠BAD=25°,则∠CDE=.②当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,则∠CDE=.参考答案与试题解析一、选择题(每小题2分,共16分)1.(2分)计算a8÷a4的结果是()A.a2B.a4C.a12D.a32【分析】同底数幂相除,底数不变,指数相减,据此计算即可.【解答】解:a8÷a4=a8﹣4=a4.故选:B.2.(2分)下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3cm B.4cm C.7cm D.10cm【分析】设第三根木棒的长为xcm,再根据三角形的三边关系分析即可.【解答】解:设第三根木棒的长为xcm,由三角形的三边关系可知,5﹣2<x<5+2,即3<x<7.故选:B.3.(2分)下列方程中,是二元一次方程的是()A.x+3y=7B.2xy=3C.x+2y=z D.2x2+y=1【分析】利用二元一次方程定义进行解答即可.【解答】解:A、x+3y=7是二元一次方程,故此选项符合题意;B、2xy=3是2次,不是二元一次方程,故此选项不符合题意;C、x+2y=z含有3个未知数,不是二元一次方程,故此选项不符合题意;D、2x2+y=1是2次,不是二元一次方程,故此选项不符合题意;故选:A.4.(2分)已知a>b,则下列不等式中错误的是()A.a+2>b+2B.a﹣5<b﹣5C.﹣a<﹣b D.4a>4b【分析】根据不等式的基本性质分别进行判定即可得出答案.【解答】解:A、在不等式a>b的两边同时加2,不等式仍成立,即a+2>b+2,原变形正确,故此选项不符合题意;B、在不等式a>b的两边同时减去5,不等式仍成立,即a﹣5>b﹣5,原变形错误,故此选项符合题意;C、在不等式a>b的两边同时乘以﹣1,不等号方向改变,即﹣a<﹣b,原变形正确,故此选项不符合题意;D、在不等式a>b的两边同时乘以4,不等式仍成立,即4a>4b,原变形正确,故此选项不符合题意.故选:B.5.(2分)等式(x﹣2)0=1成立的条件是()A.x≠﹣2B.x≠2C.x≤﹣2D.x≥﹣2【分析】根据零指数幂的概念列出不等式,解不等式即可.【解答】解:由题意得,x﹣2≠0,解得,x≠2,故选:B.6.(2分)下列各题中,不能用平方差公式进行计算的是()A.(a+b)(a﹣b)B.(2x+1)(2x﹣1)C.(﹣a﹣b)(﹣a+b)D.(2a+3b)(3a﹣2b)【分析】这是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:A、(a+b)(a﹣b)中的两项都是一项完全相同,另一项互为相反数,符合平方差公式;B、(2x+1)(2x﹣1)中的两项都是一项完全相同,另一项互为相反数,符合平方差公式;C、(﹣a﹣b)(﹣a+b)中的两项都是一项完全相同,另一项互为相反数,符合平方差公式;D、(2a+3b)(3a﹣2b),没有相同的项和互为相反数的项,所以不符合平方差公式,故本选项符合题意;故选:D.7.(2分)下列运算中,正确的是()A.a2+a2=2a4B.a2•a3=a6C.(﹣3x)3÷(﹣3x)=9x2D.(﹣ab2)2=﹣a2b4【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;对各选项计算后利用排除法求解.【解答】解:A、a2+a2=2a2,合并同类项,系数相加字母和字母的指数不变;故本选项错误;B、a2•a3=a5,同底数幂的乘法,底数不变指数相加;故本选项错误;C、(﹣3x)3÷(﹣3x)=9x2,同底数幂的除法,底数不变指数相减;故本选项正确;D、(﹣ab2)2=a2b4,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;故本选项错误.故选:C.8.(2分)如图,将△ABC纸片沿DE进行折叠,使点A落在四边形BCED的外部点A'的位置,若∠A=35°,则∠1﹣∠2的度数为()A.35°B.70°C.55°D.40°【分析】根据多边形内角与外角的性质和三角形内角和定理即可求解.【解答】解:如下图所示,∵△ABC纸片沿DE进行折叠,点A落在四边形BCED的外部点A'的位置,∴∠4=∠5,∠3=∠2+∠DEC,∵∠1+∠4+∠5=180°,∴∠1+2∠4=180°,∴∠1=180°﹣2∠4,∵∠3+∠DEC=180°,∴∠2=∠3﹣∠DEC=2∠3﹣180°,∴∠1﹣∠2=180°﹣2∠4﹣2∠3+180°=360°﹣2∠4﹣2∠3=2∠A,∴∠1﹣∠2=2×35°=70°,故选:B.二、填空题(每小题2分,共20分)9.(2分)计算:2﹣1=.【分析】根据幂的负整数指数运算法则进行计算即可.【解答】解:2﹣1=.故答案为.10.(2分)某种感冒病毒的直径是0.00000012米,将0.00000012用科学记数法可表示为 1.2×10﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000012=1.2×10﹣7,故答案为:1.2×10﹣7.11.(2分)已知a m=2,a n=3,则a m+3n=54.【分析】根据幂的乘方以及同底数幂的乘法法则计算即可.【解答】解:∵a m=2,a n=3,∴a m+3n=a m•(a n)3=2×33=2×27=54.故答案为:54.12.(2分)命题“若a>b,则a2>b2”的逆命题是若a2>b2则a>b.【分析】把一个命题的条件和结论互换即可得到其逆命题.【解答】解:“若a>b,则a2>b2”的条件是“a>b”,结论是“a2>b2”,其逆命题是若a2>b2则a>b.13.(2分)计算:(﹣)100×3101=3.【分析】首先根据乘方的性质去掉括号,然后逆用积的乘方公式即可求解.【解答】解:原式=()100×3101=(×3)100×3=3.故答案是:3.14.(2分)如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=10cm.【分析】依据AE是△ABC的边BC上的中线,可得CE=BE,再根据AE=AE,△ACE 的周长比△AEB的周长多2cm,即可得到AC的长.【解答】解:∵AE是△ABC的边BC上的中线,∴CE=BE,又∵AE=AE,△ACE的周长比△AEB的周长多2cm,∴AC﹣AB=2cm,即AC﹣8=2cm,∴AC=10cm,故答案为:10;15.(2分)某中学七年级一班的学生人数不足50人,设该班学生有x人,那么这个数量之间的关系可用不等式表示为x<50.【分析】根据题意即可得到结论.【解答】解:根据题意得,x<50,故答案为:x<50.16.(2分)若二元一次方程kx+3y=﹣2的一个解,则k= 3.5.【分析】直接把x,y的值代入进而计算得出答案.【解答】解:∵二元一次方程kx+3y=﹣2的一个解,∴2k﹣9=﹣2,解得:k=3.5.故答案为:3.5.17.(2分)已知(a+b)2=7,ab=1,则a2+b2=5.【分析】根据完全平方公式可得a2+b2=(a+b)2﹣2ab,再把相关数值代入计算即可.【解答】解:∵(a+b)2=7,ab=1,∴a2+b2=(a+b)2﹣2ab=7﹣2=5.故答案为:5.18.(2分)从如图的五边形ABCDE纸片中减去一个三角形,剩余部分的多边形的内角和是360°或540°或720°.【分析】分为三种情况,画出图形,根据多边形的内角和公式求出内角和即可.【解答】解:如图,剩余的部分是四边形,其内角和为360°,如图,剩余的部分是五边形,其内角和为540°,如图,剩余的部分是六边形,其内角和为720°,所以剩余部分的多边形的内角和是360°或540°或720°.故答案为:360°或540°或720°.三、解答题(共64分)19.(12分)计算:(1)x•(x2)3;(2)(m+2n)(m﹣2n);(3)(2a﹣1)2.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)原式=x•x6=x7.(2)原式=m2﹣4n2.(3)原式=4a2﹣4a+1.20.(10分)(1)解方程组:;(2)解不等式:2x﹣1>,并把它的解集在数轴上表示出来.【分析】(1)方程组利用加减消元法求出解即可;(2)去分母、移项、合并同类项可得其解集.【解答】解:(1),①+②得:2x=8,解得:x=4,把x=4代入②得:y=1,则方程组的解为;(2)去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.21.(5分)先化简,再求值:(x+2)(x﹣1)﹣2x(x+3),其中x=﹣1.【分析】直接利用多项式乘多项式以及单项式乘多项式计算得出答案.【解答】解:原式=x2+x﹣2﹣2x2﹣6x=﹣x2﹣5x﹣2,当x=﹣1时,原式=﹣1+5﹣2=2.22.(6分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移3格,其中每个格子的边长为1个单位长度.(1)画出△ABC边AB上的高;(2)请在图中画出平移后的三角形A′B′C′;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.【分析】(1)依据三角形高线的概念即可得到△ABC边AB上的高;(2)依据平移的方向和距离,即可得到平移后的三角形A′B′C′;(3)依据平移的性质,即可得到BB′,CC′这两条线段之间的关系是平行且相等.【解答】解:(1)如图所示,CD即为△ABC的边AB上的高;(2)如图所示,△A'B'C'即为所求;(3)若连接BB′,CC′,则这两条线段之间的关系是平行且相等.故答案为:平行且相等.23.(6分)已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD 证明∵CE平分∠ACD(已知)∴∠2=∠ECD(角平分线定义)∵∠1=∠2(已知);∴∠1=∠ECD(等量代换)∴AB∥CD(内错角相等,两直线平行)【分析】根据角平分线定义可得∠2=∠ECD,再利用等量代换可得∠1=∠ECD,根据平行线的性质可得AB∥CD.【解答】证明:∵CE平分∠ACD(已知),∴∠2=∠ECD(角平分线定义),∵∠1=∠2(已知);∴∠1=∠ECD(等量代换),∴AB∥CD(内错角相等,两直线平行)24.(6分)疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉.已知3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨,则2辆大货车与1辆小货车可以一次运货多少吨?【分析】设1辆大货车一次运货x吨,1辆小货车一次运货y吨,根据“3辆大货车与2辆小货车可以一次运货17吨,5辆大货车与4辆小货车可以一次运货29吨”,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,将其代入(2x+y)中即可求出结论.【解答】解:设1辆大货车一次运货x吨,1辆小货车一次运货y吨,依题意,得:,解得:,∴2x+y=11.答:2辆大货车与1辆小货车可以一次运货11吨.25.(9分)学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:(a+b)2=a2+2ab+b2.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足a=4b时,S为定值,且定值为﹣a2+5ab﹣b2.【分析】(1)用两种方法表示图2的面积,即可得出公式;(2)通过理解题意和观察图示可知本题存在两个等量关系,即拼放成的大长方形的长=小长方形的宽+小长方形的长,拼放成的大长方形的宽=小长方形的长+小长方形的宽=小长方形的宽×4.根据这两个等量关系可列出方程,再求解.(3)设DG长为x,求出S1,S2即可解决问题.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块地砖的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2).(3)设DG长为x.∵S1=(a﹣b)[x﹣(a﹣b)]=ax﹣bx﹣a2+2ab﹣b2,S2=3b(x﹣a)=3bx﹣3ab,∴S=S1﹣S2=(a﹣4b)x﹣a2+5ab﹣b2,由题意得,若S为定值,则S将不随x的变化而变化,可知当a﹣4b=0时,即a=4b时,S=﹣a2+5ab﹣b2为定值,故答案为:a=4b,﹣a2+5ab﹣b2.26.(10分)在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.{计算发现}(1)若∠B=70°,∠ADE=80°,则∠BAD=20°,∠CDE=10°.{猜想验证}(2)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系是,并证明你的猜想.{拓展思考}(3)①当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边上,若∠BAD=25°,则∠CDE=12.5°.②当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,则∠CDE=12.5°或102.5°.【分析】(1)根据已知等量关系求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD;(2)设∠B=x,∠ADE=y,根据已知等量求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD,便可得出结论;(3)①根据(2)的结论直接计算便可;②当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:点E在边AC上时,点E在CA的延长线上时,分别求解.【解答】解:(1)∵∠B=∠C,∠ADE=∠AED,∠B=70°,∠ADE=80°,∴∠C=70°,∠AED=80°,∴∠CDE=∠AED﹣∠C=10°,∠DAE=180°﹣∠ADE﹣∠AED=20°,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=20°,故答案为:20°;10°;(2)∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(3)①由(2)知,∠BAD=2∠CDE,∴∠CDE=∠BAD=,故答案为:12.5°;②当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE =∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°,∴∠ADE+∠ADE′=∠AED+∠AE′D=90°,∴∠CDE=90°+12.5°=102.5°.故答案为:12.5°或102.5°.。
2020—2021学年重庆市潼南县七年级数学下期中
检测试卷
数 学 试 题
(全卷共三个大题 满分150分 考试时刻120分钟)
班级: 姓名: 总分:
一、选择题(每小题4分,共48分)
1、下列实数 2331
,,3.14159,8,2717
π--,中无理数有( )
A.2个
B.3个
C.4个
D.5个 2、下列方程组中,是二元一次方程组的是( )
A 、⎩⎨⎧-=+=z y y x 312
B 、⎩⎨⎧=+=712y x xy
C 、⎩⎨⎧==43y x
D 、⎪⎩⎪⎨⎧=-=+4
2321
1y x y x
3、下面四个图形中,∠1与∠2是对顶角的是( )
4、已知△ABC 的三个顶点坐标分别是A(—2,3),B(-4, -1),C(2,0),△ABC 中任意一点00(,)P x y 经平移后对应点为00(5,3)P x y ++,将△ABC 作同样的平移得到△111A B C ,则平移后的三个顶点坐标是( )
A 、(3, 6),(—1, 4),(5, 5)
B 、(3, 6), (1, 2), (7, 0)
C 、(3, 3), (1, 2), (7, 3)
D 、(3, 6),(1, 2), (7, 3)
5、下面命题中:①负数没有立方根; ②一个实数的立方根不是正数确实是负数;一个正数或负数的立方根与那个数同号;③假如一个数的立方根是那个数本身,那么那个数是1或0. 其中错误的是( )
A .①②③ B. ①②④ C. ②③④ D. ①③④
6、若点P (1-2a ,a )的横坐标与纵坐标互为相反数,则点P 一定在( ) A.第一象限 B.第二象限. C.第三象限. D.第四象限
7、.二元一次方程103=+y x 的非负整数解共有( )对
A 、1
B 、2
C 、3
D 、4
8、已知等式523=-y x ,用x 的代数式表示y ,下列正确的是( )
A 、235x y -=
B 、253-=x y
C 、 352+=y x
D 、35
2+-=y x
9、 假如⎩⎨⎧-==12y x 是方程组⎩⎨⎧=+=-1
25
3by x y ax 的解,则b -a 的值是( )
A 、4
B 、2
C 、1
D 、0
10、一张试卷一共有25道选择题,做对一题得4分,做错一题倒扣2分,李明同学做了全部试题,得了88分,那么他做对了( ) A 、21题 B 、22题 C 、23题 D 、24题 11、如图,AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°, 则∠DBC 的度数为( ) A .155° B .35° C .45° D .25°
12、已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( ) A 、(-3,4) B 、(3,4) C 、(-4,3) D 、(4,3)
二、填空题(每小题4分,共24分)
1、-27立方根是 ,16的算术平方根是 .
2、把命题“对顶角相等”写成“假如……那么……”的形式为
3、点A (2,-3)到轴x 的距离是 ,到y 轴的距离是 。
4、已知点P 的坐标(2 -a ,3a + 6),且点P 到两坐标轴的距离相等,则点P 的坐标是
5、若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.
6、如图,请你写出一个能判定AB ∥CD 的条件________。
三、解答题。
(共78分)
1、运算(每小题4分,共16分)
(1)25232-+ (2)()
2
22323-+
-+-
(3)()8122
=-x (4)2
3
322781⎪⎪⎭
⎫ ⎝⎛-+
-+
2、解下列方程组(每题5分,共10分)
(1)⎩⎨⎧=-=+19234723y x y x (2)⎪⎪⎩⎪⎪⎨⎧=-=+15
2235
3y x y x
C
1 3 A
B
D
2
4
3、(4分)如图,EF ∥AD ,∠1 =∠2,∠BAC = 70°。
将求∠AGD 的过程填写完整。
解:∵EF ∥AD ( ) ∴ ∠2 = ( ) 又∵∠ 1 = ∠2 ( ) ∴ ∠1 = ∠3 ( )
∴AB ∥ ( )
∴∠BAC + = 180° ( ) 又∵∠BAC = 70° ( )
∴∠AGD = ( ) 4、(8分)在直角坐标系中,△ABC 的顶点A (—2,0),B (2,4),C (5,0)。
求△ABC 的面积
5、(8分)已知2
23
(3)(2)1m n
m x n y -----=是关于x 、y 的一元二次方程,求的m n 值
6、(10分)运往灾区的两批物资,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车各装多少吨?
7、(10分)如图,直线AB ∥CD ,EF 分别交AB 、CD 于点M 、G ,MN 平分∠EMB ,
A
E
N
B
1
M
H
A y
x
O C B
GH平分∠MGD,求证:MN∥GH。
证明:
8、(12分)某地生产一种绿色蔬菜,若在市场上直截了当销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:假如对蔬菜进行粗加工,每天可加工16吨;假如进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;
方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成.
你认为哪种方案获利最多?什么缘故。