选修3-2 第十章 第一讲 电磁感应现象 楞次定律4.4
- 格式:doc
- 大小:260.50 KB
- 文档页数:8
物理选修3-2知识点归纳(鲁科版)第一章 电磁感应 第1节 磁生电的探索1.电磁感应:只要闭合电路的磁通量发生变化,闭合电路中就会产生电流。
国磁通量变化而产生电流的现象叫做电磁感应,所产生的电流叫做感应的电流。
第2节 感应电动势与电磁感应定律1.感应电动势:电磁感应现象中产生的电动势叫感应电动势。
电路中感应电动势的大小与电路中磁通量变化的快慢有关。
2.法拉第电磁感应定律:电路中感应电动势的大小与穿过这一电路的磁通量变化率成正比。
tkE ∆∆Φ=,k 为比例常数。
在国际单位制中,感应电动势E 的单位是V ,Φ的单位是Wb ,t 的单位是s , 1=k , 上式可以化简为t E ∆∆Φ=。
n 匝线圈的感应电动势大小为:tn E ∆∆Φ=。
磁通量的变化量仅由导线切割磁感线引起时,感应电动势的公式还可以写成:Blv E =。
第3节 电磁感应定律的应用1.涡流:将整块金属放在变化的磁场中,穿过金属块的磁通量发生变化,金属块内部就产生感应电流。
这种电流在金属块内部形成闭合回路,就像旋涡一样,我们把这种感应电流叫做涡电流(eddy current),简称涡流。
如图所示,把绝缘导线绕在块状铁芯上,当交变电流通过导线时,铁芯中会产生图中虚线所示的涡流。
在以上实验中,小铁锅的电阻很小,穿过铁锅的磁通量变比时产生的涡流较大,足以使水温升高;而玻璃杯是绝缘体,电阻很大,不产生涡流。
2.电磁炉:电磁炉的工作原理与涡流有关。
如图所示,当50 Hz 的交流电流入电磁炉时,经过整流变为直流电,再使其变为高频电流(20~50 kHz)进入炉内的线圈。
由于电流的变化频率较高,通过铁质锅底的磁通量变化率较大,根据电磁感应定律t E ∆∆Φ=/可知,产生的感应电动势也较大;铁质锅底是整块导体,电阻很小,所以在锅底能产生很强的涡电流,使锅底迅速发热,进而加热锅内的食物。
(1)与煤气灶、电饭锅等炊具相比,电磁炉具有很多优点:电磁炉利用涡流使锅直接发热,减少了能量传递的中间环节,能大大提高热效率;电磁炉使用时无烟火,无毒气、废气;电磁炉只对铁质锅具加热,炉体本身不发热……由于以上种种优点,电磁炉深受消费者的喜爱,被称为“绿色炉具”。
精心整理人教版高二物理选修3-2《4-3楞次定律》教案:一.教材分析1、法拉第电磁感应定律和楞次定律是电磁学中的重要定律,一个判定感应电动势的大小,一个判定感应电流的方向,二者前后关联,映衬了电磁感应现象规律的多样性和复杂性。
2、楞次定律是电磁感应这一事物本身属性的一个放映,客观存在且发展变化。
既然是放映事物本质的规律,在物理3、4、5、1、2、长期以来,教育教学过程中师生地位平等,以人为本,坚持学生的主体地位,教师的主导地位。
3、4、5、究热情,扼杀学生探究的欲望。
1、a)通过实验探究得出感应电流与磁通量变化的关系,并会叙述楞次定律的内容。
b)通过实验过程的回放分析,体会楞次定律内容中“阻碍”二字的含义,感受“磁通量变化”的方式和途径。
c)通过实验现象的直观比较,进一步明确感应电流产生的过程仍能遵循能量转化和守恒定律2、过程与方法a)观察实验,体验电磁感应现象中感应电流存在方向问题。
b)尝试用所学的知识,设计感应电流方向的指示方案,并动手实验操作。
c)关注实验现象的个性,找出实验现象的共性,并总结出规律,培养学生抽象思维能力和创新思维能力。
3、情感态度价值观热情:在实验设计,操作过程中逐步积蓄探究热情,培养学生勇于探究的精神;参与:养成主动参与科学研究的良好学习习惯;交流:在自由开放平等的探究交流空间,能互相配合,互相鼓励,友好评价,和谐相处。
哲学思考:能够用因果关系和矛盾论的辨正观点认识楞次定律;四.教学重点难点重点:楞次定律探究实验设计和实验结果的总结。
难点:感应电流激发的磁场与原来磁场之间的关系。
定律内容表述中阻碍二字的理解。
五.设计思想本节课结合学生的特点对教材的内容进行了深入的挖掘和思考,备教材,备学生,备教法,始终把学生放在教学的主体地位,让学生参与,让学生设计,营造一个“安全”的教学环境,广开言路,让学生的思维与教师的引导共六.教学过程(一)实验引入,引发学生猜想与假设,激发学生探究的欲望师:在探究电磁感应现象的实验中,也许你已经注意到,在不同的情况下产生的感应电流的方向是不同的。
楞次定律教学设计教学目标1.通过实验探究与交流讨论获知楞次定律2.能够利用楞次定律判定感应电流的方向3.较全面理解楞次定律的物理意义,从而进一步理解“磁生电〞重点:理解楞次定律并能利用其判断感应电流的方向难点:对楞次定律“阻碍〞的理解教学设计一、复习与引入1. 产生感应电流的条件是什么?2. 你知道感应电流的方向可能与哪些因素有关吗?如何判断其方向呢?二、新课教学学生分组自行设计实验:⒈学生实验一、探索电流计指针偏转方向与通入电流方向的关系结论:“+〞进右偏;“—〞进左偏⒉学生实验二、探索“感应电流的磁场方向与原磁场方向关系〞。
⑴根据图中条形磁铁N、S极插入或拔出时的电流计的偏转方向的实验结果,标出线圈中感应电流的方向。
⑵分析产生过程:ⅠN极插入螺线管时:①穿过螺线管内部的原磁场的磁感线方向:②穿过螺线管内部原磁场的磁通量的变化:③由安培定那么判定感应电流的磁场方向是:④感应电流的磁场方向与原磁场方向关系:ⅡS极插入螺线管时:①穿过螺线管内部的原磁场的磁感线方向:②穿过螺线管内部原磁场的磁通量的变化:③由安培定那么判定感应电流的磁场方向是:④感应电流的磁场方向与原磁场方向关系:ⅢN极拔出螺线管时:①穿过螺线管内部的原磁场的磁感线方向:②穿过螺线管内部原磁场的磁通量的变化:③由安培定那么判定感应电流的磁场方向是:④感应电流的磁场方向与原磁场方向关系:ⅣS极拔出螺线管时:①穿过螺线管内部的原磁场的磁感线方向:②穿过螺线管内部原磁场的磁通量的变化:③由安培定那么判定感应电流的磁场方向是:④感应电流的磁场方向与原磁场方向关系:⑶各实验小组分析归纳:当原磁场穿过螺线管的磁通量增加时,感应电流的磁场方向与引起感应电流的原磁场方向相反;当原磁场穿过螺线管的磁通量减少时,感应电流的磁场方向与引起感应电流的原磁场方向相同。
⑷各实验小组交流,探讨所得结果的共同点得出结论:“增—反;减—同〞⑸引导学生讨论:在上述电磁感应现象中,感应电流产生的磁场对于发生电磁感应现象的过程起着什么作用呢?从感应电流的磁场与原磁场间的方向以及它们相互作用的角度看是顺应还是阻碍?观看flash动画:从中能得到什么启发?概括总结:㈠楞次定律:⒈内容:感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化⒉理解:⑴阻碍不是阻止⑵通过划分句子成分的方法理解楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化学生思考并回答“磁生电〞的本质是什么?各小组进行“思考与讨论〞学生自学解决例题1引导学生总结判断感生电流方向的方法步骤:①明确研究对象为那一部分电路;②确定原磁场的方向;③确定原磁场磁通量的变化情况;④根据楞次定律判定感应磁场的方向;⑤由安培定那么判定感应电流方向各小组讨论学习例题2讲解例题2各小组进行“思考与讨论〞〔提示学生与左手定那么应用的场景作对比〕㈡右手定那么⒈内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线的运动方向,这时四指所指的方向就是感应电流的方向。
人教版高中物理选修3-2课后习题参考答案课后练习一第1 讲电磁感应和楞次定律1.如图17-13所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,线圈c中将有感应电流产生()A.向右做匀速运动B.向左做匀速运动C.向右做减速运动D.向右做加速运动答案:CD详解:导体棒做匀速运动,磁通量的变化率是一个常数,产生稳恒电流,那么被线圈缠绕的磁铁将产生稳定的磁场,该磁场通过线圈c不会产生感应电流;做加速运动则可以;2.磁单极子"是指只有S极或N极的磁性物质,其磁感线分布类似于点电荷的电场线分布。
物理学家们长期以来一直用实验试图证实自然界中存在磁单极子,如题图4所示的实验就是用于检测磁单极子的实验之一,abcd为用超导材料围成的闭合回路,该回路旋转在防磁装置中,可认为不受周围其它磁场的作用。
设想有一个S极磁单极子沿abcd的轴线从左向右穿过超导回路,那么在回路中可能发生的现象是:A.回路中无感应电流;B.回路中形成持续的abcda流向的感应电流;C.回路中形成持续的adcba流向的感应电流;D.回路中形成先abcda流向而后adcba流向的感应电流答案:C详解:参考点电荷的分析方法,S磁单极子相当于负电荷,那么它通过超导回路,相当于向左的磁感线通过回路,右手定则判断,回路中会产生持续的adcba向的感应电流;3.如图3所示装置中,线圈A的一端接在变阻器中点,当变阻器滑片由a滑至b端的过程中,通过电阻R的感应电流的方向()A.由c流向d B.先由c流向d,后由d流向cC.由d流向c D.先由d流向c,后由c流向d答案:A详解:滑片从a滑动到变阻器中点的过程,通过A线圈的电流从滑片流入,从固定接口流出,产生向右的磁场,而且滑动过程中,电阻变大,电流变小,所以磁场逐渐变小,所以此时B线圈要产生向右的磁场来阻止这通过A线圈的电流从滑片流入,从固定接口流出种变化,此时通过R点电流由c流向d;从中点滑动到b的过程,通过A线圈的电流从固定接口流入,从滑片流出,产生向左的磁场,在滑动过程中,电阻变小,电流变大,所以磁场逐渐变大,所以此时B线圈要产生向右的磁场来阻止这种变化,通过R的电流仍从c流向d。
(完整版)高中物理必修3-2知识点清单(非常详细)第一章 电磁感应第二章 楞次定律和自感现象一、磁通量1.定义:在磁感应强度为B 的匀强磁场中,与磁场方向垂直的面积S 和B 的乘积. 2.公式:Φ=B ·S .3.单位:1 Wb =1_T ·m 2.4.标矢性:磁通量是标量,但有正、负. 二、电磁感应 1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象. 2.产生感应电流的条件(1)电路闭合;(2)磁通量变化. 3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断 1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化. (2)适用情况:所有的电磁感应现象. 2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.3.楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”四、法拉第电磁感应定律 1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I =ER +r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E =n ΔΦΔt,n 为线圈匝数.3.导体切割磁感线的情形(1)若B 、l 、v 相互垂直,则E =Blv .(2)若B ⊥l ,l ⊥v ,v 与B 夹角为θ,则E =Blv sin_θ. 五、自感与涡流 1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E =L ΔIΔt.(3)自感系数L 的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关. 2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流. (1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.考点一 公式E =n ΔΦ/Δt 的应用 1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B 引起时,则E =n S ΔB Δt ;当ΔΦ仅由S 引起时,则E =n B ΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t 图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E =n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt求感应电动势时,S 为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点二 公式E =Blv 的应用 1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B 、l 、v 三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E =Blv sin θ,θ为B 与v 方向间的夹角.2.使用范围导体平动切割磁感线时,若v 为平均速度,则E 为平均感应电动势,即E =Bl v .若v 为瞬时速度,则E 为相应的瞬时感应电动势.3.有效性公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度.例如,求下图中MN 两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.六、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压 (1)电动势:E =Blv 或E =n ΔΦΔt . (2)路端电压:U =IR =ER +r·R .二、电磁感应中的图象问题 1.图象类型(1)随时间t 变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象. (2)随位移x 变化的图象如E -x 图象和i -x 图象. 2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象.考点一 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E =n ΔΦΔt或E =Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解. 4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高. 考点二 电磁感应中的图象问题 1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤 (1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等; (2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等; (6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.第三章 交变电流 传感器一、交变电流的产生和变化规律 1.交变电流大小和方向随时间做周期性变化的电流. 2.正弦交流电(1)产生:在匀强磁场里,线圈绕垂直于磁场方向的轴匀速转动. (2)中性面①定义:与磁场方向垂直的平面.②特点:线圈位于中性面时,穿过线圈的磁通量最大,磁通量的变化率为零,感应电动势为零.线圈每经过中性面一次,电流的方向就改变一次.(3)图象:用以描述交变电流随时间变化的规律,如果线圈从中性面位置开始计时,其图象为正弦曲线.二、描述交变电流的物理量1.交变电流的周期和频率的关系:T =1f.2.峰值和有效值(1)峰值:交变电流的峰值是它能达到的最大值.(2)有效值:让交流与恒定电流分别通过大小相同的电阻,如果在交流的一个周期内它们产生的热量相等,则这个恒定电流I 、恒定电压U 就是这个交变电流的有效值.(3)正弦式交变电流的有效值与峰值之间的关系IU E 3.平均值:E =n ΔΦΔt=BL v .考点一 交变电流的变化规律1.正弦式交变电流的变化规律(线圈在中性面位置开始计时)图象2.(1)线圈平面与中性面重合时,S ⊥B ,Φ最大,ΔΦΔt=0,e =0,i =0,电流方向将发生改变.(2)线圈平面与中性面垂直时,S ∥B ,Φ=0,ΔΦΔt最大,e 最大,i 最大,电流方向不改变.3.解决交变电流图象问题的三点注意(1)只有当线圈从中性面位置开始计时,电流的瞬时值表达式才是正弦形式,其变化规律与线圈的形状及转动轴处于线圈平面内的位置无关.(2)注意峰值公式E m =nBS ω中的S 为有效面积. (3)在解决有关交变电流的图象问题时,应先把交变电流的图象与线圈的转动位置对应起来,再根据特殊位置求特征解.考点二 交流电有效值的求解 1.正弦式交流电有效值的求解 利用I =I m2,U =U m 2,E =E m2计算.2.非正弦式交流电有效值的求解交变电流的有效值是根据电流的热效应(电流通过电阻生热)进行定义的,所以进行有效值计算时,要紧扣电流通过电阻生热(或热功率)进行计算.注意“三同”:即“相同电阻”,“相同时间”内产生“相同热量”.计算时“相同时间”要取周期的整数倍,一般取一个周期.考点三 交变电流的“四值”的比较1.书写交变电流瞬时值表达式的基本思路(1)求出角速度ω,ω=2πT=2πf .(2)确定正弦交变电流的峰值,根据已知图象读出或由公式E m =nBS ω求出相应峰值. (3)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面位置开始转动,则i -t 图象为正弦函数图象,函数式为i =I m sin ωt . ②线圈从垂直中性面位置开始转动,则i -t 图象为余弦函数图象,函数式为i =I m cos ωt三、变压器原理1.工作原理:电磁感应的互感现象. 2.理想变压器的基本关系式 (1)功率关系:P 入=P 出.(2)电压关系:U 1U 2=n 1n 2,若n 1>n 2,为降压变压器;若n 1<n 2,为升压变压器.(3)电流关系:只有一个副线圈时,I 1I 2=n 2n 1; 有多个副线圈时,U 1I 1=U 2I 2+U 3I 3+…+U n I n .四、远距离输电1.输电线路(如图所示)2.输送电流(1)I =P U. (2)I =U -U ′R.3.电压损失 (1)ΔU =U -U ′. (2)ΔU =IR . 4.功率损失 (1)ΔP =P -P ′.(2)ΔP =I 2R =⎝ ⎛⎭⎪⎫P U 2R =ΔU 2R .考点一 理想变压器原、副线圈关系的应用 1.基本关系(1)P 入=P 出,(有多个副线圈时,P 1=P 2+P 3+……)(2)U 1U 2=n 1n 2,有多个副线圈时,仍然成立.(3)I 1I 2=n 2n 1,电流与匝数成反比(只适合一个副线圈) n 1I 1=n 2I 2+n 3I 3+……(多个副线圈)(4)原、副线圈的每一匝的磁通量都相同,磁通量变化率也相同,频率也就相同. 2.制约关系(1)电压:副线圈电压U 2由原线圈电压U 1和匝数比决定. (2)功率:原线圈的输入功率P 1由副线圈的输出功率P 2决定. (3)电流:原线圈电流I 1由副线圈电流I 2和匝数比决定. 3.关于理想变压器的四点说明: (1)变压器不能改变直流电压.(2)变压器只能改变交变电流的电压和电流,不能改变交变电流的频率. (3)理想变压器本身不消耗能量.(4)理想变压器基本关系中的U 1、U 2、I 1、I 2均为有效值. 考点二 理想变压器的动态分析 1.匝数比不变的情况(如图所示)(1)U 1不变,根据U 1U 2=n 1n 2可以得出不论负载电阻R 如何变化,U 2不变.(2)当负载电阻发生变化时,I 2变化,根据I 1I 2=n 2n 1可以判断I 1的变化情况.(3)I 2变化引起P 2变化,根据P 1=P 2,可以判断P 1的变化. 2.负载电阻不变的情况(如图所示)(1)U 1不变,n 1n 2发生变化,U 2变化. (2)R 不变,U 2变化,I 2发生变化.(3)根据P 2=U 22R和P 1=P 2,可以判断P 2变化时,P 1发生变化,U 1不变时,I 1发生变化.3.变压器动态分析的思路流程考点三 关于远距离输电问题的分析 1.远距离输电的处理思路对高压输电问题,应按“发电机→升压变压器→远距离输电线→降压变压器→用电器”这样的顺序,或从“用电器”倒推到“发电机”一步一步进行分析.2.远距离高压输电的几个基本关系(以下图为例):(1)功率关系:P 1=P 2,P 3=P 4,P 2=P 损+P 3.(2)电压、电流关系:U 1U 2=n 1n 2=I 2I 1,U 3U 4=n 3n 4=I 4I 3U 2=ΔU +U 3,I 2=I 3=I 线.(3)输电电流:I 线=P 2U 2=P 3U 3=U 2-U 3R 线.(4)输电线上损耗的电功率:P 损=I 线ΔU =I 2线R 线=⎝ ⎛⎭⎪⎫P 2U 22R 线.3.解决远距离输电问题应注意下列几点(1)画出输电电路图.(2)注意升压变压器副线圈中的电流与降压变压器原线圈中的电流相等. (3)输电线长度等于距离的2倍.(4)计算线路功率损失一般用P 损=I 2R 线.。
[高考导航]考点内容要求全国卷三年考情分析201720182019电磁感应现象ⅠⅠ卷·T18:电磁感应现象与电磁阻尼Ⅱ卷·T20:法拉第电磁感应定律、E-t图像Ⅲ卷·T15:楞次定律、安培定则Ⅰ卷·T17:法拉第电磁感应定律T19:安培定则、楞次定律Ⅱ卷·T18:i-t图像、楞次定律Ⅲ卷·T20:i-t图像、右手螺旋定则、楞次定律Ⅰ卷·T20:法拉第电磁感应定律、楞次定律Ⅱ卷·T21:电磁感应图像,两根导体棒切割磁感线Ⅲ卷·T14:楞次定律和能量守恒T19:电磁感应图像、动量守恒定律、两根导体棒切割磁感线磁通量Ⅰ法拉第电磁感应定律Ⅱ楞次定律Ⅱ自感涡流Ⅰ第1讲电磁感应现象楞次定律知识要点一、磁通量1.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积。
(2)公式:Φ=BS(B⊥S);单位:韦伯(Wb)。
(3)矢标性:磁通量是标量,但有正负。
2.磁通量的变化量:ΔΦ=Φ2-Φ1。
3.磁通量的变化率(磁通量变化的快慢):磁通量的变化量与所用时间的比值,即ΔΦΔt,与线圈的匝数无关。
二、电磁感应现象1.电磁感应现象当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生的现象。
2.产生感应电流的条件(1)闭合导体回路;(2)磁通量发生变化。
三、感应电流的方向1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(2)适用范围:一切电磁感应现象。
2.右手定则(1)内容:如图1,伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。
图1(2)适用情况:导线切割磁感线产生感应电流。
基础诊断)1.如图所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是()解析根据产生感应电流的条件,闭合回路内磁通量变化产生感应电流,能够产生感应电流的是图B。
[A组·基础题]一、单项选择题1.法拉第在1831年发现了“磁生电”现象.如图,他把两个线圈绕在同一个软铁环上,线圈A和电池连接,线圈B用导线连通,导线下面平行放置一个小磁针.实验中可能观察到的现象是()A.用一节电池作电源小磁针不偏转,用十节电池作电源小磁针会偏转B.线圈B匝数较少时小磁针不偏转,匝数足够多时小磁针会偏转C.线圈A和电池连接瞬间,小磁针会偏转D.线圈A和电池断开瞬间,小磁针不偏转解析:小磁针能否发生偏转,要看B中能不能产生感应电流,与A连接的电源电动势的大小无关,A错误;只要穿过B的磁通量发生变化,B中就可产生感应电流,小磁针就可以发生偏转,如果磁通量不变,匝数再多也没有用,B错误;线圈A与电池连接的瞬间,B 中的磁场从无到有,磁通量发生变化,B中会产生感应电流,小磁针会发生偏转,C正确;线圈A与电池断开瞬间,穿过B的磁场从有到无,B中会产生感应电流,小磁针会发生偏转,D错误.答案:C2.(2017·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向、然后是顺时针方向的感应电流B.先是顺时针方向、然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.答案:C3.(2017·辽宁葫芦岛模拟)如图所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒.ab和cd用导线连成一个闭合回路.当ab棒向右运动时,cd金属棒受到向下的安培力.下列说法正确的是()A.由此可知d端电势高于c端电势B.由此可知Ⅰ是S极C.由此可知Ⅰ是N极D.当cd棒向下运动时,ab导线受到向左的安培力解析:根据题意可知,cd中电流的方向由c→d,c端电势高于d端,A错误;ab中电流的方向由b→a,对ab应用右手定则可知Ⅰ是N极,Ⅱ是S极,B错误,C正确;当cd棒向下运动时,回路中会产生由d→c的电流,则ab中电流的方向由a→b,根据左手定则可知,AB受的安培力向右,D错误.答案:C4.(2017·临沂一中段考)物理课上,老师做了一个奇妙的“跳环实验”.如图所示,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环,闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同解析:金属套环跳起的原因是开关S闭合时,套环上产生感应电流与通电螺线管上的电流相互作用而引起的.线圈接在直流电源上,S闭合时,金属套环也会跳起.电压越高,线圈匝数越多,S闭合时,金属套环跳起越剧烈.若套环是非导体材料,则套环不会跳起.故选项A、B、C错误,D正确.答案:D二、多项选择题5.如图所示,水平放置的光滑绝缘直杆上套有A、B、C三个金属铝环,B环连接在如图所示的电路中.闭合开关S的瞬间()A.A环向左滑动B.C环向左滑动C.A环有向外扩展的趋势D.C环有向内收缩的趋势解析:闭合开关S的瞬间,通过A、C环的磁通量增大,根据楞次定律和左手定则可知:A环向左运动,且有收缩的趋势;C环向右运动,且有收缩的趋势.故A、D正确,B、C 错误.答案:AD6.(2016·高考江苏卷)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音.下列说法正确的有()A.选用铜质弦,电吉他仍能正常工作B.取走磁体,电吉他将不能正常工作C.增加线圈匝数可以增大线圈中的感应电动势D.弦振动过程中,线圈中的电流方向不断变化解析:铜材料不能被磁化,所以选用铜质弦,电吉他不能正常工作,选项A错误;取走磁体,则没有磁场,不能发生电磁感应现象,电吉他不能正常工作,选项B正确;根据法拉第电磁感应定律,线圈的匝数越多产生的感应电动势越大,选项C正确;弦振动过程中,线圈中的磁场强弱反复变化,根据楞次定律,则感应电流的方向不断变化,选项D正确.答案:BCD7.(2017·重庆巴蜀中学诊测)如图所示,磁场方向垂直于纸面,磁感应强度大小在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用绝缘细线悬挂于O点.将圆环拉至位置a后无初速度释放,圆环摆到右侧最高点b,不计空气阻力.在圆环从a摆向b的过程中()A.感应电流方向先是逆时针方向,再顺时针方向,后逆时针方向B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向解析:由楞次定律知,感应电流方向先是逆时针方向,再顺时针方向,后逆时针方向,A正确,B错误;根据左手定则,因等效导线是沿竖直方向的,且两边的磁感应强度不同,故合力方向始终沿水平方向,和速度方向会有一定夹角,C错误,D正确.答案:AD8.(2017·广东珠海摸底)矩形导线框abcd与长直导线MN放在同一水平面上,ab边与MN平行,导线MN中通入电流方向如图所示,当MN中的电流增大时,下列说法正确的是()A.导线框abcd有逆时针的感应电流B.bc、ad两边均不受安培力的作用C.导线框所受的安培力的合力向右D.MN所受线框给它的作用力向左解析:直导线中通有M→N均匀增大的电流,根据安培定则知,通过线框的磁场垂直纸面向里,且均匀增大,根据楞次定律知,感应电流的方向为逆时针方向,故A正确.根据A选项分析可知,依据左手定则知,bc、ad两边均受安培力的作用,故B错误.根据左手定则知,ab边所受安培力方向水平向右,cd边所受安培力方向水平向左,离导线越近,磁感应强度越大,所以ab边所受的安培力大于cd边所受的安培力,则线框所受安培力的合力方向向右,因此MN所受线框给它的作用力向左,故C、D正确.答案:ACD[B组·能力题]选择题9.(2017·河南许昌模拟)如图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.线框中感应电流方向依次为ACBA→ABCAB.线框的磁通量为零时,感应电流却不为零C.线框所受安培力的合力方向依次为向上→向下→向上D.线框做自由落体运动解析:根据右手定则,通电直导线的磁场在上方垂直纸面向外,下方垂直纸面向里;离导线近的地方磁感应强度大,离导线远的地方磁感应强度小.线框从上向下靠近导线的过程中,垂直纸面向外的磁通量增加,根据楞次定律,线框中产生顺时针方向的电流;穿越导线时,上方垂直纸面向外的磁场和下方垂直纸面向里的磁场叠加,先是垂直纸面向外的磁通量减小,之后变成垂直纸面向里的磁通量增大,直至最大,根据楞次定律,线框中产生逆时针方向的电流;垂直纸面向里的磁通量变成最大后,线框继续向下运动,垂直纸面向里的磁通量减小,这时的电流方向又变成了顺时针,即感应电流方向依次为ACBA→ABCA→ACBA,故A错误.根据A中的分析,线框穿越导线时,始终有感应电流存在,故B正确.根据楞次定律,安培力始终阻碍线框相对磁场的运动,故安培力的方向始终向上,线框不可能做自由落体运动,故C、D错误.答案:B10.如图所示,竖直放置的螺线管与导线abcd构成回路,abcd所围区域内存在垂直纸面向里的变化的匀强磁场,螺线管下方的水平桌面上放置一导体圆环.若圆环与桌面间的压力大于圆环的重力,abcd区域内磁场的磁感应强度随时间变化的关系可能是()解析:圆环与桌面间的压力大于圆环的重力,可知导体圆环受到向下的磁场作用力,根据楞次定律的另一种表述,可知螺线管中的磁场磁通量在增大,即螺线管和abcd 构成的回路中产生的感应电流在增大.根据法拉第电磁感应定律E =N ΔBS Δt ,则感应电流I =N ΔBS ΔtR,可知ΔB Δt 增大时(B 变化得越来越快),感应电流才增大.A 、C 、D 选项中的ΔB Δt减小(B 变化得越来越慢),B 选项中的ΔB Δt增大(B 变化得越来越快),所以B 正确,A 、C 、D 错误. 答案:B11.如图甲所示,水平面上的不平行导轨MN 、PQ 上放着两根光滑导体棒ab 、cd ,两棒间用绝缘丝线系住;开始时匀强磁场垂直纸面向里,磁感应强度B 随时间t 的变化如图乙所示.则以下说法正确的是( )A .在t 0时刻导体棒ab 中无感应电流B .在t 0时刻绝缘丝线不受拉力C .在0~t 0时间内导体棒ab 始终静止D .在0~t 0时间内回路电流方向是abdca解析:由图乙所示图象可知,0到t 0时间内磁场垂直纸面向里,磁感应强度B 均匀减小,回路中磁通量均匀减小,回路中产生感应电动势,形成感应电流.由楞次定律可得出感应电流方向沿acdba ,在t 0时刻导体棒ab 中电流不为零,故A 、D 错误.在t 0时刻B =0,根据安培力公式F =BIL 知此时ab 和cd 都不受安培力,所以丝线不受拉力,故B 正确.在0~t 0时间内,根据楞次定律可知ab 受力向左,cd 受力向右,由于cd 所受的安培力比ab 所受的安培力大,所以ab 将向右运动,故C 错误.答案:B12.(多选)两根相互平行的金属导轨水平放置于如图所示的匀强磁场中,与导轨接触良好的导体棒AB 和CD 可以自由滑动.当AB 在外力F 作用下向右运动时,下列说法中正确的是( )A .导体棒CD 内有电流通过,方向是D →CB .导体棒CD 内有电流通过,方向是C →DC .磁场对导体棒CD 的作用力向左D .磁场对导体棒AB 的作用力向左解析:利用楞次定律,两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B→A→C→D→B.以此为基础,再根据左手定则进一步判定CD、AB的受力方向,经过比较可得正确答案.答案:BD13.(多选)如图所示,线圈A、B同心置于光滑水平桌面上,线圈A中通有逐渐增大的逆时针方向的电流,则()A.线圈B将顺时针转动起来B.线圈B中有顺时针方向的电流C.线圈B将有沿半径方向扩张的趋势D.线圈B对桌面的压力将增大解析:当线圈A中通有逐渐增大的逆时针方向的电流时,穿过线圈B的磁通量竖直向上且增大,根据楞次定律,线圈B产生顺时针方向的电流;线圈A、B中的电流方向相反,互相排斥,线圈B有扩张的趋势,故B、C正确,A错误.线圈B受到的安培力在水平方向上,线圈B对桌面的压力将不变,故D错误.答案:BC14.(多选)(2017·河南六市一联)如图甲所示,等离子气流由左方连续以速度v0射入M 和N两板间的匀强磁场中,ab直导线与M、N相连接,线圈A与直导线cd连接,线圈A 内有按图乙所示规律变化的磁场,且规定向左为磁场B的正方向,则下列叙述正确的是()A.0~1 s内ab、cd导线互相排斥B.1~2 s内ab、cd导线互相吸引C.2~3 s内ab、cd导线互相吸引D.3~4 s内ab、cd导线互相排斥解析:根据左手定则,可判定等离子气流中的正离子向上极板M偏转,负离子向下极板N偏转,所以ab中电流方向是由a向b的.在第1 s内,线圈A内磁场方向向右,磁感应强度减小,由楞次定律可知感应电流方向是由c向d的,根据ab、cd内电流的流向关系,可知两导线相互吸引,A错误;在第2 s内,线圈A内磁场方向向左,磁感应强度增加,由楞次定律可知感应电流的方向是由c向d的,根据电流的流向关系可知两导线相互吸引,B 正确;同理可以判断C错误,D正确.答案:BD。