七年级数学下学期测试卷
- 格式:doc
- 大小:111.70 KB
- 文档页数:6
人教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )A.55°B.60°C.65°D.70°2、我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题,意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完,试问大、小和尚各几人?若设大、小和尚各有x,y人,下列方程组正确的是( )A. B. C. D.3、方程组的解是()A. B. C. D.4、关于实数,,,0.21,下列说法正确的是( )A. 是分数B. 是无理数C.0.21是分数D. 是无理数5、某校欲举办“校园吉尼斯挑战赛”,对该校全体学生进行“你最喜欢的挑战项目”的问卷调查(每人都只选一项),并将结果绘制成如图所示统计图,则学生最喜欢的项目是()A.足球B.篮球C.踢毽子D.跳绳6、在平面直角坐标系中,称横.纵坐标均为整数的点为整点,如下图所示的正方形内(包括边界)整点的个数是()A.13B.21C.17D.257、实数a、b在数轴上对应点的位置如图所示,则下列各式正确的是()A.a>bB.a=bC.|a|>|b|D.|a|<|b|8、某校260名学生参加植树活动,要求每人值4~7棵,活动结束后调查了每名学生的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可知该校植树量不少于6棵的学生有()A.26名B.52名C.78名D.104名9、二元一次方程组的解是()A. B. C. D.10、下列命题中:①直径是弦;②圆上任意两点都能将圆分成一条优弧和一条劣弧;③三个点确定一个圆;④外心是三角形三条高线的交点;⑤等腰三角形的外心一定在它的内部;正确的是()A.①B.②④C.②D.①③⑤11、整数部分是()A.1B.2C.3D.412、如图,AB∥EF,则∠A、∠C、∠D、∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A-∠C+∠D+∠E=180° C.∠E-∠C+∠D-∠A=90° D.∠A+∠D=∠C+∠E13、不等式组的解集在数轴上表示为()A. B. C.D.14、某种肥皂原零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法.第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量肥皂的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买()块肥皂.A.5B.4C.3D.215、不等式组的解集是()A.x≥1B.x>-3C.-3<x≤1D.x>-3或x≤1二、填空题(共10题,共计30分)16、如图是甲、乙两公司近几年销售收入情况的折线统计图,销售收入增长速度较快的是________.17、如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.18、的平方根是________,﹣的立方根是________.19、题目:如图,直线a,b被直线所截,若∠1+∠7=180°,则a∥b.在下面说理过程中的括号里填写说理依据.方法一:∵∠1+∠7=180°(已知)而∠1+∠3=180°(平角定义)∴∠7=∠3(________)∴a∥b(________)方法二::∵∠1+∠7=180°(已知)∠1+∠3=180°(平角定义)∴∠7=∠3(________)又∠7=∠6(________)∴∠3=∠6(________)∴a∥b(________) 方法三::∵∠1+∠7=180°(已知)而∠1=∠4,∠7=∠6(________)∠4+∠6=180°(平角定义)∴a∥b(________)20、如图,将直角三角形ABC沿着点B到点C的方向平移到三角形DEF的位置,已知AB=10,HD=4,CF=6,则阴影部分的面积是________.21、在平面直角坐标系内,把点A(4,﹣1)先向右平移3个单位长度,再向上平移2个单位长度得到点A′,则点A′的坐标是________.22、为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买________个.23、(1)如图,∠1、∠2是直线________ 、________ 被第三条直线________ 所截成的________ 角.(2)在同一平面内,不重合的两条直线的位置关系只有________ 和________ 两种.24、如图,正方形ABCD的边长为4,点A的坐标为(-1,1),平行于X 轴,则点C的坐标为________.25、在横线上填写理由,完成下面的证明.如图,已知∠1+∠2=180°,∠B=∠3,求证∠C=∠AED证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(________)∴∠2=∠DFE(________)∴AB∥EF(________)∴∠3=∠ADE(________)又∵∠B=∠3(已知)∴∠B=∠ADE(________)∴DE∥BC(________)∴∠C=∠AED(________)三、解答题(共6题,共计25分)26、小丽想在一块面积为36m2正方形纸片上,沿着边的方向裁出一块面积为30m2的长方形纸片,并且使它的长宽的比为2:1.问:小丽能否用这块正方形纸片裁出符合要求的长方形纸片,为什么?27、x的2倍与y的的差是5.28、甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为;乙看错了方程②中的b,得到方程组的解为,求a2017+(﹣b)2的值.29、解不等式组,并把解表示在数轴上.30、一个正数x的两个不同的平方根是3a﹣4和1﹣6a,求a及x的值.参考答案一、单选题(共15题,共计45分)1、D2、C3、D4、C5、A6、D7、D8、D9、B10、A11、B12、B13、A14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共6题,共计25分)26、27、28、30、。
北京市海淀区2023-2024学年七年级下学期期末数学试题一、单选题1.16的算术平方根是( ) A .4B .±4C .8D .±82.在平面直角坐标系中,点()1,2P -位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.如图,若m n ∥,1105∠=︒,则2∠=( )A .55︒B .60︒C .65︒D .75︒4.不等式30x -≥的解集在数轴上可以表示为( ) A . B . C .D .5.下列调查方式中,你认为最合适的是( ) A .了解北京市每天的流动人口数量,采用全面调查 B .旅客乘坐飞机前的安检,采用抽样调查C .搭载神舟十八号载人飞船的长征二号F 遥十八运载火箭零部件检查,采用全面调查D .测试某型号汽车的抗撞击能力,采用全面调查6.已知13x y =-⎧⎨=⎩,12x y =⎧⎨=⎩,31x y =⎧⎨=⎩是二元一次方程25x y +=的三个解,12x y =-⎧⎨=-⎩,12x y =⎧⎨=⎩,36x y =⎧⎨=⎩是二元一次方程20x y -=的三个解,则二元一次方程组2520x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .36x y =⎧⎨=⎩D .12x y =⎧⎨=⎩7.若m n <,则下列不等式正确的是( )A .22m n >B .33m n ->-C .56m n -<-D .33m n ->- 8.小华同学在做家庭暑期旅游攻略时,绘制了西安市周边部分城市位置的示意图,如右图所示,分别以正东,正北方向为x 轴,y 轴的正方向建立平面直角坐标系.如果表示武汉市的点的坐标为()4,0,表示西安市的点的坐标为()2,2,则表示贵阳市的点的坐标是( )A .()0,0B .()1,2-C .()3,1D .()2,1-9.如图,正方形ABCD 的面积为3,顶点A 在数轴上,且点A 表示的数为1,数轴上有一点E 在点A 的左侧,若AD AE =,则点E 表示的数为( )A .1B .1-C .D .010.近年来汽车工业不断进行技术改革和升级,新能源汽车走进千家万户,与之配套的充电设施也在不断建设中.从充电设施的应用场景看,充电设施可分为私人随车配建充电桩和公共充电桩.据新能源汽车国家大数据联盟统计,2018—2023年我国充电设施累计数量情况如图所示根据上述信息,给出下列四个结论:①2018—2023年,每年充电设施累计数量呈上升趋势;②2023年新增公共充电桩数量超过90万台;③2018—2023年,每年新增的随车配建充电桩数量逐年上升;④2018—2023年,随车配建充电桩累计数量占充电设施累计数量的百分比最高的年份是2023年.其中所有正确的结论是()A.②③B.①②④C.①②③D.①③④二、填空题11.如图,小明在长方形的篮球场上沿直线进行折返跑训练,他从场地一边的P点处出发,选择到对面的(填A,B或C)点处折返一次回到P点时,跑过的路程最短.12.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=.13.已知12x y =⎧⎨=⎩是关于x ,y 的二元一次方程1ax y -=的一个解,那么a 的值是.14.我们知道,由角的数量关系可得两条直线的位置关系.如图,为使AB CD ∥成立,请写出一组角的数量关系作为条件:.15.几个人共同购买一件物品,若每人出9元,则多出3元;若每人出7元,则还差5元.设人数为x 人,购买费用为y 元,可列方程组为(只列不解).16.如图,在平面直角坐标系xOy 中,已知点()1,1A ,()4,4B ,()5,2C ,连接AB ,BC ,(),P x y 为折线段A B C --上的动点(P 不与点A ,C 重合),记t y a =+,其中a 为实数.(1)当2a =-时,t 的最大值为;(2)若t 存在最大值,则a 的取值范围为.三、解答题171.18.解方程组:2423x y x y -=⎧⎨+=-⎩19.解不等式组:23321332x x x x +>-⎧⎪-+⎨≤⎪⎩20.如图,在平面直角坐标系xOy 中,已知点()2,2A -,()3,1B -,将线段AB 向右平移2个单位,再向上平移1个单位,得到线段11A B .(1)在图中画出线段11A B ,并直接写出点1B 的坐标;(2)点M 在y 轴上,若三角形11A B M 的面积为1,直接写出点M 的坐标.21.如图,三角形ABC 中,90ACB ∠=︒,过点C 作AB 的平行线l ,在线段AB 上任取一点D (不与点A ,B 重合),过点D 作AC 的垂线交AC 于点E ,交直线l 于点F .(1)依题意补全图形; (2)求证:B CFE ∠=∠.22.根据以下学习素材,完成下列两个任务:23.为了解某长跑俱乐部成员的跑步成绩情况,某学校的长跑社团收集了该俱乐部2023年和2024年半程马拉松“大师赛”的比赛成绩,分为两个研究小组进行调查研究.(1)第一个研究小组随机抽取了该俱乐部2023年一些成员的比赛成绩,部分统计结果如下:①请把上面的频数分布直方图补充完整;②在2023年,该俱乐部共有280名成员,根据上面的统计结果估计该年俱乐部中成绩x 满足9095x <≤的人数为______(结果精确到个位);(2)第二个研究小组从该俱乐部2023年和2024年均参加了半程马拉松“大师赛”的选手中抽取了30名选手的跑步成绩,绘制了统计图(如图所示).请根据以上信息解答下面的问题:①小赵2024年的比赛用时比2023年的比赛用时______(填“多”“少”);②将这30名选手中2024年成绩优于2023年成绩的人数记为m ,其余选手人数记为n ,则m ______n (填“>”“=”“<”).24.甲、乙两位同学玩填数游戏,每人各自从左到右依次填写四个实数1x ,2x ,3x ,4x ,如下表所示.所填的四个数满足:从第二个数开始,每一个数都大于或等于前面填写的任意一个数的2倍.(1)若甲同学填写的四个数中,12x =,24x =,4x 3x 的值:______;(2)若乙同学填写的前两个数满足12x =-,123x x +<-,求2x 的取值范围;(3)若甲、乙两位同学各自填写的四个数都是非零整数,且他们所填写的第一个数互为相反数,则这两位同学填写的这八个数之和的最小值为______.25.已知C 为射线AB 上方一点,过点C 作AB 的平行线MN ,点O 在射线AC 上运动(不与点A ,C 重合),点D 在射线CM 上,连接OD ,满足()01COD m BAC m ∠=∠<<.(1)如图1,点O 在线段AC 上,60BAC ∠=︒,若12m =,依题意补全图形,并直接写出MDO ∠的度数;(2)点E ,F 在射线CN 上,连接AE ,OF ,满足()1COF m CAE ∠=-∠.①如图2,点O 在线段AC 上,AE AB ⊥,写出一个m 的值,使得MDO NFO ∠+∠恒为定值,并求出此定值;②如图3,70BAC ∠=︒,50CAE ∠=︒,若直线OD 和直线OF 中至少有一条与直线AE 平行或垂直,直接写出m 的值.26.在平面直角坐标系xOy 中,对于点()11,A x y ,()22,B x y ,令12m x x =+,12n y y =+,将m n -称为点A 与点B 的特征值.对于图形M 和图形N ,若点A 为图形M 上的任意一点,点B 为图形N 上的任意一点,且点A 与点B 的特征值存在最大值,则将该最大值称为图形M 与图形N 的特征值.(1)已知点()3,2A ,()2,4B -. ①点A 与点B 的特征值为______;②已知点C 在y 轴上,若点A 与点C 的特征值为5,则点C 的坐标为______;(2)已知点()6,0D ,()4,0E ,将线段DE 以每秒1个单位的速度向左平移,经过()0t t >秒后得到线段11D E .①已知点()2,4F ,08t <≤,求点F 与线段11D E 的特征值h 的取值范围;②已知面积为2的正方形的对角线交点为()2,2G t t ,且该正方形至少有一条边与坐标轴平行,记该正方形与线段11D E 的特征值为k ,则k 的最小值为________;当6k ≤时,t 的取值范围为________.。
七年级下册数学测试卷及答案七年级下册数学测试卷及答案测试卷一、选择题1. 十六亿五千万的单位是:A. 兆B. 亿C. 十亿D. 万亿2. 一个三维立方体的表面积是36平方厘米,那么它的边长是:A. 2厘米B. 3厘米C. 4厘米D. 6厘米3. 以下哪个不是有理数?A. 1B. 0C. √2D. -54. 下列斜率相等的两条直线,哪条更陡?A. 2x+3y=6B. y=-2x+3C. y=5x-10D. 3x-5y=155. 已知点A(-3,4),点B(1,2),那么两点所连的距离为:A. 2.83B. 4.24C. 4.61D. 5.00二、填空题1. 10%的12比15%的多几个?2. 直接比例的比例系数是2,已知当x=4时y=8,求当x=6时y=?3. 已知两条平行直线的斜率分别为k1=2,k2=-0.5,那么它们的斜率之积为多少?4. 已知a+b=3,a-b=5,那么a的值为多少?5. 已知两个集合A={2,3,5},B={3,5,6},求它们的交集和并集。
三、解答题1. 某奥数班有60人,其中男生占40%,女生占60%,男生中优秀的占60%,女生中优秀的占40%,那么这个班级优秀学生的比例是多少?2. 原价100元的商品,享受八折优惠后的价格为多少?3. 某人从A地骑车出发,40分钟后到达B地,再骑车20分钟后到达C地,B、C地距离为6千米,已知在平地上,这个人骑车的平均速度为每小时10千米,那么A、B地间的距离为多少?4. 某条矩形的宽为2/3,它的长度比宽大18厘米,求这条矩形的周长。
5. 已知一个三角形的三个内角分别为60°、70°、50°,那么这个三角形的面积为多少?答案选择题1. B2. B3. C4. C5. B填空题1. 0.32. 123. -14. -15. A∩B={3,5}, A∪B={2,3,5,6}解答题1. 56%2. 80元3. 5千米4. 102厘米5. 2765平方分米。
中山市 2023—2024 学年下学期期末水平测试试卷七年级数学(测试时间:120分钟,满分:120分)温馨提示:请将答案写在答题卡上,不要写在本试卷.一、单项选择题(共10个小题, 每小题3分, 满分30分)1. 在下列各组由运动项目的图标组成的图形中,能将其中一个图形只经过平移得到另一个图形的是( )A B. C. D. 2. 以下调查中,适宜抽样调查的是( )A. 了解某班学生喜爱的体育运动项目的情况B. 你所在学校的男、女同学的人数C. 了解某地区饮用水矿物质含量的情况D. 了解太空空间站的零部件是否正常 3. 中国传统数学对无理数的最早记载是在《九章算术》一书中,书中记载:将开方开不尽的数叫做“面”.下面符合“面”的描述的数是( )A.B.C.D. 4. 在平面直角坐标系中,过点4)A 和点(4,4)B −−作直线,则直线AB ( )A. 平行于x 轴B. 平行于y 轴C. 与x 轴相交D. 经过原点 5. 若p q <,则下列各式中正确的是( )A. 0p q −>B. 2p q q +<C. 22p q −>−D. 22p q −<− 6. 把方程24x y −=改写成用含x 的式子表示y 的形式正确的是( ) A. 24y x =− B. 122x y =+ C. 24y x =+ D. 122x y =− 7.小的最大整数是( )A. 4B. 3C. 2D. l8. 如图是光的反射规律示意图.CO 是入射光线,OD 是反射光线,法线EO AB ⊥,EOD COE ∠=∠.若BOD COD ∠=∠,则AOC ∠的度数为( ).A. 30°B. 40°C. 45°D. 60°9. 如图是由截面为同一种长方形的墙砖粘贴的部分墙面,设每块小长方形墙砖的长为cm x ,宽为cm y ,则下列所列方程组正确的是( )A. 103240x y y += =B. 102402x y y x −= +=C. 10240x y y −= =D. 1032402x y y x += +=10. 平面直角坐标系中点()2024,2024P a a −+不可能( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题 (共5个小题,每小题4分,满分20分)11. 利用如图工具可以测得1∠的大小是_______°.12. 在画频数分布直方图时,一个样本容量为100的样本,最小值为110,最大值为172.若确定组距为4,则分成的组数是_______.13. 如图是关于x 的不等式组的解集在数轴上的表示,则其解集为________.14. 在平面直角坐标系中,在第四象限内的点()3P t ,到x 轴的距离是2,则t =_______. 15. 小颖沿着某公园的环形跑道(周长大于 1km )按逆时针方向跑步,并用跑步软件记录运动轨迹,她从起点出发,每跑1km ,软件会在运动轨迹上标注出相应的里程数.前4km的里程数数据如图所示,当小在的颖跑了2圈时,她的运动里程数______3km (填“>” “=”或“<” ).三、解答题( 一)(共4个小题,每小题6分,满分24分)16.1+− 17 解方程组37528x y x y −= +=18. 如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别为()4,3A ,()3,1B ,()1,2C .若111A B C △是由ABC 平移后所得,且ABC 中的任意一点(),P x y 经过平移后的对应点为()13,2P x y −+.(1)画出111A B C △;(2)求111A B C △的面积.19. 已知:如图,12∠=∠,67∠=∠.求证:45180∠+∠=°.四、解答题(二)(共3个小题,每小题8分,满分24分)20. 某校积极落实“双减”政策,开设了各类社团供学生参与拓展课程,为了解七年级学生各社团活动的.参与人数,该校对参与社团活动的学生进行了抽样调查,制作出如下的统计图.请根据统计图信息,解答下列问题:(1)求此次被调查的学生人数和扇形统计图中书法类所对应的圆心角的大小;(2)请把条形统计图补充完整;(3)已知该校七年级共有1200名学生参加社团活动,请根据样本估算该校七年级学生参加艺术类社团的人数.21. 对于两个关于x 的不等式,若有且仅有两个整数使得这两个不等式同时成立,则称这两个不等式是“双整”的.例如不等式不等式0x >和不等式3x <只有1和2两个整数使得这两个不等式同时成立,所以不等式0x >和不等式3x <是“双整”的.(1)判断不等式235x −<和10x −≥是否是“双整”的并说明理由;(2)若不等式210x a −+<和1x >是“双整”的,求a 的最大值.22. 【阅读理解】在平面直角坐标系中,将横、纵坐标均为整数的点称为格点.若一个多边形的顶点都在格点上,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .如图,ABC 是格点三角形, 其对应的1S =,0N =,4L =.(1)【学以致用】图中格点四边形DEFG 对应的S =______,N =______,L =______ ;(2)【拓展研究】已知格点多边形的S ,N ,L 存在1S aN bL =+− 的数量关系,其中a ,b 为常数. ①试求出a ,b 的值;②若某格点多边形对应的面积S 为79,内部的格点数N 为71,请求出该格点多边形边界上的格点数 L 的值.五、解答题(三)(共2个小题,第23题10分,第24题12分,满分22分)23. 某校为学生提供早餐和午餐服务.(1)学校提供的午餐有甲、乙两种套餐,两种套餐的组成如下: 套餐主食(克) 肉类(克) 其它(克) 甲150 85 165 乙 180 60 160了膳食平衡,需合理控制主食摄入量.如果在一周里,学生午餐主食摄入总量不宜超过820克,那么学生需要在一周里最多几天选择乙套餐?(说明:一周按5天计算)(2)学校提供的一份早餐包括一份综合食品、一份牛奶和一个鸡蛋.已知一份牛奶比一个鸡蛋重量的2倍少10克,一份牛奶和一份综合食品重量的和是一份鸡蛋重量的4倍.其中鸡蛋的蛋白质含量占15%,综合食品和牛奶每100克含蛋白质的重量如下表所示:种类综合食品 牛奶 每100克含蛋白质的重量(克) 9 3若早餐的蛋白质总含量为8%,请求一份早餐中综合食品、牛奶和鸡蛋的重量.24. 如图1,线段AB CD ∥,P 为线段AC 上一动点(不与点A ,C 重合).分别连接BP ,DP .过点P 作BPD ∠的角平分线PE ,在线段AC 的右侧作PF CD ∥.(1)如图2,当PE 与PF 重合时,求证:B D ∠=∠;(2)当PE 与PF 不重合时,探索B ∠,D ∠,EPF ∠之间的数量关系并说明理由.为。
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
七年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. √ 2的相反数是( )A. 2B. 0C. √ 2D. −√ 22. 下列说法中,错误的是( )A. 4的算术平方根是2B. √ 81的平方根是±3C. 121的平方根是±11D. −1的平方根是±13. 估计√ 10的值( )A. 在3到4之间B. 在4到5之间C. 在5到6之间D. 在6到7之间4. 下列图形中,∠1和∠2是内错角的是( )A. B.C. D.5. 如图,一块直角三角尺的一个顶点落在直尺的一边上,若∠2=35°,则∠1的度数为( )A. 45° B. 55°C. 65°D. 75°6. 在平面直角坐标系中,将点(2,1)向下平移3个单位长度,所得点的坐标是( )A. (−1,1)B. (5,1)C. (2,4)D. (2,−2)7. 用加减法解方程组{2a+2b=3,①3a+b=4,②最简单的方法是( )A. ①×3−②×2B. ①×3+②×2C. ①+②×2D. ①−②×28. 不等式组{x−4≤2(x−1),12(x+3)>x+1中两个不等式的解集在数轴上表示正确的是( )A. B. C. D.9. 如图,把一张长方形纸片沿EF折叠后,点D,C分别落在点D′,C′的位置.若∠EFB=65°,则∠AED′等于( )A. 70°B. 65°C. 50°D. 25°10. 小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A. 31元B. 30元C. 25元D. 19元二、填空题(本大题共6小题,共18.0分)11. 如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为_________.12. 若√ x−1+(y+2)2=0,则(x+y)2021等于.13. 若m<n,则3m−23n−2.14. 如图,在Rt△ABC中,∠C=90°,AC=4,将△ABC沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于_____________.15. 3−√ 11的相反数是,绝对值是.16. 在平面直角坐标系中,某机器人从原点O出发,按向右,向上,向右,向下的方向每次移动1个单位长度,行走路线如图所示,第1次移动到A1(1,0)第2次移动到A2(1,1),第3次移动到A3(2,1),第4次移动到A4(2,0)…则第2022次移动至点A2022的坐标是.三、解答题(本大题共7小题,共52.0分。
第11章三角形单元测试一.选择题(共10小题,满分30分,每小题3分)1.(2023秋•魏都区月考)如图,△ABC中,AB=4,AC=3,AD为BC边中线,若△ACD的周长为8,则△ABD的周长是()A.8B.9C.10D.122.(2024•云南)一个七边形的内角和等于()A.540°B.900°C.980°D.1080°3.(2023•福建)若某三角形的三边长分别为3,4,m,则m的值可以是()A.1B.5C.7D.94.(2023秋•魏都区期中)等腰三角形的一个外角是100°,它的顶角的度数为()A.80°B.20°C.80°或20°D.80°或50°5.(2023•聊城)如图,分别过△ABC的顶点A,B作AD∥BE.若∠CAD=25°,∠EBC=80°,则∠ACB的度数为()A.65°B.75°C.85°D.95°6.(2024•西和县二模)如图,BD是∠ABC的角平分线,AD⊥BD,垂足为D,∠DAC=20°,∠C=38°,则∠BAD=()A.50°B.58°C.60°D.62°7.(2024春•新华区期末)如图,在六边形ABCDEF中,∠A=∠B=90°,则∠1+∠2+∠3+∠4=()A.90°B.120°C.180°D.210°8.(2024•当阳市模拟)参加创客兴趣小组的同学,给机器人设定了如图所示的程序,机器人从点O出发,沿直线前进1米后左转18°,再沿直线前进1米,又向左转18°……照这样走下去,机器人第一次回到出发地O 点时,一共走的路程是()A.10米B.18米C.20米D.36米9.(2024春•普宁市期末)如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,则∠APB=()10.(2024春•金山区校级期末)如图,已知BP、CP分别平分∠ABD、∠ACD,若∠BAC=α,∠BPC=β,则∠BDC的大小为()A.α+βB.180°﹣2β+αC.2β﹣αD.2α﹣β二.填空题(共5小题,满分15分,每小题3分)11.(2023秋•宣汉县期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P=.12.(2024•凉山州)如图,△ABC中,∠BCD=30°,∠ACB=80°,CD是边AB上的高,AE是∠CAB的平分线,则∠AEB的度数是.13.(2023•徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C =°.14.(2024•沭阳县校级模拟)已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△15.(2023秋•魏都区期中)如图,△ABC是边长为5cm的等边三角形,动点P、Q分别同时从点A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都为1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为t(s),当t=时,△PBQ是直角三角形.三.解答题(共8小题,满分75分)16.(8分)(2023秋•浉河区期末)如图,在△ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE交于点F,求∠AFB.17.(9分)(2023•张家口模拟)已知一个三角形的第一条边长为3a+b,第二条边长为2a﹣b(2)若a,b满足|a﹣5|+(b﹣2)2=0,第三条边长m为整数,求这个三角形周长的最大值18.(9分)(2024•邯山区校级三模)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.19.(9分)(2024•香洲区校级一模)已知如图,△ABC过点A作∠DAE=∠BAC,且AB∥DE,∠1=∠2.(1)求证AD∥BC;(2)若已知AE平分∠BAC,∠C=40°,求∠BAD的度数.20.(10分)(2023•十堰二模)如图,点E在四边形ABCD的边CD的延长线上,连接BE交AD于点F.已知AB∥CD,∠1=120°,∠2=60°.(1)求证:AD∥CB;(2)若∠3=70°,求∠ABF的度数.21.(10分)(2023秋•襄城县期中)已知,如图,AD是△ABC的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠B=40°,求∠AEF的度数;(2)求证:∠B=12∠AED.22.(10分)(2023秋•禹州市期中)如图,△ABC中,点D在边BC延长线上,∠ACB=106°,∠ABC的平分线交AD于点E,过点E作EH⊥BD,垂足为H,且∠CEH=53°.(1)求∠ACE的度数;(2)求证:AE平分∠CAF;(3)若AC+CD=16,AB=10,且S△ACD=24,则△ABE的面积.23.(10分)(2024春•建邺区校级期中)如图,在△ABC中,点D在AB上,过点D作DE∥BC,交AC于点E,DP平分∠ADE,交∠ACB的平分线于点P,CP与DE相交于点G,∠ACF的平分线CQ与DP相交于点Q.(1)若∠A=50°,∠B=60°,则∠DPC=°,∠Q°;(2)若∠A=50°,当∠B的度数发生变化时,∠DPC、∠Q的度数是否发生变化?并说明理由;(3)若△PCQ中存在一个内角等于另一个内角的三倍,请直接写出所有符合条件的∠A的度数.。
2024年春学期无锡市初中学业水平调研测试七年级数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为100分钟.试卷满分100分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、班级、学校以及考试证号填写在答题卡的相应位置上,并将考试证号下方对应的数字方框涂黑.2.答选择题必须用2B 铅笔将答题卡上对应题目中的选项标号涂黑,如需改动,请用橡皮擦于净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加风加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.三角形的外角和是( )A.180°B.360°C.540°D.720°2.下列计算正确的是( )A. B. C. D.3.下列多项式相乘,能用平方差公式计算的是( )A. B.C. D.4.若,则下列不等式一定成立的是( )A. B. C. D.5.在数轴上表示不等式组中两个不等式的解来正确的是( )A. B.C. D.6.如图,直线a 、b 被直线c 所截,则、的位置关系是()236a a a⋅=624a a a÷=22()ab ab =()239aa =(1)(1)x x ++(21)(1)x x +-()()x y y x -+(2)(2)x y x y ++a b >a b->-22a b<11a b ->-ac bc>2,1x x ≥-⎧⎨<⎩1∠2∠A.对顶角B.同位角C.内错角D.同旁内角7.下列命题中,假命题是( )A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角相等,两直线平行D.平行于同一条直线的两条直线平行8.如图,在中,点D 、E 、F 分别在AB 、AC 、BC 上,连接DE 、EF 、DF ,若,则下列结论正确的是()A. B.C. D.9.若关于x ,y 的方程组的解满足,则的取值范围是( )A. B. C. D.10.如图,,点B 、C 分别在AM 、AN 上运动(不与点A 重合),连接BC ,将沿BC 折叠,点落在点的位置,则下列结论:①当点落在的一边上时,为直角三角形;②当点落在AN 边上时,;③当点落在内部时,;④当点落在外部时,.其中正确的是( )A.①②B.①③C.②④D.①③④二、填空题(本大题共8小题,每小题2分,共16分.其中第17题共有2空,每空1分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)ABC △12∠=∠//AB EF //BC DE A BDF∠=∠A DFE∠=∠22521x y k x y k +=+⎧⎨+=-⎩21x y +>-k 43k >-43k <-23k >-23k <-()090MAN αα︒︒∠=<<ABC △A A 'A 'MAN ∠ABC △A '2NA B A '∠=∠A 'MAN ∠2MBA NCA A ''∠+∠=∠A 'MAN ∠2MBA NCA A ''∠-∠=∠11.我们知道太阳的主要成分是氢,氢原子的半径约为0.00000005m ,数据0.00000005用科学记数法表示为__________.12.计算__________.13.一个多边形的内角和为720°,则这个多边形的边数是__________.14.已知三角形的两边长为3和4,则第三条边长可以为__________.(请写出一个符合条件的答案)15.已知,的两条中线AD 、BE 相交于点,者四边形的面积为4,则的面积为__________.16.已知,,则__________.17.写出命题“如果,那么”的逆命题:__________,这个逆命题是__________命题.(填“真”或“假”)18.若关于的不等式组有且只有4个整数解,则的取值范围为__________.三、解答题(本大题共8小题,共54分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分6分)计算:(1);(2).20.(本题满分6分)把下面各式分解因式:(1)(2)21.(本题满分6分)(1)解方程组(2)解不等式组22.(本题满分6分)如图是由长度为1的小正方形组成的8×7的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,请在给定的网格中完成画图并回答相关问题.(1)将沿点B 到点C 的方向平移,使点B 移动到点C 的位置,请画出平移后的,点D 、C 、E 分别为A 、B 、C 的对应点:(2)在整个平移的过程中,AB 扫过的面积是__________.23.(本题满分6分)如图,点C 、E 、B 、F 在一条直线上,,.()32m m -=ABC △O ODCE OAB △18ma=32n a =2m na+=a b =22a b =x 10,0x x m -≤⎧⎨->⎩m 01(π1)2-++()(2)a b a b +-29x -2242x x -+20,2 6. x y x y -=⎧⎨+=-⎩20,23(1).x x x +>⎧⎨->-⎩ABC △ABC △DCE △//AC FD A D ∠=∠求证:.24.(本题满分6分)为深入推进全民阅读,建设书香社会,擦亮我市“钟书·阅读”品牌,充分发挥百个“钟书房”优质公共阅读空间矩阵服务效能,某“钟书房”计划增添部分图书,己知购买1本《钢铁是怎样炼成的》和2本《名人传》需100元,购买2本《钢铁是怎样炼成的》和3本《名人传》需180元.(1)所购买的这两种图书单价分别为多少元?(2)该“钟书房”计划用不超过3500元购进这两种图书共80本,问该“钟书房”最多可以购买多少本《钢铁是怎样炼成的》?25.(本题满分8分)我们知道,作差法是比较两个数大小的常用方法.例如:比较与的大小,,.请根据以上材料,解答下列问䞨:(1)比段与的大小;(2)比较与的大小.26.(本题满分10分)我们把关于x 、y 的二元一次方程的系数a 、b 、c 称为该方程的伴随数,记作.例如:二元一次方畦的伴随数是.(1)二元一次方程的伴随数是__________;(2)已知关于x ,y 的二元一次方程的伴随数是.①若,是该方程的两组解,求m 、n 的值;②若是该方程的一组解,且满足,求代数式的值的范围.//AB ED 5-3-5(3)5320---=-+=-< 53∴-<-25x +42x +3x +38x -0ax by c ++=(,,)a b c 530x y -+=(5,1,3)-321x y +=(3,,)m n 2,1x y =⎧⎨=-⎩2,2x y =-⎧⎨=⎩32x y =-⎧⎨=⎩7m n +>34m n +2024年春学期无锡市初中学业水平调研测试七年级数学参考答案及评分说明一、选择题:(本大题共10小题,每小题3分,共30分)1.B2.B3.C4.C5.C6.D7.C8.A9.A10.D二、填空题:(本大题共8小题,每小题2分,共16分.其中第17题2空,每空1分)11.12.13.614.5(不唯一)15.416.17.如果.那么,假18.三、解答题:(本大题共8小题,共54分)19.(本题满分6分)(1)解:原式(2)解:原式20.(本题满分6分)(1)解:原式(2)解:原式21.(本题满分6分)(1)解方程组解:由①+②得,.将代入②得.(2)解不等式组8510-⨯236m m -1222a b =a b =32m -≤<112=+32=2222a ab ab b=-+-222a ab b =--223x =-(3)(3)x x =+-()2221x x =-+22(1)x =-20, 2 6.x y x y -=⎧⎨+=-⎩①②26x =-3x ∴=-3x =-32y =-3,3.2x y =-⎧⎪∴⎨=-⎪⎩20. 23(1).x x x +>⎧⎨->-⎩①②解:由①得,由②得,不等式组的解集为.22.(本题满分6分)(1)略(2)823.(本题满分6分)证明:,.又,,.24.(本题满分6分)解:(1)设《钢铁是怎样炼成的》和《名人传》的单价分别为x 元、y 元.根据题意,得.解这个方程组,得答:《钢铁是怎样炼成的》和《名人传》的单价分别为60元、20元.(2)设购买《钢铁是怎样炼成的》m 本.根据题意,得.解这个不等式,得,的最大值为47.答:该“钟书房”最多可以购买47本《钢铁是怎样炼成的》.25.(本题满分8分)解:(1),;(2),若,则,当时,;若,则,当旳,;若,则,当时,.26.(本题满分10分)2x >-12x <∴122x -<<//AC FD C F ∴∠=∠A D ∠=∠ ABC DEF ∴∠=∠//AB ED ∴210023180x y x y +=⎧⎨+=⎩60,20.x y =⎧⎨=⎩()6020803500m m +-≤47.5m ≤m ∴(25)(42)40x x +-+=> 2542x x ∴+>+()()338211x x x +--=-+2110x -+>112x <∴112x <338x x +>-2110x -+=112x =∴112x =338x x +=-2110x -+<112x >∴112x >338x x +<-(1);(2)①解:根据題意,得解这个方程组,得(3)解:根据题意,得,..又,,,,,即.()3,2,1-3203(2)20.m n m n ⨯-+=⎧⎨⨯-++=⎩4.2.m n =⎧⎨=-⎩3(3)20m n ⨯-++=92n m ∴=-3434(92)536m n m m m ∴+=+-=-+7m n +> 92n m =-927m m ∴+->2m ∴<53626m ∴-+>3426m n +>。
七年级数学试卷
注:1、可以使用计算器,但未注明精确度的计算问题不得采取近似计算. 建议根据题型的
特点把握好使用计算器的时机.
2、本试卷满分100分,在90分钟内完成. 祝你顺利并取得优秀成绩!
一、填空题:(每空2分,共30分)
1、设
2
y
x +=1,那么用含x 的代数式表示y ,得y= . 2、如果⎩
⎨⎧==1y 2
x 满足方程x+ky=1,那么k 的值为 .
3、若0|1y 2|)x 4(2=++-,则x+2y 的值为___________.
4、不等式2x -7<5-2x 的所有正整数解....是_____________.
5、化简:① (-2002)0=______; ②(-31)-2 =______; ③-)x 6(x 2
1
-⋅= ; ④2a 3÷(-
3
1
a)= ; ⑤32)xy 3(-=________. 6、“纳米(nm )”技术是一门在0.1—100纳米空间尺度内操纵原子和分子,对材料进行加
工,制造出具有特定功能产品的高新技术. 纳米是一种度量单位,1纳米约为0.000000001米,用科学记数法可将这个数表示为___________________. 7、已知点M 是线段AB 的中点,如果线段MB=6cm ,那么线段AB= cm. 8、∠α与∠β互为余角,若∠α=15º35',则∠β等于 º ' . 9、如图,根据下列的要求,直接在下图中作图:
①利用三角板作线段CD 垂直于AB ,垂足为点O ; ②作射线CE 交线段BO 于点E .
(9) (10) 10、如图,直线AB//CD ,EF 平分∠BEN ,若∠1=80º,则∠2=______度.
M
B
D
C
A
N E
F 1
2 A
B
二、选择题:(每题2分,共20分,将答案直接填在下表中)
1、二元一次方程x+y=4的正整数解个数为
(A )3个 (B )4个 (C )5个 (D )无限个 2、下列不等式组中,解集为2<x<3的是
(A )⎩⎨⎧>>2x 3x (B )⎩⎨⎧<>2x 3x (C )⎩⎨⎧><2x 3x (D )⎩⎨⎧<<2
x 3
x
3、若a<b ,则下列各式中一定成立的是
(A )
2
b
2a > (B )a -2>b -2 (C )-2a>-2b (D )22b a < 4、如果关于x 的不等式 (m -2) x > m -2的解集是x<1,那么m 的取值范围是
(A )m<2 (B )m>0 (C )m>2 (D )m>-2 5、下列计算中,结果错误..
的是 (A )a ·a 2=a 3 (B )x 6÷x 2=x 4 (C )(ab)2=ab 2 (D )(-a)3= -a 3
6、下列计算正确的一个是
(A )(2x +3y)(2x -3y)=2x 2 -3y 2 (B )(a -b)(-a +b)=a 2-b 2 (C )(x +y)2=x 2 +y 2 (D )(a + b)(a -2b) = a 2 - ab -2b 2
7、如图,直线a 、b 被直线l 所截,若∠1=∠3≠90º,则
(A )∠2=∠3 (B )∠2=∠4 (C )∠1=∠4 (D )∠3=∠4
(7) (8) 8、如图所示,∠AOD -∠AOC =
(A )∠AOC (B )∠BOC (C )∠BOD (D )∠COD 9、
6
1
平角为 (A )15º (B )30º (C )45º (D )60º
10、关于同一平面内的三条直线a 、b 、c ,有如下判断:
①若a ⊥b ,且a//c ,则b//c ; ②若a//b ,且b//c ,则a //c ; ③若a ⊥b ,且b ⊥c ,则a ⊥c ; ④若a//b ,且a ⊥c ,则b ⊥c 其中正确的判断有:
(A )1个 (B )2个 (C )3个 (D )4个
l
a b 1 2
3 4
O A
B C D
三、解方程(不等式)组:(第1、2题各5分,第3题6分,共16分) 1、⎩⎨⎧=-=+5y x 22y 4x 3
解:
2、⎪⎩
⎪
⎨⎧=++-=-+=+-0z y x 2z y x 2z y x
解:
3、⎪⎩⎪⎨⎧>---<-1)2x (5x 221x 53x 2
(要求将不等式①和②的解集在下面数轴上表示出来) 解:
①
② ① ② ③
① ② 0 1。