有理数数轴绝对值知识点 习题
- 格式:docx
- 大小:61.36 KB
- 文档页数:4
有理数一、填空题1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示..如果向南走5 km 记为-5 km ,那么向北走10 km 记为____.如果收入2万元用+2万元表示,那么支出3000元,用_______表示..某乒乓球比赛用+1表示赢一局,那么输2局用_______表示,不输不赢用_______表示..某企业以1996年的利润为标准,2000年增加了10%记为+10%,2001年利润为-5%表示的意义是_______..节约用水,如果节约5.6吨水记作+5.6吨,那么浪费3.8吨水,记作_______.2.大于-5.1的所有负整数为_____.3.分数有_____,_____.4.珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____.5.请写出3个大于-1的负分数_____.6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.7.某县外贸局一年出口总额人民币1300万元,表示为+1300万.进口某种原料350万应表示为_____.8.在“学雷锋活动月”活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了_____米,应记作_____.9.某下岗职工购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作_____. 二、选择题1、下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0 B.1 C.2 D.32、在0,21,-51,-8,+10,+19,+3,-3.4中整数的个数是( )A.6B.5C.4D.3 3、下列说法正确的是( )A.零上5℃与零下5℃意思一样,都是5℃.B.正整数集合与负整数集合并在一起是整数集合C.收入-2000元表示支出2000元.D.-a 是负数, a 是正数. 4、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.05、.负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 6、关于零的叙述错误的是( ) A.零大于所有的负数 B.零小于所有的正数 C.零是整数 D.零既是正数,也是负数 7、非负数是( )A.正数 B.零 C.正数和零 D.自然数8、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具 C.文具店西40米处 D.玩具店西60米处三、解答题9、下面是具有相反意义的量,请用箭头标出其对应关系10、某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温11、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?12、某公司今年第一季度收入与支出情况如表所示(单位:万元)请问:(1)该公司今年第一季度总收入与总支出各多少万元? (2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?13、某地气象站测得某天的四个时刻气温分别为:早晨6点为零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃.1.用正数或负数表示这四个不同时刻的温度.2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.?14、找规律(1)1,-2,3,-4,5,-6,7,-8 ,………其中第199个数为 ,第2002个数 ,规律是 ;(2)1,2,-3,4,5,-6,7,8 ,-9 ………其中第345个数为 ,第2002个数 ,规律是 ; (3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 ,第320个数的符号为 ,规律是 .15、小明的爸爸开的小店昨天获利120元,他在每日收支账本上记下“120元”.今天小店亏了20元,记作__.A :20元B :-20元C :-20D :100元进一步来看,一周来他的账本上的数据为周一 周二 周三 周四 周五 周六 周日 120元 -20元 80元 0元 -10元 150元 100元 如此看来他这一周是赚了还是赔了?有多少?16、某日傍晚,项城的气温由中午的零上2℃下降了7℃,这天傍晚项城的气温是多少?数轴一、选择题1.下列所画的数轴中正确的是( ) A .B .C .D . 2、互为相反数是指( )A 、具有相反意义的两个量B 、一个数的前面添上“–”号所得的数C 、数轴上原点两旁的两个点表示的数D 、只有符号不同的两个数 3、在数轴上距离原点4个单位长度的点所表示的数是( ) A 、4 B 、–4 C 、4或–4 D 、2或–24、大于–2.5而不大于3的整数( )A 、4个B 、5个C 、6个D 、7个5、如图所示,根据有理数a ,–b ,–c ,在数轴上的位置,比较a ,b ,c ,的大小, 则有( ) A 、a<b<c B 、a<c<b C 、b<a<c D 、b<c<a6、下列说法错误的是( )A 、所有的有理数都可以用数轴上的点表示B 、数轴上的原点表示零C 、在数轴上表示–3的点于表示+1的点的距离是2D 、数轴上表示413的点,在原单位左边413个单位 二、填空题7、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<38、若数轴上得点M 和N 点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______. 9、已知A ,B 是数轴上的点.(1)如果点A 表示数–3,将A 向右移动7个单位长度,那么终点表示的数是_______; (2)如果点B 表示数3,将B 向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.10、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______. 11、______的相反数大于它本身,______的相反数小于它本身. 12、在数轴上,点A 对应的数是21,那么在数轴上与点A 相距3个单位长度的点表示的数是______.9.+3的相反数是_____;______的相反数是-1.2;-175与_____互为相反数。
有理数、数轴与绝对值一、知识结构框图:数二、绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
三、典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( A )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++ 的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体的思想)方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:_ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 .(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ______ .(4) 满足341>+++x x 的x 的取值范围为三、课堂训练1.已知a≠b,a=-5,|a|=|b|,则b 等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m ,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a8.(1)若a<0,b<0,且|a|>|b|,则a 与b 的大小关系是______________;(2)绝对值不大一3的整数是____________________,其和为_____________;(3)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最 小的数是_____;(4)设|x|<3,且x>1x,若x 为整数,则x=_________________; (5)若|x|=-x ,且x=1x ,则x=_________________。
初一有理数绝对值题50道一、基础巩固1、绝对值等于 5 的数是()A 5B -5C 5 或-5D 02、绝对值小于 4 的整数有()A 3 个B 5 个C 7 个D 9 个3、若|x|=3,则 x=()A 3B -3C 3 或-3D 04、计算:| 7 |=()A -7B 7C 1/7D 1/75、若|a|= a,则 a 是()A 正数B 负数C 非正数D 非负数6、绝对值最小的数是()A 1B 0C -1D 不存在7、若|x 2|=0,则 x=()A 2B -2C 0D ±28、若|x + 3|=5,则 x=()A 2 或-8B -2 或 8C 2 或 8D -2 或-89、下列说法正确的是()A | 5 |= 5B | 06 |= 06C | 1/3 |= 1/3D | 8 |=810、比较大小:| 3 |()| 4 |A >B <C =D 无法比较二、能力提升11、若|a|=5,|b|=3,且 a>b,则 a + b 的值为()A 8B 2C 8 或 2D ±8 或 ±212、已知|x|=4,|y|=1/2,且 xy<0,则 x/y 的值为()A -8B 8C 1/8D 1/813、若|x 1| +|y + 2| = 0,则 x + y 的值为()A -1B 1C -3D 314、当 a<0 时,化简|a 1| |a 2| =()A -1B 1C 2a 3D 3 2a15、若 0<x<1,则 x,1/x,x²的大小关系是()A x<x²<1/xB x²<x<1/xC 1/x<x<x²D 1/x<x²<x16、有理数 a,b 在数轴上的位置如图所示,则|a b| =()(数轴略)A a bB b aC a + bD a b17、若|x + 1| +|x 2| = 5,则 x 的值为()A 3B -2C 3 或-2D 不存在18、已知 a,b 互为相反数,c,d 互为倒数,m 的绝对值为 2,求|a + b|/m cd + m 的值。
2.1有理数测试令狐采学基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是()A 、-3.14B 、0C 、37 D 、33、既是分数又是正数的是()A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是()A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是()A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有() ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A 、1个B 、2个C 、3个D 、4个7、把下列各数分别填入相应的大括号内:自然数集合{ …};整数集合{ …};正分数集合{ …};非正数集合{ …};8、简答题:(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?(3)有比-1大的负整数吗?有比1小的正整数吗?(4)写出三个大于-105小于-100的有理数。
1.2.2数轴基础检测1、 画出数轴并表示出下列有理数:.0,32,29,5.2,2,2,5.1---2、 在数轴上表示-4的点位于原点的边,与原点的距离是个单位长度。
3、比较大小,在横线上填入“>”、“<”或“=”。
10;0-1;-1-2;-5-3;-2.52.5.拓展提高4.数轴上与原点距离是5的点有个,表示的数是。
5.已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有。
第三讲:绝对值、有理数比较大小1、 绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)2、 一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;3、 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 4、0a 1a a>⇔= ; 0a 1a a <⇔-=;5、 有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
即左边的数小于右边的数;(①正数大于0,0大于负数,正数大于负数;②两个负数,其绝对值大的反而小;)一、填空题1、一个正数的绝对值是____,一个负数的绝对值是____,0的绝对值是___2、绝对值小于3的整数有___个,它们是________。
3、用“>”或“<”号填空。
-3__-4, -(-4)__-|-5|, -65__-76 4、若a +|a |=0,则a __0,若a -|a |=0,则a __0。
5、已知|a |=73,|b |=209,且b < a ,则a =___,b =___。
6、若|a -2|+|b +1|=0,则a +b =___。
7、绝对值最小的有理数是___,绝对值等于它本身的数是______,绝对值等于它的相反数的数是______。
8、绝对值小于2的整数有___个,绝对值不大于3的非负整数是_______。
9、一个数的倒数的绝对值是21,则这个数是____。
10、-31的相反数是___,-31的绝对值是___,-31的倒数是___。
11、有理数m ,n 在数轴上的位置如图,二、选择题1、-|-2|的倒数是( )A 、2B 、21C 、-21 D 、-2 2、若|a |=-a ,则a 一定是( )A 、正数B 、负数C 、非正数D 、非负数3、代数式|x -2|+3的最小值是( )A 、0B 、2C 、3D 、54、若|a |=|b |,则a 与b 的关系是( )A 、a =bB 、a =-bC 、a =b 或a =-bD 、不能确定5、下面说法中正确的有( )个①互为相反数的两个数的绝对值相等;②一个数的绝对值是一个正数;③一个数的绝对值的相反数一定是负数;④只有负数的绝对值是它的相反数。
七年级数学有理数混合运算数轴绝对值练习J2. 泄义[x]为不超过;V 的最大整数,如[3.6] = 3, [0.6] = 0, [-3.6] = -4.对于任意实数X,下列式子 中错误的是()A. [x] = x (x 为整数)B. 0≤x -[x]< 1C. [^+y]≤[-v]+[y]D. [n+x]=n+[x](n 为整数)二. 解答题赢下列各数分别填入相应的集合里・4 22 -23,- 一W ,0,丰,一(一3.14),2006, -什5),+ 1.88(1) 整数集合:{ }:(2) 正数集合:{ };(3) 负分数集合:{ }:(4) 非负有理数集合:{ }•4. 某超市3天内饮料进岀仓库的件数如下(“ + ”表示进库,”表示岀库):+26, -32, ~15, +34, -3&-20。
(1) 经过这3天■库里的饮料是增多还是减少了?(2) 经过这3天,仓库管理员发现库里还存480件饮料,3天前库里有饮料多少件?(3) 如果进出的装卸费都是每件5元,那么这3天共要付多少装卸费?5. 如图,线段AB=24,动点P 从A 出发,以每秒2个单位的速度沿射线AB 运动,运动时间为t 秒 (t>0), M 为AP 的中点•• --- 4 ------ ■ --------- • ---A M P Bb 当点P 在线段AB 上运动时,① 当t 为多少时,PB 二2AM?② 求2BM-BP 的值.2•当P 在AB 延长线上运动时,N 为BP 的中点,说明线段MN 的长度不变,并求出其值・3•在P 点的运动过程中,是否存在这样的t 的值,使M 、N 、B 三点中的一个点是以其余两点为端点 的线段的中点,若有,请求出t 的值;若没有,请说明理由・6. 在数轴上,表示数加与"的点之间的距离可以表示为∖m-n ∖.例如:在数轴上,表示数-3与2的点 之间的距离是5 = ∣-3-2∣表示数r 与—1的点之间的距离是3 = ∣-4-(-l )p.利用上述结论解决如下问题:1. 若|x —5| = 3,求X 的值;2. 点A 、B 为数轴上的两个动点,点A 表示的数是",点B 表示的数是b,且匕―M = 6(">d ),点C 表示的数为-2,若A 、B 、C 三点中的某一个点是另两个点组成的线段的中点,求G 、方的值.D.1122的结果是i ∙i 、2£3‘;P÷2M ,=62; l ,-t ∙2MM j ≡102;根据你观察到的规律求l 3+23÷33+8、阅读第⑴小题的计算方法,再计算第⑵小题。
第1章有理数——数轴与绝对值综合专题训练(一)1.如图,点A,B在数轴上表示的数分别为﹣2与+6,动点P从点A出发,沿A→B以每秒2个单位长度的速度向终点B运动,同时,动点Q从点B出发,沿B→A以每秒4个单位长度的速度向终点A运动,当一个点到达时,另一点也随之停止运动.(1)当Q为AB的中点时,求线段PQ的长;(2)当Q为PB的中点时,求点P表示的数.2.已知:数轴上表示数a的点A与表示数﹣2的点之间的距离为3,表示数b的点B与表示数2的点之间的距离为6,点A、点B分别表示什么数?A、B两点之间的距离是多少?3.如图,数轴上的三点A、B、C分别表示有理数a、b、c.则:a﹣b0,a+c0,b﹣c0.(用<或>或=号填空)你能把|a﹣b|﹣|a+c|+|b﹣c|化简吗?能的话,求出最后结果.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.5.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.6.在数轴上有一条线段AB,点A,B表示的数分别是﹣2和﹣11.(1)线段AB=.(2)若M是线段AB的中点,则点M在数轴上对应的数为.7.如图,在数轴上点A表示数a,点C表示数c且|a+10|+(c﹣20)2=0 (1)求a、c的值;(2)已知点D为数轴上一动点,且满足CD+AD=32,直接写出点D表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒3个单位长度、每秒4个单位长度,运动时间为t 秒.①若点A 向右运动,点C 向左运动,AB =BC ,求t 的值;②若点A 向左运动,点C 向右运动,2AB ﹣m ×BC 的值不随时间变化而改变,请求出m 的值.8.已知A ,B 两点在数轴上分别示有理数a ,b ,A ,B 两点之间的距离表示为AB ,在数轴上A ,B 两点之间的距离AB =|a ﹣b |.已知数轴上A ,B 两点对应的数分别为﹣1,3,P 为数轴上一动点,A ,B 两点之间的距离是 .设点P 在数轴上表示的数为x ,则点P 与﹣4表示的点之间的距离表示为若点P 到A ,B 两点的距离相等,则点P 对应的数为若点P 到A ,B 两点的距离之和为8,则点P 对应的数为现在点A 以2个单位长度/秒的速度向右运动,同时点B 以0.5个单位长度/秒的速度向右运动,当点A 与点B 之间的距离为3个单位长度时,求点A 所对应的数是多少?9.对于数轴上的A 、B 、C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“至善点”.例如:若数轴上点A 、B 、C 所表示的数分别为1、3、4,则点B 是点A 、C 的“至善点”.(1)若点A 表示数﹣2,点B 表示数2,下列各数、0、1、6所对应的点分别C 1、C 2、C 3、C 4,其中是点A 、B 的“至善点”的有 (填代号);(2)已知点A 表示数﹣1,点B 表示数3,点M 为数轴上一个动点:①若点M 在点A 的左侧,且点M 是点A 、B 的“至善点”,求此时点M 表示的数m ; ②若点M 在点B 的右侧,点M 、A 、B 中,有一个点恰好是其它两个点的“至善点”,求出此时点M 表示的数m .10.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.11.思考下列问题并在横线上填上答案.(1)数轴上表示﹣3的点与表示4的点相距个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是.(4)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(5)数轴上点A表示8,点B表示﹣8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,经过秒三个点聚于一点,这一点表示的数是,点C在整个运动过程中,移动了个单位.12.邮递员骑摩托车从邮局出发,向东走了3千米到达小明家,继续向东走了1.5千米到达小亮家,然后向西走了9.5千米到达小刚家,最后回到邮局.(1)若以邮局为原点O,以向东方向为正方向,用1个单位长度表示1千米,你在数轴上表示出小刚家,小明家和小亮家的位置.(2)小刚家距离小明家有多远?(3)如果邮递员所骑的摩托车油耗为4升/百公里,摩托车行驶的路程消耗了多少升油?13.如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.(1)用含有t的代数式表示AM的长为(2)当t=时,AM+BN=11.(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.14.已知:|b|=1,b>0,且a,b,c满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a,b,c的值(2)a,b,c在数轴上所对应的点分别为A、B、C,在上标出A、B、C(3)点P为一移动的点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(写出化简过程).15.一只蚂蚁从原点O出发,它先向左爬行3个单位长度到达A点,再向左爬行2个单位长度到达B点,再向右爬行7个单位长度到达C点.(1)写出A、B、C三点表示的数,并将它们的位置标注在数轴上;(2)根据C点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?。
1.2.4绝对值定义:一般地,在数轴上表示 数a 的点与原点的距离叫做数a 的绝对值,记作︱a ︱。
1)一个正数的绝对值是它本身;2)零的绝对值是零;3)一个负数的绝对值是它的相反数。
即:4)任何一个有理数的绝对值都是非负数,(即0和正数.) 在数轴上表示的两个数,右边的数总要 大于 左边的数。
也就是:1)、负数 < 0,0 < 正数,正数大于负数.2)、两个负数,绝对值大的 反而小 .练习:1、判断下列说法是否正确:(1)有理数的绝对值一定是正数;(2)如果两个数的绝对值相等,那么这两个数相等;(3)符号相反且绝对值相等的数互为相反数;(4)一个数的绝对值越大,表示它的点在数轴上越靠右;(5)一个数的绝对值越大,表示它的点在数轴上离原点越远。
(7)若a =b ,则|a|=|b|。
(8)若|a|=|b|,则a =b 。
(9)若|a|=-a ,则a 必为负数。
(10)互为相反数的两个数的绝对值相等。
(11)一个数的绝对值是 2 ,则这数是2 。
(12)|5|=|-5|。
(13)|-0.3|=|0.3|。
(14)|3|>0。
(15)|-1.4|<0。
例1、已知052=++-y x ,求x,y 的值。
例2、若3=x ,则x=___。
例3、下列说法中,错误的是( )A 、一个数的绝对值一定是正数B 、互为相反数的两个数的绝对值相等C 、绝对值最小的数是0D 、绝对值等于它本身的数是非负数作业:1化简:=--5___;=--)5(___;=+-)21(_2比较下列各对数的大小:-(-1)___-(+2);)3.0(--___31-; 2--___-(-2)。
4、已知a=-2,b=1,则b a -+得值为___。
5、下列结论中,正确的有( )①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
有理数数轴同步练习姓名1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
5.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。
6.到原点的距离不大于3的整数有个,它们是:。
7.下列说法正确的是()A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小8.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.39.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位10.在数轴上,离原点距离等于3的数是。
11.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长度到B 时,点B所表示的实数是()A.1B.-6C.2或-6D.不同于以上答案12.在数轴上画出下列各点,它们分别表示:+3, 0,-314, 112,-3,-1.25并把它们用“<”连接起来。
相反数与绝对值练习题姓名1、若x=—x,则x一定是()A、正数B、负数C、非正数D、非负数2、下列说法正确的是()A、一个数的绝对值的相反数一定不是负数B、一个数的绝对值的相反数是负数C、一个数的绝对值一定是正数D、一个数的绝对值的一定是非负数3、下列结论正确的是()A、a一定是正数B、—c一定是负数-一定是正数 D、—a一定是非正数C、—a4、如果a+b=0,则a与b的大小关系是()A、a=b=0B、a与b不相等C、a与b互为相反数D、a、b异号5、下列说法不正确的是()A、如果a的绝对值比它本身大,则a一定是负数B、如果两个数不等,则它们的绝对值也必不相等C、两个负有理数,绝对值大的离原点远D、两个负有理数,大的离原点近6、绝对值不大于6的非正整数有。
⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:(ΛΛ如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:(Λ如负分数分数)8.3,3.5,31,21:(Λ如正分数有理数、数轴、绝对值
1、负数的应用,有理数的分类
(1)、负数的意义:引入负数是我们实际的需要,我们通常用正、负来表示一对相反意义的量。
Eg1. 上升1m 表示为+1m ,则下降2m 表示为 。
生活中有很多这样的相反的量:前进-后退,向东-向西,等等。
(2)
课堂练习:
1.将下列各数填到相应的括号内: -,34,-9,,0,,π,1245
,-,20% 整数集合: 正分数集合: 非负数集合:
分数集合:
2. a 一定是正数,-a 一定是负数吗?回答并举例:
3. 如果零上5度记作+5度,那么零下3度记作什么?
4. 东、西为俩个相反方向,如果—4m 表示一个物体向西运动4m ,那么+2m 表示什么?物体原地不动记作什么?
5. 某仓库运进面粉记作+,那么运出面粉应记作什么?
2、数轴
(1)1、数轴的三要素: 、 、 。
在数轴上,右边的数总比左边的数大。
最小的正整数是 ,最大的负整数是 。
(2)、数轴上的点,右边的数 > 左边的数。
正数 > 0 > 负数
(3)、△相反数:两个数只有符号不同,我们称一个是另一个的相反数。
Eg 。
2和-2,a 和-a 。
本质:只有符号不同,其它不变。
特别的:0的相反数是 。
※ x +y 的相反数是 ,a -b 的相反数是
牢记:正数的相反数是 ,负数的相反数是 ,相反数等于它本身的数是 。
(4)、相反数的代数意义:a>0时,-a 0; a<0时,-a 0; a =0时,-a 0.(a 可以代表任意有理数)
相反数的几何意义: 表示互为相反数的两个点位于原点的 ,且到原点的 相等。
(5)、会进行符号的化简:eg 。
-(-2)= ;+[-(+2)]= ;-(x +y )= ;
3、绝对值
(1)、概念:在数轴上,一个数所对应的点到原点的 叫做该数的绝对值。
记作: △任何数的绝对值一定 0,即:|a| 0.
(2)
、代数意义: ( a>0) 正数的绝对值等于
|a|= (a=0) 0的绝对值是 (a<0) 负数的绝对值等于
绝对值等于本身的数是 ;绝对值等于它的相反数的数是 ;
(3)、几何意义:一个数a 的绝对值就是数轴上表示a 的点到原点的距离。
记作:|a| △绝对值等于正数的数有两个,它们 。
|x|=3,则x =
(4)、利用绝对值比较大小:两个负数,绝对值大的反而小。
-
45 -56, -58 -57
(5)、绝对值化简:即去绝对值号。
把握一个原则:先判断绝对值号内的数的符号,再根据绝对值的代数意义来化简去绝对值号。
已知x<0,y>0,化简|x-y|+|x|+|y|.
课后练习:
1.把下列给数填在相应的大括号里:
-4,,0,,15,2
3+. 正数集合{ …}, 负数集合{ …},
正整数集合{ …}, 分数集合{ …}
是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
3.在数轴上,表示数-3,,53-,0,314,3
22-,-1的点中,在原点左边的点有 个. 4.在数轴上点A 表示-4,如果把原点O 向负方向移动个单位,那么在新数轴上点A 表示的数是
( )
A.215- C.2
12- D.212 5.数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
6.判断:
(1)-2是相反数 (2)-3和+3都是相反数 (3)-3是3的相反数 (4)-3与+3互为相反数
(5)+3是-3的相反数 (6)一个数的相反数不可能是它本身
7.化简下列各数中的符号:
(1))312(--= (2) -(+5)= (3)[])7(--- = (4)[]{})3(+-+-=
8.(1)x 3
2是 的相反数。
(2)如果-a=-9,那么-a 的相反数是 。
9.│-2│等于( )
A .-2
B .2
C .-
12 D .12 10.绝对值为4的数是( )
A .±4
B .4
C .-4
D .2
的绝对值是________;2的相反数的绝对值是______.
12.若│a │=│-3│,则a=_______.
13.下列计算正确的是( )
A .-|-13|=13
B .|79|=±79
C .-(-3)=3
D .-│-6│=-6 14.如图,在所给数轴上画出表示数-3,-1,│-2│的点.把这组数从小到大用“<”号连接起来. 0
作业:
1.______7.3=-;______0=;______75.0=+-. 2.______31=+;______45=--;______3
2=-+. 3.______510=-+-;______5.55.6=---.
4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.
5.一个数的绝对值是3
2,那么这个数为______. 6.绝对值等于4的数是______.
7、比较大小; —564;—37 —25 8.绝对值等于其相反数的数一定是…………………………………( )
A .负数
B .正数
C .负数或零
D .正数或零
9.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的
有………………………………( )
A .0个
B .1个
C .2个
D .3个
10.7=x ,则______=x ; 7=-x ,则______=x .
11.绝对值不大于的整数有……( )A .11个 B .12个 C .22个 D .23个。