(精品)盾构法发展历史
- 格式:ppt
- 大小:8.49 MB
- 文档页数:13
盾构法隧道主要内容一、盾构施工技术的进展历史二、盾构施工技术的国内外进呈现状三、盾构机的种类四、盾构施工的技术特点五、盾构机工作原理五、盾构施工的主要工序六、中国承受盾构修建地铁历史及规划八、工程案例一、盾构施工技术的进展历史1盾构施工法的制造1818 年,Brunel 从一种食船虫在船身上打洞一事受到启发,争论出了盾构工法。
历经艰辛,终在1841 年使泰晤士河底隧道贯穿,该隧道自1825 年开工,历时17 年,可充分说明技术的成功是多么的坎坷!2盾构施工法的进展阶段自1818 年诞生进展到现在已有180 多年的历史,概括而言,有四个阶段:(1)初期盾构:以Brunel 盾构为代表;(2)其次代盾构:以机械式、气压式、TBM 及城市盾构工法为代表;(3)第三代盾构:以闭胸式盾构为代表〔泥水式、土压式〕;(4)第三代盾构:以安全、高速、大深度、大断面、断面多样化、异形化为特色。
二、盾构施工技术的国内外进呈现状1国外盾构施工技术现状以欧洲和日本最为兴旺。
美国:纽约自1900 年起用气压盾构就建筑了数十条水底隧道,目前根本是以盾构施工占90%以上;前苏联:莫斯科自1932 年开头承受盾构法施工地铁等地下工程;德国、法国、英国、加坡等也在广泛承受盾构法施工地下工程。
日本:自1917 年在国铁羽越线折渡隧道〔泻县〕的建设中首次承受盾构工法。
日本从盾构施工法正式开头用于城市隧道建设的1964 年至1984 年约20 年间,工研制盾构机超过5000 台。
目前日本已经成为世界上盾构制造技术以及施工技术的大国,占据世界上仅80%的盾构份额。
1917 年——日本国铁隧道建设中首次承受盾构工法1953 年——日本关门隧道承受盾构工法1957 年——日本地铁承受顶盖式盾构施工,这是城市隧道首次承受盾构1960 年——日本名古屋地铁承受盾构施工1962 年——东京下水道承受圆形盾构。
此后,盾构渐渐用于小断面的市政管道建设1964 年——日本下水道工程,最先承受泥水式盾构1974 年——日本独立争论出土压式盾构1975 年——日本争论出砾石泥水式盾构1981 年——日本争论出加气泡盾构2国内盾构施工技术现状国内最早是在1956 年,阜海州露天煤矿承受直径2.66m 的盾构,在砂土层中成功地开掘了一条流水巷道。
探讨盾构法隧道施工技术发展盾构法是指利用盾构机进行隧道施工的方法。
随着城市化进程的加快,城市交通压力日益增大,盾构法隧道施工技术的发展变得越发重要。
下面将从技术发展的历程、技术特点及未来发展方向三个方面探讨盾构法隧道施工技术的发展。
盾构法隧道施工技术的发展历程主要经历了以下几个阶段:第一阶段是20世纪60年代至70年代,此时盾构机还处于起步阶段,技术较为简单,施工效率低。
运用盾构法施工的代表性工程——东京地铁新宿线改善工程的成功,为盾构法的发展奠定了基础。
第二阶段是20世纪80年代至90年代,此时盾构机开始大规模应用于隧道施工,同时也出现了多种类型的盾构机。
德国的压平式盾构机、法国的泥水平衡盾构机及日本的开盾式盾构机成为当时三个主要的类型。
随着施工技术的改进,盾构法在混凝土隧道、铁路隧道等多个领域得到了广泛应用。
第三阶段是21世纪至今,此时盾构机的技术已经非常成熟,施工效率大幅提高。
针对不同地质条件和隧道类型,还研发出了多种改进型盾构机,如用于软土地质的土压平衡盾构机、用于岩石地质的液压盾构机等。
这些改进型盾构机在施工中能够更好地适应地质条件,提高施工效率和质量。
盾构法隧道施工技术的特点主要包括以下几个方面:第一,盾构法施工相对于传统的掘进法来说,无需大量的人工劳动,减少了人员伤亡的风险。
第二,盾构机由上万个零部件组成,需要精确的工艺和装配,提高了施工技术的要求。
盾构法能够适应不同的地质条件,包括软土、岩石、河床等,使得盾构法具有很大的适应性。
第四,盾构法施工速度快,能够实现快速施工,缩短工期,减少对交通的影响。
未来盾构法隧道施工技术的发展方向主要有以下几个方面:第一,提高盾构机自动化技术水平,减少人工操作,提高施工效率和质量。
第二,发展更小型、多功能的盾构机,以满足各种特殊地质条件和工程需求。
加强盾构机的环保技术研发,减少对环境的影响,降低施工过程中产生的噪音、振动等对周围居民的影响。
第四,加大对盾构法隧道施工技术的研究与创新,注重与其他领域的结合,推动盾构法在更多领域的应用。
简述盾构的发展历程
盾构是一种在地下挖掘隧道的机械方法。
它可以有效地挖掘地下隧道,广泛用于城市地铁、隧道和水利工程等建设中。
以下是盾构发展历程的简述。
盾构的起源可以追溯到19世纪下半叶,当时的挖掘工作主要依靠人工和爆破技术。
然而,这种方法在城市建设中面临着很多困难,如噪音、震荡和地表沉降等问题。
因此,人们开始寻找一种更加安全高效的地下挖掘方法。
20世纪初,人们开始尝试使用盾构机进行地下隧道的挖掘。
最早的盾构机是通过人力推动的,但工作效率较低。
随着机械技术的不断发展,盾构机的壁厚、轴重和推进力不断增加,使其能够适应更复杂的地质条件和更大直径隧道的挖掘。
在20世纪中叶,盾构机的发展进入了一个全新的时代。
随着液压系统、控制系统和推进系统的引入,盾构机的性能得到了显著提升。
这些技术的应用使得盾构机能够应对更大规模、更复杂的地下挖掘工程。
21世纪以来,盾构机的发展趋势主要体现在以下几个方面:
1. 大型盾构机的兴起:盾构机的尺寸和功能不断提高,能够满足更大直径隧道的挖掘需求。
2. 自动化和智能化:随着电子技术和计算机技术的进步,盾构机的自动化和智能化水平不断提高。
自动化系统可以实现盾构
机的自主导航、地质探测和控制等功能。
3. 环保和节能:在盾构机设计和使用过程中,越来越重视环保和节能要求。
采用有效的排放控制和能源管理技术,减少工程对环境的影响。
总的来说,盾构机的发展历程经历了从人力推动到机械化、自动化和智能化的过程。
今后,盾构技术将继续发展,为地下挖掘工程提供更高效、安全和环保的解决方案。
我国盾构技术的发展现状盾构技术是一种在地下开挖隧道的方法,它是一种高效、安全、环保的隧道开挖技术。
随着我国城市化进程的加速,越来越多的城市需要建设地铁、地下通道等基础设施,盾构技术也得到了广泛应用。
本文将从盾构技术的发展历程、技术特点、应用领域等方面,介绍我国盾构技术的发展现状。
一、盾构技术的发展历程盾构技术最早起源于19世纪末的英国,当时主要用于建设水利工程。
20世纪初,盾构技术开始应用于地铁隧道的建设。
20世纪50年代,日本开始大规模使用盾构机建设地铁,盾构技术得到了快速发展。
20世纪80年代,我国开始引进盾构技术,建设了北京地铁1号线和广州地铁1号线。
此后,我国盾构技术得到了快速发展,成为我国地下工程建设的主要技术之一。
二、盾构技术的技术特点盾构技术是一种在地下开挖隧道的方法,它的主要特点如下:1.高效:盾构机可以在地下连续开挖,不需要停工,因此可以大大提高施工效率。
2.安全:盾构机在开挖过程中,可以保持地面的稳定,减少地面塌陷的风险,因此可以保证施工安全。
3.环保:盾构技术可以减少对地面环境的破坏,减少噪音和尘土污染,因此可以保护环境。
三、盾构技术的应用领域盾构技术可以应用于各种地下工程建设,主要包括以下几个方面:1.地铁建设:随着我国城市化进程的加速,越来越多的城市需要建设地铁,盾构技术成为地铁建设的主要技术之一。
2.水利工程建设:盾构技术可以用于建设水利工程,如水库、水渠等。
3.公路隧道建设:盾构技术可以用于公路隧道的建设,如山区公路隧道等。
4.城市地下综合管廊建设:盾构技术可以用于城市地下综合管廊的建设,如电力、通信、自来水等管道的建设。
四、盾构技术的发展趋势随着我国城市化进程的加速,盾构技术的应用领域将会越来越广泛。
未来,盾构技术的发展趋势主要包括以下几个方面:1.技术创新:盾构技术将会不断进行技术创新,提高施工效率和施工质量。
2.智能化:盾构机将会越来越智能化,可以实现自主导航、自动控制等功能。
盾构施工相关知识1、盾构施工概念、发展历史及现状盾构:是主要用来开挖土砂围岩的隧道机械,由切口环、支承环、及盾尾三部分组成。
盾构法:用盾构一边防止土砂的坍塌,一边进行开挖推进,通过盾构外壳和管片支承四周围岩防止土砂崩溃进行隧道施工,并在盾尾进行衬砌作业从而修建隧道的方法。
发展历史:18世纪末,英国人提出在化敦地下修建横贯泰晤士河隧道的构想,并对具体的掘削工法和使用机械等问题做了讨论。
1818年Brunel观察小虫腐蚀木船底板成洞的经过,从而得到启示,在此基础上提出的盾构工法。
采用此工法横穿泰晤士河的隧道工程于1825动工,隧道长458m,断面为11.4mX6.8m 的方型。
隧道于1841年贯通。
而圆型断面隧道盾构出现在1869年建造横穿泰晤士河的第二条隧道。
19世纪末到20世纪中叶,盾构工法传到许多国家,并得到不同程度的发展。
20世纪60~80年代,盾构工法继续发展完善,成绩显著。
1990~2003年这一段时间里盾构工法的技术进步极为显著,并有以下特点:盾构隧道长距离化、大直径化:日本东京湾隧道直径为14.14m,长度15.1Km 盾构断面的多样化:方型、圆型、双圆型、马蹄型施工自动化:自动导向系统、PLC控制系统、远程信息传输系统技术现状:完善近年推出的新工法、新工艺的技术细节,使之提高并达到成熟,加速盾构工法的自动化进程。
为适应大深度、高地下水压、大口径化、长距离化、施工自动化、施工高速化、断面多样化等需求,开发新概念的工法、工艺、材料、管理系统。
盾构机的类型:根据不同的地质条件,盾构分为以下类型:闭胸式盾构:是用泥土加压或泥水加压来抵抗开挖面的土压力和水压力以维持开挖面的稳定性,通常包括:泥水式平衡盾构:适合于在河底、海底等高压水压力条件隧道的施工。
土压平衡盾构:适用于含水量与粒度适中的土层,适用范围广泛。
敞开式盾构:以开挖面自立为前提,通常包括:手掘式盾构:开挖面暴露,可以自立稳定,以盾壳为支护条件,采用人工开挖。
第一章盾构技术进展概况1.1 引言盾构实际上是盾构机的简称。
它是一个横断面外形与隧道横断面外形相同、尺寸稍大,内藏挖土、排土机具,自身设有保护外壳的暗挖隧道的机械。
以盾构为核心的一整套完整的隧道施工方法称为盾构工法,概况如图1.1所示。
盾构工法的设想19世纪初产生于英国,至今已有200年的历史。
盾构工法问世以前隧道施工主要靠开挖法。
但就城市隧道施工而言,开挖法存在受地形、地貌、环境条件的限制;开挖法给城市交通带来极大不便;开挖产生的地层沉降较大;施工机械的噪声和振动;施工对环境构成的污染等诸多不利因素。
相对而言,盾构工法不存在这些缺陷,故受到人们的极大重视,并得以迅速发展。
人们不仅开发了软土盾构工法,而且还开发了适于卵石地层等多种其它地层的盾构工法。
此外,还在提高安全性、提高工程质量、缩短工期及降低成本等方面作了精心的研究和开发,并取得了较大的成功。
目前盾构工法在城市隧道施工技术中已确立了稳固的统治地位,且已成为一种必不可少的通用隧道施工技术。
目前隧道科技工作者正在致力于更先进的全机械化的计算机控制的智能化的盾构工法,适于地下大深度的盾构工法及特殊断面、特殊功能的盾构工法的研究和开发。
1.2 盾构法隧道的发展历史和现状18世纪未英国人提出在伦敦地下修建横贯泰晤士河隧道的构想,并对具体的掘削工法和使用机械等问题做了讨论。
到1798年开始着手希望实现这个构思,但由于竖井挖不到预定的深度,故计划受挫。
但横贯泰晤士河隧道的设想与日俱增,4年后Torevix决定由另一地点建造连结两岸的隧道,随后工程再次开工。
施工中克服了种种困难,当掘进到最后30m 时,开挖面急剧浸水隧道被水淹没,横贯泰晤士河的设想再次破灭,工程从开工到被迫终止用了5年时间。
横贯泰晤士河的计划在以后10年中未见显著进展。
1818年Brunel观察了小虫腐蚀木船底板成洞的经过,从而得到启示,在此基础上提出了盾构工法,并取得了专利。
这就是所谓的开放型手掘盾构的原型。
3.7我国盾构法隧道的发展历史3.7.1 20世纪80年代前盾构技术的应用1953年,东北阜新煤矿用直径2.6m的手掘式盾构及小混凝土预制块修建疏水巷道,这是我国首条用盾构法施工的隧道。
1957年,北京市下水道工程采用直径2.0m和2.6m的盾构进行施工。
1962年,上海城建局隧道工程公司结合上海软土地层对盾构进行了系统的试验研究。
研制了1台直径4.16m的手掘式普通敞胸盾构,在两种有代表性的地层进行掘进试验,用降水或气压来稳定粉砂层及软黏土地层。
在经过反复论证和地面试验之后,选用由螺栓连接的单层钢筋混凝土管片作为隧道衬砌,环氧煤焦油作为接缝防水材料。
隧道掘进长度68m,试验获得了成功,并采集了大量的盾构法隧道数据资料。
1965年3月,由上海隧道工程设计院设计、江南造船厂制造的2台直径5.8m的网格挤压式盾构,于1966年完成了2条平行的隧道,隧道长660m,地面最大沉降达l0cm。
1966年5月,中国第一条水底公路隧道—上海打浦路越江公路隧道工程主隧道采用由上海隧道工程设计院设计、江南造船厂制造的直径10.22m网格挤压盾构施工,辅以气压稳定开挖面,在水深为16m的黄浦江底顺利掘进隧道,掘进总长度1322m。
打浦路隧道于1970年底建成通车。
此次所用的网格盾构有所改进,敞开式施工可转换为闭胸式施工。
1973年,采用1台直径3.6m的水力机械化出土网格盾构和2台直径4.3m的网格挤压盾构,在上海金山石化总厂修建了1条污水排放隧道和2条引水隧道,共掘进了3926m海底隧道,首创了垂直顶升法建筑取排水口的新技术。
3.7.2 20世纪80年代盾构法技术的进步与发展1980年,上海市进行了地铁1号线试验段施工,研制了1台直径6.412m网格挤压盾构,采用泥水加压和局部气压施工,在淤泥质黏土地层中掘进隧道1130m,1982年,上海外滩的延安东路北线越江隧道工程1476m圆形主隧道采用上海隧道股份设计、江南造船厂制造的直径11.3m网格挤压水力出土盾构施工。
简述盾构的发展历程盾构是一种施工技术,用于地下开挖。
它起初是在19世纪末由英国工程师James Henry Greathead发明的,用于解决伦敦市区地下隧道建设的挑战。
随着技术的不断改进和创新,盾构在过去的一个多世纪里取得了巨大的发展。
盾构的发展历程可以追溯到1860年代。
当时,伦敦市的污水处理厂需要隧道连接,以便将污水输送到泰晤士河。
然而,由于伦敦市区地下存在的各种地质条件和建筑结构,传统的开挖方法变得困难和危险。
为了解决这个问题,Greathead发明了一种新的开挖方法,即盾构。
他的设计在1871年之后首次得以实施,在建设伦敦地铁的过程中取得了成功。
20世纪初,盾构技术在各个国家开始被广泛采用。
在美国,纽约市地下铁道的建设成为盾构技术的重要项目。
在20世纪30年代,美国建筑师John Parker发明了一种气压式盾构机,使得盾构技术能够在更困难的地质条件下使用。
这种新的盾构机被用于纽约曼哈顿区的地铁建设,条件非常苛刻,包括深层软土和高水压。
随着盾构技术的进步,它的应用范围也不断扩大。
在20世纪50-60年代,日本开始使用盾构技术建设大规模的隧道工程,包括东京的地铁系统。
日本还改进了盾构机的设计,使其更加高效和可靠。
到了20世纪70年代,盾构技术已经得到全球范围内的广泛应用。
新的发展包括了更大更强大的盾构机,以及多种类型的盾构机,适用于不同的地质条件和项目需求。
例如,硬岩盾构机用于开挖岩石,而土压平衡盾构机适用于软土和水下。
21世纪初,盾构技术取得了更大的突破和创新。
例如,液压盾构机的出现改变了传统盾构机的工作方式。
液压盾构机使用压缩空气和水流来推进盾构。
这种新型盾构机的优势在于更高的推进速度和效率,同时降低了噪音和振动。
随着城市化进程的不断加快,地下空间的利用变得越来越重要。
盾构技术在城市地下工程中扮演着至关重要的角色,包括地铁、隧道、地下管道和地下储存设施等。
盾构的发展历程展示了人类对技术的不断创新和进步。