有理数-数轴-绝对值-加减法练习卷
- 格式:docx
- 大小:110.70 KB
- 文档页数:24
有理数加减混合运算绝对值化简练习题一、单选题1.在下列选项中,具有相反意义的量是( )A.收入20元与支出30元B.上升了 6米和后退了 7米C.卖出10斤米和盈利10元D.向东行30米和向北行30米2.12-的相反数等于( )A.1 2 -B.1 2C.-2D.23.下列说法中,不正确的是( )A.零是整数B.零没有倒数C.零是最小的数D.-1是最大的负整数4.下列各数与-6相等的( )A.|-6|B.-|-6|C.-32D.-(-6)5.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是( )A.B.C.D.6.下列四个数中,在-2和-1之间的是( )A. 110-B. 910- C. 1110- D. 2310- 7.下列各数+3,+(2.1),- 12,0, 9--,0.1010010001-中,负有理数的个数是( ) A.2 B.3 C.4 D.58.在3.14,2π,15-,0,0.12个数中,是有理数的几个( ) A.2 B.3 C.4 D.59.下列各数:12-,0.7-,9-,25,π,0,7.3-中,分数有( )个. A.1 B.2 C.3 D.410.有理数,a b 在数轴上的位置如图所示,下面结论正确的是( )A.0b a -<B.0ab >C.0a b +>D.a b >11.下列数中不是有理数的是( )A. 3.14-B.0C.227D.3-π12.下列说法中,正确的是( )A.有理数分为正数、0和负数B.有理数分为正整数、0和负数C.有理数分为分数、小数和整数D.有理数分为正整数、0和负整数13.已知两个有理数,a b ,如果0,0ab a b <+<,那么( )A.0,0a b ><B.0,0a b <>C.,a b 异号D.,a b 异号且负数的绝对值较大14.若表示运算()x z y w +-+,则 的结果是( )A.5B.7C.9D.1115.我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图(1)表示的是计算()34+-的过程.按照这种方法,图(2)表示的 过程应是在计算( )A.()()52-+-B.()52-+C.()52+-D.52+16.下列说法中,正确的有( )①减去一个数等于加上这个数;②零减去一个数仍得这个数;③有理数减法中,被减数不一定比减数或差大;④两个互为相反数的数相减得零;⑤减去一个正数,差不一定小于被减数;⑥减去一个负数,差一定大于被减数.A.2个B.3个C.4个D.5个二、解答题17.把下列各数分别填入相应的横线上。
有理数的加减法1、加法计算(直接写出得数,每小题1分): (1) (-6)+(-8)= (2) (-4)+2.5= (3) (-7)+(+7)=(4) (-7)+(+4)= (5) (+2.5)+(-1.5)= (6) 0+(-2)=(7) -3+2= (8) (+3)+(+2)=(9) -7-4=(10) (-4)+6=(11) ()31-+= (12) ()a a +-=2、减法计算(直接写出得数,每小题1分): (1) (-3)-(-4)= (2) (-5)-10=(3) 9-(-21)=(4) 1.3-(-2。
7)= (5) 6.38-(-2.62)= (6) -2.5-4.5=(7) 13-(-17)= (8) (-13)-(-17)= (9) (-13)-17= (10) 0-6=(11) 0-(-3)= (12) -4-2=(13) (-1。
8)-(+4.5)= (14) 1143⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭= (15) 1( 6.25)34⎛⎫--- ⎪⎝⎭=3、加减混合计算题(每小题3分):(1) 4+5-11; (2) 24-(-16)+(-25)-15 (3) -7。
2+3。
9-8.4+12(4) -3-5+7 (5) -26+43-34+17-48 (6) 91。
26-293+8.74+191(7) 12-(-18)+(-7)-15 (8) )15()41()26()83(++-+++-(9) )2.0(3.1)9.0()7.0()8.1(-++-+++- (10) (-40)-(+28)-(-19)+(-24)-(32)(11) (+4。
7)-(-8。
9)-(+7.5)+(-6) (12) -6-8-2+3。
54-4.72+16。
46-5。
284、加减混合计算题:(1)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2) (-1.5)+134⎛⎫+ ⎪⎝⎭+(+3。
1.3有理数的加减法练习题一、判断题(每小题1分,共4分)1.一个数的相反数一定比原数小。
( )2.如果两个有理数不相等,那么这两个有理数的绝对值也不相等。
() 3.|-2.7|>|-2.6| ( )4.若a+b=0,则a,b 互为相反数。
( )二、选择题(每小题1分,共6分)1.相反数是它本身的数是( )A. 1B. -1C. 0D.不存在2.下列语句中,正确的是( )A.不存在最小的自然数B.不存在最小的正有理数C.存在最大的正有理数D.存在最小的负有理数3.两个数的和是正数,那么这两个数( )A.都是正数B.一正一负C.都是负数D.至少有一个是正数4、下列各式中,等号成立的是 ( )A.-6-=6B.(6)--=-6C.-112=﹣112 D. 3.14+=﹣3.145、在数轴上表示的数8与﹣2这两个点之间的距离是 ( )A.6B.10C.﹣10D.﹣66、一个有理数的绝对值等于其本身,这个数是 ( )A.正数B.非负数C.零D.负数三、填空题(每空1分,共32分)1. 相反数是2的数是____________,绝对值等于2的数是_____________2. |-4|-|﹣2.5|+|﹣10|=__________;|﹣24|÷|﹣3|×|﹣2|=_________3. 最大的负整数是_____________;最小的正整数是____________4. 绝对值小于5的整数有______个;绝对值小于6的负整数有_______个5. 数轴三要素是__________,___________,___________6. 若上升6米记作+6米,那么﹣8米表示 。
7. 在数轴上表示的两个数, 总比 的数大。
8. 的相反数是4,0的相反数是 ,﹣(﹣4)的相反数是。
9. 绝对值最小的数是 ,﹣313的绝对值是 。
10. 数轴上与表示-2的点距离1个单位长度的点所表示的数为 。
绝对值专项练习60题(有答案)8页1.正确的说法是:C。
整数分数统称有理数。
2.点所表示的数是1,因为距离-2有3个单位长度的点只有-5和1.3.| -4 | =4.4.x的值是-3,y的值可以是5或-5,所以x+y的值可以是2或-8.5.a的取值范围是a ≤ 0.6.点A到原点的距离是|a|。
7.这四个数中,负数的个数是2个,因为- a和-a + |a|是负数。
8.在-2,-| -7 |,-| +3 |中,负数有2个。
9.点B表示的数是-1,因为A和C表示的数的绝对值相等,所以它们的距离原点的距离相等,B表示的数是它们的中点,即-1.10.任何一个有理数的绝对值在数轴上的位置是整个数轴。
11.|a| ≥ |b|。
12.在数轴上表示x的点与原点的距离是3,所以它可以是3或-3.13.数a在数轴上的点应是在原点或原点的左侧,因为|a| = -a。
14.下列判断错误的是B。
一个负数的绝对值一定是正数,因为一个负数的绝对值是它的相反数,即正数。
15.下列判断正确的是B。
|a|一定是正数。
16.a>|a-b|>b。
17.a-b的值可以是3或-13,因为a和b的值不确定。
18.正确的说法是C和D,即若|a|=|b|,则a与b互为相反数;若一个数小于它的绝对值,则这个数为负数。
19.正确的选项是C,即非负数。
20.正确的选项是D,即3或-1.21.正确的选项是B,即1+a>a>1-b。
22.正确的选项是B,即负数。
23.正确的选项是A,即a>0.24.正确的选项是C,即6或-4.25.正确的选项是A,即若|a|=|b|,则a=b。
26.正确的选项是D,即2或4.27.化简结果为B,即-1.28.有无穷多个绝对值等于它本身的数。
29.正确的图形是B。
30.正确的选项是B,即b同号或其中至少一个为零。
31.正确的选项是D,即-7或1.32.正确的选项是A,即1.33.正确的选项是C,XXXm<n<0,则|m|>|n|。
绝对值综合练习题一1、有理数的绝对值一定是()2、绝对值等于它本身的数有()个3、下列说法正确的是()A、—|a|一定是负数B只有两个数相等时它们的绝对值才相等C、若|a|=|b|,则a与b互为相反数D、若一个数小于它的绝对值,则这个数为负数4.()A、a>|b|B、a<bC、|a|>|b|D、|a|<|b|5、相反数等于-5的数是______,绝对值等于5的数是________。
6、-4的倒数的相反数是______。
7、绝对值小于2的整数有________。
8、若|-x|=2,则x=____;若|x-3|=0,则x=_ __;若|x-3|=1,则x=_______。
9、实数a_______。
10、已知|a|+|b|=9,且|a|=2,求b的值。
11、已知|a|=3,|b|=2,|c|=1,且a<b<c,求a、b、c的值。
12、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()13、如果,则的取值范围是()A.>O B.≥O C.≤O D.<O14、绝对值不大于11.1的整数有()A.11个B.12个C.22个D.23个15、│a│= -a,a一定是()A、正数B、负数C、非正数D、非负数16、有理数m,n在数轴上的位置如图,17、若|x-1| =0,则x=__________,若|1-x |=1,则x=_______.18、如果,则,.19、已知│x+y+3│=0, 求│x+y│的值。
20、│a-2│+│b-3│+│c-4│=0,则a+2b+3c=21、如果a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba +x2+cd的值。
22、已知│a│=3,│b│=5,a与b异号,求│a-b│的值。
23.如果 a,b互为相反数,那么a + b = ,2a + 2b = .24. a+5的相反数是3,那么, a = .26、若X的相反数是—5,则X=___;若—X的相反数是—3.7,则X=_______bca127、若一个数的倒数是1.2,则这个数的相反数是________,绝对值是________ 28、若—a=1,则a=____; 若—a=—2,则a=_______;如果—a=a,那么a=_______ 29、已知|x —4|+|y+2|=0,求2x —|y|的值。
初中数学试卷有理数加减法试题一.选择题(共10小题)1.若( )-(-2)=3,则括号内的数是( )A.-1 B.1 C.5 D.-52.下列各数中,与-的和为0的是( )A.3 B.-3 C.3 D.3.李志家冰箱冷冻室的温度为-6℃,调高4℃后的温度为( )A.4℃ B.10℃ C.-2℃ D.-10℃4.a,b是有理数,它们在数轴上的对应点的位置如下图所示,把a,-a,b,-b,a+b,a-b按照从小到大的顺序排列,正确的是( )A. a-b<-b<a<-a<a+b<b B.-b<a-b<a<-a<b<a+bC.a-b<a<-b<a+b<-a<b D.-b<a<a-b<-a<b<a+b5.已知两个有理数的和为负数,则这两个有理数( )A.均为负数 B.均不为零 C.至少有一正数 D.至少有一负数6.如果+=0,那么内应填的数是( )A.2 B.-2 C.-D.7.已知|m|=5,|n|=2,且n<0,则m+n的值是( )A.-7 B.+3 C.-7或-3 D.-7或38.如果a>0,b<0,且a、b两数和为正数,那么( )A.|a|≥|b|B.|a|≤|b| C.|a|>|b| D.|a|<|b9.下面是小卢做的数学作业,其中算式中正确的是( )①0−(+)=;②0−(−7)=7;③(+)−0=−;④(−)+0=−.A.①② B.①③ C.①④ D.②④10.下列说法正确的是( )A.-a一定是负数B.两个数的和一定大于每一个加数C.若|m|=2,则m=±2 D.若ab=0,则a=b=0二.填空题(共10小题)11.计算:|-2|+2=________.12.小明身高为140cm,比他高20cm的哥哥的身高为_________cm.13.绝对值大于1而不大于3的整数之和_________.14.(-2)+4+(-6)+8+…+(-98)+100=_________.15.已知|a|=|-3|,|b|=2,其中b<0,则a+b=________.16.已知|x|=2,|y|=5,且x>y,则x+y=________.17.比-大而不大于3的所有整数为_______,它们的和为_______.18.若|a|=5,|b|=3,且a<b,则a+b=________.19.已知式子x+(-12)=-1,则该式子中的x的值为_________.20.填空:(-2)+(+8)=___,(-2)+(-5)=____,(+2)+(-8)=_____ ,(-0.125)+(+)=_____.三.解答题21.为了有效控制酒后驾车,吉安市城管的汽车在一条东西方向的公路上巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程为:+2,-3,+2,+1,-2,-1,-2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.2升)22.10袋大米,以每袋50千克为准:超过千克数记作正数,不足千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?23.若|a|=5,|b|=3,①求a+b的值;②若a+b<0,求a-b的值.24.如果|a|=6,|b|=5,且a<b,请你求出a+b的值.25.计算:(1)45+(-20),(2)(-8)-(-1),(3)|-10|+|+8|,(4)(-12)-5+(-14)-(-39),(5)-20+|-14|-(-18)-13(6)(+1.75)+(−)+(+)+(+1.05)+(− )+ (+2.2).26.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?27.教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?28.“九宫图”又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1九个方格中,使得第行三个数、每列三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现规律,将3,5,-7,1,7,-3,9,-5,-1这九个数字分别填入图2九个方格中,使得横、竖、斜对角的所有三个数的和都相等.29.出租车司机小李某天上午营运时是在东西走向的大街上进行,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:-2,+5,-1,+1,-6,-2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?30.某检修站,甲小组乘一辆汽车,约定向东为正,从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.同时,乙小组也从A地出发,沿南北方向的公路检修线路,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,甲、乙两组各在A地的哪一边,分别距A地多远?(2)若每千米汽车耗油a升,求出发到收工时两组各耗油多少升?。
第一章有理数 1.2 数轴、相反数和绝对值1. 下列各式中,不成立的是( )A.|-6|=6 B.-|6|=-6 C.|-6|=|6| D.-|-6|=62. 数轴是( )A.规定了原点,正方向和单位长度的一条直线 B.一条射线C.有原点、正方向的直线 D.有单位长度的直线3. 下列说法错误的是( )A.所有有理数都可以用数轴上的点表示B.在数轴上表示1的点和-1的点的距离是1C.数轴上原点表示的数是0D.在数轴上原点左边的点表示的数是负数4. 下列说法正确的是( )A.正数与负数互为相反数 B.符号不同的两数互为相反数C.0没有相反数 D.-a与a互为相反数5. 下列是四位同学画出的数轴,其中正确的是( )6. 如图,数轴上点M和点N表示的数分别是( )A.1.5和-2.5 B.2.5和-1.5 C.-1.5和2.5 D.1.5和2.5 7. a,b,c在数轴上的位置如图,a,b,c表示的数是( )A .a ,b ,c 都是负数B .a ,b ,c 都是正数C .a ,b 是正数,c 是负数D .a ,b 是负数,c 是正数8. 数轴上到原点的距离为2的点所表示的数是( )A .-2B .2C .±2D .不能确定9.化简-(-113)的结果是( ) A .113 B .-113 C .-34 D.3410. 下列说法中正确的是( )A .没有一个数的相反数是它本身B .整数的相反数必为整数C . -(+3)的相反数是-3D . +(-6)的相反数是-611. 一个数a 的相反数表示为______.12. 如图,数轴上点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是____.13. 若|x|=5,则x的值是14. -(-2)表示________的相反数,故其结果是____.15. 若a=-3,则-a=____;若-a=-(-5),则a=____.16. 在数轴上,把表示2的对应点移动5个单位后,得到的对应点所表示的数是17. 下列说法中:①若a=10,则-a=-10;②若a是负数,则-a 必是正数;③如果a是负数,则-a在原点的左边;④若a与b互为相反数,则a,b对应的点一定在原点的两侧.其中正确的是(填序号)18. 在数轴上,点A表示的数是-3,与点A距离2个单位长度的点表示的数为____.19. 如图,小明不慎将墨水滴在数轴上,则被墨水盖住的整数有____个.20. 化简:(1)-(+4)=_______;+(-π)=_______;(2)-(-1.5)=_______;-[+(-5)]=____.21. 化简:(1)+[-(+0.3)](2)-[+(-212)]22. 若x +4与-6互为相反数,求x 的值.23. 如图,点A 表示-4,点B 表示-3.(1)标出数轴上的原点0;(2)指出点C表示的数;(3)有一点D(但不是点C),它到原点的距离等于点C到原点的距离,那么点D表示什么数?并标出点D.答案:1---10 DABDC CDCAB11. -a12. 213. ±514. -2 215. 3 -516. 7或-317. ①②18. -5或-119. 820. (1) -4 -π(2) 1.5 521. (1) 解:原式=-0.3(2) 解:原式=21222. 解:原式=x =223. 解:(1)(2)点C 表示的数是5(3)点D 表示-5,如图。
七年级上册有理数加减法练习题一填空:1已知两数为52和-86,这两个数的相反数的和是,两数和的绝对值是 .2. 绝对值不大于5的所有正整数的和为.3. 若m,n互为相反数,则|m-1+n|= .114. 已知x.y,z三个有理数之和为0,若x=8,y=-5,则z= .25. 已知m是6的相反数,n比m的相反数小2,则m-n 等于。
6.在-13与23之间插入三个数,使这5个数中每相邻两个数之间的距离相等,则这三个数的和是 ..?12的绝对值的相反数与3的相反数的和为______________。
3 二计算:1.+.+1.16+4.2.7+ .1211?.? 323⑴-⑵ ??1313?⑶ 0???3.85?⑷+1.7+++ ⑸ -3-4+19-11+2⑹ ?1.43.6?5.2??4.3?1.5?⑺ ?2??4??7??5?7?112.5??1??2221131844 +-5-.三分析计算题:1. 某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出200元,请你计算一下,银行的现款增加了多少?你能用有理数加减法表示出来吗?2. 将-2,-1,0,1,2,3,4,5,6这9个数分别填入图方阵的9个空格中,使得横、竖、斜对角的3个数相加的和为6.3某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:生产量最多的一天比生产量最少的一天多生产多少辆?本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?4某出租汽车从停车场出发沿着东西向的大街进行汽车出租,到晚上6时,一天行驶记录如下:+10、-3、+4、+2、+8、+5、-2、-8、+12、-5、-7到晚上6时,出租车在什么位置。
若汽车每千米耗0.2升,则从停车场出发到晚上6时,出租车共耗没多少升?5.钟面上有1,2,3,…,11,12共12个数字.试在这些数前标上正,负号,使它们的和为0.在解题的过程中,你能总结什么规律?用文字叙述出来。
1.3有理数的加减法 一、填空题。
1、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________________。
2、若a =6,b =-2,c =-4,并且a -b +(-c)-(-d)=1,则d 的值是_________。
3、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于 。
4、1 ―3 +5―7 +9―11+…+97―99= 。
二、选择题。
1、已知a<c<0,b>0,且|a|>|b|>|c|,则|a|+|b|-|c|+|a+b|+|b+c|+|a+c|等于( ) A.-3a+b+c B.3a+3b+c C.a-b+2c D.-a+3b-3c2、两个非零有理数的和为正数,那么这两个有理数为( )A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数。
3、下列各式与c b a +-的值相等的是( )A .()()c b a -+-+B .()()c b a +-+-C .()()c b a --+-D .()()c b a ---- 4、下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为O ,则这两个数都为OD .若两个数的和为正数,则这两个数中至少有一个为正数 5、把6-(+3)-(-7)+(-2)写成省略括号的形式为( )A .-6+3-7-2B .6+3-7-2C .6-3+7-2D .6-3-7-2 6、算式-4-5不能读作( )A .-4与5的差B .-4与-5的和C .-4与-5的差D .-4减去5的差7、-7,-12,+2的和比它们的绝对值的和小( )A .-38B .-4C .4D .38 8、计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-3 三、计算题(能用简单方法的必须用简单方法)。
七年级数学正负数数轴有理数加减法练习I一、单选题1.在一(+2),-(一8)._5.一|一3||,+(-4)中,负数的个数有()A. 1个B・2个 C.3个 D.4个2.如果水位升高3m时水位变化记作±3m.那么水位下降3m时水位变化记作()A.-3mB.3mC.6mD.-6m3.加工零件的尺寸要求如图所示,现有卜列直径尺寸的产品(单位:mm),其中不合格的是()A.045.02B044.9 C.044.98D渺45.014.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259B.-960C.-259D.4425.清晨蜗牛从树根沿着树干往上爬,树高10m,白天爬4m,夜间下滑3 m,它首次从树根爬上树顶,需()A. 10天B.9天C.8天D.7天6.—种而粉的质量标识为“25±0.25千克”,则卜列面粉中合格的是()A.24.70千克B.25.30千克C.24.80千克D.25.51千克7.一运动员某次跳水的最高点离跳台2m,记作+2m,则水而离跳台10m可以记作()A.-10mB.-12mC.+10mD.+12m8.向北走一12米的意义是()A.向北走12米B.向南走12米C.向西走12米D.向东走12米9.任下列说法中,正确的是()A.带“-”号的数是负数B.(TC表示没有温度C.0前加"+”号为正数,0前加“-”号为负数D.-108是一个负数二、解答题10.己知买入股票与卖出股票均需支付成交金额的0.5%的交易费.张先生上周星期五在股市以收盘价每股20元买进某公司的股票1000股,卜.表为在本周交易日内,该股票每股的涨跌情况时间星期一星期二星期三星期四星期五每股涨跌/元+2+3-2.5+3-2注:①涨记作"+”,跌记作;②表中记录的数据为每天收盘价格与前一天收盘价格的变化战星期一的数据是与上星期五收盘价格的变化量.(1)直接判断本周内该股票收盘时,价格最高的是哪一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若张先生在本周的星期五以收盘价将全部股票卖出,求卖出股票应支付的交易费.三、填空题11.设前进为正,前进20m记作+20ni,则前进一12m表示_m,原地不动记作_m.12.某国家飞行表演队在离地面800米处进行特技表演.第一次上升60米.第二次下降50米,第三次上升40米,第四次下降70米,这时此飞行表演队在开始位置的—(填“上方”或“下方”),与开始位置相距—米,离地而—米.13.升降机运行时,如果F降13米记作--13米”,那么当它上升25米时,记作—・14.如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为吨参考答案1.答案:D解析:负数是~(+2)=-2,-5.-|-3|=-3,+(-4)=-4,故负数的个数有4个,故选D.2.答案:A解析:解:因为上升记为+,所以下降记为-,所以水位下降3m时水位变化记作一3m・故选:A.3.答案:B解析:•/45+0.03=45.03(nun),45-0.04=44.96(mm)二零件的直径的合格范围是44.96mm<零件的直径<45.03mm.•.•44.9不在该范围内,.-.不合格的是B,故选B.4.答案:C解析:公元701年用+701表示,则公元前用负数表示.公元前259年记作-259.5.答案:D解析:(10—4)^(4—3)+1=7(天).故选D.6.答案:C解析:M25±0.25千克”表示在25千克上下0.25千克的范困内的是合格品,即24.75千克到25.25千克之间的合格,故只有24.80千克合格.故选C.7.答案:A解析:题中规定比跳台高记作正,因此比跳台低应记为负.水面离跳台10m,可以记作-10m.故选A.8.答案:B解析:向北走-12米的意义是向南走12米,故选B.9.答案:D解析:不是带号的数是负数.要看化简后的结果,故A错误;0C表示温度为0*C,不表示没有温度,故B错误;0既不是正数,也不是负数,故C错误;-108是一个负数,正确’故选D. 10.答案:⑴星期四⑵23.5元(3)117.5元解析:(1)星期四:(2)20+2+3-2.5+3-2=23.5(元/股);答;该股票每股23.5元.(3)23.5x1000x0.5%=117.5(元).答:卖出股票应支付的交易费为117.5元.11.答案:后退12:0解析:前进20m记作+20m,则前进一12m表示后退12m,原地不动记作0m.12.答案:下方;20;780解析:将上升记为正,下降记为负,则6()+(-50)+40+(-70)=(60+40)+1(-50)+(-70)]=1(X)+(-120)=-20(米),即在开始位置的下方20米处,与地面的距离为800+(-20)=780(米).13.答案:+25米解析:因为下降13米记作“-13米”,所以上升25米记作+25米.14.答案:-5解析:正负数可以表示相反意义的量・-3吨表示运入仓库的大米数,那么运出5吨大米表示为-5吨.考点:相反意义的量.。
数轴.相反数.绝对值 【1 】专题练习1. 若上升5m 记作+5m,则-8m 暗示___________;假如-10元暗示支出10元,那么+50元暗示_____________;假如零上5℃记作5℃,那么零下2℃记作__________;宁靖洋中的马里亚纳海沟深达11 034m,可记作海拔11 034m (即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它地点的聚集里:-2,7,32,0,2 013,0.618,3.14,-1.732,-5,+3 ①正数聚集:{…}②负数聚集:{…}③整数聚集:{…}④非正数聚集:{…}⑤非负整数聚集:{…}⑥有理数聚集:{…}3. a ,b 为有理数,在数轴上的地位如图所示,则下列关于a ,b ,0三者之间的大小关系,准确的是( )b 0aA.0<a<b B.a<0<b C.b<0<a D.a<b<04.在数轴上暗示下列各数:0,0.5,112,1,+3,223,并比较它们的大小.5.在数轴上大于-4.12的负整数有______________________.6.到原点的距离等于3的数是____________.7.数轴上暗示-2和-101的两个点分离为A,B,则A,B两点间的距离是______________.8.已知数轴上点A与原点的距离为2,则点A对应的有理数是____________ 点B与点A之间的距离为3,则点B对应的有理数是________________.9.在数轴上,点M暗示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N暗示的数是_________.10.文具店.书店和玩具店依次坐落在一条器械走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的地位在()A.玩具店 B.文具店 C.文具店西边40米 D.玩具店东边-60米11.如图是正方体的概况睁开图,请你在其余三个空格内填入恰当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图12. 上图是一个正方体盒子的睁开图,请把-10,8,10,-3,-8,3这六个数字分离填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不准确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+-C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的地位如图所示,把a ,-a ,b ,-b按照从小到大的次序分列准确的是( )b 0aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值必定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______;21+=_______;5--=_______;3+=_______;_______=1;_______=-2. 20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值规模是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____.25.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26.若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27.若-m>0,|m|=7,求m.28.若|a+b|+|b+z|=0,求a,b的值.29.去失落下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________;(3)已知x>y>0,则|x+y|=________________;(4)若a>b>0,则|-a-b|=__________________.【参考答案】1.降低8m;收入50元;2℃;+50m;30m2.①7,2 013,0.618,3.14,+3②2,23-, 1.732, 5③2,7,0,2 013,5,+3④2,23-,0, 1.732,5⑤7,0,2 013,3+3⑥2,7,23-,0,2 013,0.618,3.14, 1.732,5,+3 3. B4.21210.501332-<-<-<<<+图略;5.4,3,2, 16.3±7.998.2±;1±,5±9.10. B11.略12.略13. C14. D15. B16. C17. C18.13+,3-,(2)19. 3.5;12;5;3;1±;2±20.x,n m;21. D22.3±;3; 2 23.±7;724.(1)43;(2)4.2 4.2 0; (3)3 5 8;(4)2 2 0;(5)3 6.218.6;(6)23,143,23,314,17。
专题01 有理数的分类、数轴、相反数及绝对值(知识大串讲)【知识点梳理】考点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
考点2 有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数考点3 数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)考点4 相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
两个符号:符号相同是正数,符号不同是负数。
3.多重符号的化简多个符号:三个或三个以上的符号的化简,看负号的个数(:当“—”号的个数是偶数个时,结果取正号当“—”号的个数是奇数个时,结果取负号)考点5 绝对值1.几何意义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身(若|a|=|b|,则a=b或a=﹣b)2.代数意义一个负数的绝对值是它的相反数0的绝对值是03.代数符号意义:a >0,|a|=a 反之,|a|=a,则a≥0,|a|=﹣a,则a≦0a = 0,|a|=0a<0,|a|=‐a注:非负数的绝对值是它本身,非正数的绝对值是它的相反数。
有理数测试题(一)姓名: 分数:100分 分数:一、 填空。
(每小题3分,共24分)1、如果-30表示支出30元,那么+200元表示 。
2、在数轴上与原点距离2个单位长度的点表示的数有 个,为 。
3、规定了 的直线叫做数轴。
4、在数轴上表示整数(原点除外)的点中,与原点距离最近的点有 个,表示的数是 。
5、103的相反数是__ _,1132⎛⎫- ⎪⎝⎭的相反数是___ ,(a-2)的相反数是__ __。
6、化简:—[—(—0.3)]= ;—[—(+4)]=__________;—[+(—50)]=_________;7、比较大于(填写“>”或“<”号)(1)-2.1 1 (2)-41 0 (3)-21 -31 (4)-3.1 -3.09 8、在数轴上表示-2的点相距8个单位长度的点表示的数为_____________。
二、选择题。
(每小题3分,共24分)9、绝对值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )A)+8或- 8 B)+4或-4C)-4或+8 D)-8或+410、给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3> (B)<1><2<4>(C)<1><3><4> (D)<2><3><4>11.一个数等于它的相反数的绝对值,则这个数是( )A.正数和零B.负数或零C.一切正数D.所有负数12、若|a|>-a,则( )A)a>0 B)a<0 C)a<-1 D)1<a13、一个数的相反数小于原数,这个数是( )A)正数 B)负数 C)零 D)正分数14、不小于-4的非整数有( )A 、5个B 、4个C 、3个D 、2个15、如图所示,数a ,b 在数轴上的位置,下列判断正确的是( )A 、a<0B 、a>1C 、b>-1D 、b<-116、在数轴上,原点及原点右边的点表示的数是( )A.正数B.负数C.正整数D.非负数三、解答题。
有理数加减法练习题一、选择1.下列说法正确的个数是( )①两数的和一定比其中任何一个加数都大;②两数的差一定比被减数小 ③较小的有理数减去较大的有理数一定是负数;④两个互为相反数的数的商是-1 ⑤任何有理数的偶次幂都是正数 A.1个 B.2个 C.3个 D.4个2.下列关于“一个正数与一个负数的和”的说法正确的是( ) A.可能是正数 B.可能是0 C.可能是负数 D.以上都有可能3.下列说法正确的是( )A.两个有理数相加等于它们的绝对值相加;B.两个负数相加等于它们的绝对值相减C.正数加负数,和为正数;负数加正数,和为负数;D.两个正数相加,和为正数;两外负数相加,和为负数 4.下列说法不正确的个数是( )①两个有理数的和可能等于零;②两个有理数的和可能等于其中一个加数 ③两个有理数的和为正数时,这两个数都是正数 ④两个有理数的和为负数时,这两个数都是正数 A.1个 B.2个 C.3个 D.4个 5.两个数相加,如果和小于每一个加数,那么( ). A.这两个加数同为正数 B.这两个加数同为负数 C.这两个加数的符号不同 D.这两个加数中有一个为零 6.下列计算正确的是( )A.(+30)+(-40)=10B.(-51)+(-30)=-21C.(-10)+(+10)=0D.(+3.9)+(3.1)=0.87.两个数相加,如果它们的和小于其中一个加数,而大于另一个加数,那么( ) A.这两个加数的符号都是负数 B.这两个加数的符号不能相同 C.这两个加数的符号都是正的 D.这两个加数的符号不能确定 8.下列说法不正确的是( )A.一个数与零相加,仍得这个数;B.互为相反数的两个数相加,其和为零C.两个数相加,交换加数的位置,和不变;D.异号两数相加,结果一定大于零 9.不能使式子│-32.6+( )│=│-32.6│+│( )│成立的数是( ) A.任意一个数 B.任意一个正数; C.任意一个负数 D.任意一个非负数10.两个数的差是负数,那么被减数一定是( )A.正数或负数B.负数C.非负数D.以上答案都不对 11.下列说法正确的个数是( )①较大的数减去较小的数的差一定是正数;②较小的数减去较大的数的差一定是负数 ③两个数的差一定小于被减数;④互为相反数的两个数的差不会是负数 A.1个 B.2个 C.3个 D.4个12.若x 和y 表示两个任意有理数,则下列式子正确的是( )A.│x -y│=│y -x│;B.│x -y│=0;C.│x -y│=-(x-y);D.│x -y│=x -y 13. 225的相反数与绝对值为325的数的差为( ) A.-15; B.5; C. 15或5; D. 15或-514.下列说法不正确的个数是( ).①两数相减,差不一定比被减数小; ②减去一个数,等于加上这个数 ③零减去一个数,仍然等于这个数; ④互为相反数的两个数相减得零 A.0个 B.1个 C.2个 D.3个15.若a<0,那么a 和它的相反数的差的绝对值等于( ) A.0 B.a C.2a D.-2a 16.若x<0,那么x-│x│的值为( ) A.零 B.正数 C.非正数 D.负数 17.下列说法正确的是( )A.一个数减0,等于这个数的相反数B.一个数减0,其结果一定大于零C.一个数减0,等于这个数本身D.一个数减0,其结果一定小于零 18.下列说法正确的是( )A.若x+y=0,则x 与y 互为相反数B.若x-y>0,则x<yC.若x-y=0,则x 与y 互为相反数D.若x-y<0,则x>y19.如图所示,a,b,c 表示数轴上的三个有理数,则下列各式不成立的是( ) A.a-b<0 B.b-c<0; C.c-a<0 D.a-(-c)<0(1)下列计算正确的是A .7-(-7)=0;B .0-3=-3;C .212141=- ; D .(-5)-(-6)=-1 (2)如图2—11所示,a 、b 在数轴上的位置分别在原点的两旁,则|a -b|化简的结果是A .a -bB .b -aC .-(a -b)D .-(b -a)图2—11(3)如果a +b =c ,且a >c 则A .b 一定是负数;B .a 一定小于b;C .a 一定是负数;D .b 一定小于a (4)如果|a |-|b |=0,那么A .a =bB .a 、b 互为相反数;C .a 和b 都是0;D .a =b 或a =-b (5)如果a 的绝对值大于-5的绝对值,那么有A .a>-5B .a<-5C .|a -(-5)|=a -(-5)D .以上均不对 (6)若3<x<7,化简|3-x|+|x -7|的结果是A .4B .-4C .10-2xD .2x -10 (7)若a>0,b<0,|a|=4,|b|=a -2,则a -b 的值是A .2B .-2C .6D .-6 (8)若有理数a 满足||a a=1时,那么a 是 A .正有理数 B .负有理数 C .非负有理数 D .非正有理数 1、如果□+2=0,那么“□”内应填的实数是( ) (A )-2 (B )21-(C )21(D )22.若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为( )(A )4-22=-18 (B )22-4=18 (C )22-(-4)=26 (D )-4-22=-263. 下列说法正确的是( )A. 两个数之差一定小于被减数B. 减去一个负数,差一定大于被减数C. 减去一个正数,差一定大于被减数D. 0减去任何数,差都是负数 4.下列交换加数的位置的变形中,正确的是( )A 、B 、D 、 5、火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京,根据以上规定,杭州开往北京的某一直快列车的车次号可能是( )(A) 20 (B) 119 (C) 120 (D) 3196、若x >0,y <0,且|x|<|y |,则x +y 一定是( )(A )负数 (B )正数 (C )0 (D )无法确定符号 7、.若a <0,b >0,且|a|>|b |,则a 与b 的和用|a |、|b |表示为( ) (A )|a |-|b | (B )-(|a |-|b |) (C )|a |+|b | (D )-(|a |+|b |)8、下列计算结果中等于3的是( )A. 74-++B. ()()74-++C. 74++-D. ()()74+--9、将()()()6372-+--+-中的减法改成加法并写成省略加号的代数和的形式应是( )A 、6+3+7-2B 、6-3-7-2C 、6-3+7-2D 、6-3-7+210、已知m 是6的相反数,n 比m 的相反数小2,则m n -等于( )A 、-1B 、3C 、2D 、-101.下列说法中正确的是 ( ) (A)两个数的和必定大于每一个加数;(B)如果两个数的和是正数,那么这两人数中至少有一个正数; (C)两个数的差一定小于被减数;(D)0减去任何数,仍得这个数.2.下列说法中正确的是 ( ) (A)两个有理数相加,等于它们的绝对值相加; (B)两个负数相加取负号并把绝对值相减; (C)两个相反数相减,差为0; (D)两个负数相加,和一定为负数.3.两个有理数的和为负数,那么这两个数一定 ( ) (A) 都是负数; (B) 至少有一个负数; (C)有一个是0; (D)绝对值不相等.14541445-+-=-+-1311131134644436-+--=+--12342143-+-=-+- 4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+-4.的差为和67- ( )(A) 13;-(B)1-; (C)1; (D)13. 1.下列说法正确的是( )A .两个有理数相加,和一定大于每一个有理数B .两个非零有理数相加,和可能等于零C .两个有理数的和为负数,这两个有理数都是负数D .两个负数相加,把绝对值相加2.两数相加,如果和小于任一加数,那么这两数( )A .同为正数B .同为负数C .一正数一负数D .一个为0,一个为负数 3.已知有理数a ,b ,c 在数轴上的位置如图2-1所示,则下列结论错误的是( ) A .a +b <0 B .b +c <0 C .a +b +c <0 D .|a +b |=a +b 4.一个数加-3.6,和为-0.36,那么这个数是( )A .-2.24B .-3.96C .3.24D .3.96 5.下列结论正确的是( )A .有理数减法中,被减数不一字比减数大B .减去一个数,等于加上这个数C .零减一个数,仍得这个数D .两个相反数相减得06.-2的倒数与绝对值等于 的数的差是( )A .B .C .-1或0D .0或1 7.下列计算正确的是( )A .7-(-7)=0B .C .0-4=-4D .-6-5=-1 8.下列各式中,其和等于4的是( )A .B .C .D . 9.如果|x |=4,|y|=3,则x -y 的值是( )A .±7B .±1C .±7或±1D .7或1 10.已知:a <0,b >0,用|a |与|b |表示a 与b 的差是( )A .|a |-|b |B .-(|a |-|b |)C .|a |+|b |D .-(|a |+|b |) 11.如果a <0,那么a 和它的相反数的差的绝对值等于( )A .-2aB .-aC .0D .a 12.1997个不全相等的有理数之和为零,则这1997个有理数中( ) A .至少有一个为零 B .至少有998个正数C .至少有一个是负数D .至少有1995个负数。
2016.6有理数、数轴、绝对值、加减法练习卷一•选择题(共15小题)1 •六月份某登山队在山顶测得温度为零下32度,此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20CC. 44C D • - 44C2 . 2的相反数是()A._ 1B.C.-2D.2223. 如图, 数轴上有A,B, G D四个点,其中到原点距离相等的两个点是( )A•■C2-2 -1 0 1 2A.点B与点DB.点A与点C C点A与点D D.点B与点C4. 如图,数轴上有M, N, P, Q四个点,其中点P所表示的数为a,则数 -3a所对应的点可能是()MNPQ—♦ --- ■■乙------ *—>A. MB. N CP D. Q5. a , b在数轴上的位置如图,化简∣a+b∣的结果是()A. - a - bB. a+bC. a - b D . b - a6. 如图,数轴上有四个点MP, N Q若点M, N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()-- «----- • ■ •>M P X QA. 点MB.点NC.点PD.点Q7. | - 2∣=x ,贝U X 的值为( JA. 2B. - 2 C ±. D. ■:&下列说法错误的是()A. 绝对值最小的数是OB. 最小的自然数是1C最大的负整数是-1D绝对值小于2的整数是:1, O, - 19. a、b是有理数,如果Ia - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A只有(1)正确 B.只有(2)正确C. (1) , (2)都正确D. (1), (2)都不正确10. 若|a|=8 , |b|=5 , a+b>0,那么a- b 的值是()A. 3 或13B. 13 或-13C. 3 或-3D.- 3 或1311. 若a≤,则∣a∣+a+2 等于()A. 2a+2 B . 2 C 2 - 2a D. 2a - 212. 下列式子中,正确的是()A. | - 5|= - 5B.- | - 5|=5C.-(- 5)=- 5D.-(- 5)=513. 下列说法正确的是()A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D —个数的绝对值一定比0大14. (2015秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a则a、b、- a、|b|的大小关系正确的是()••A. |b| > a>- a> bB. |b| > b > a>- aC. a > |b| > b>- aD. a>∣b∣>- a> b15. 对于实数a, b,如果a>0, b v 0且∣a∣V ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=—(Ial - |b| )D. a+b=-(∣b∣- ∣a∣)二•解答题(共15小题)16. 某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入•下表是某周的生产情况(超产记为正、减产记为负):星期一二四五六日增减+5-2-4+ 13-10+ 16-9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?17. 先阅读第(1)小题,仿照其解法再计算第(2)小题:解:原式=I :.:6 3 4 2=' :;: ■'」[¢-1) + (-5) +24+ (-3) ] + E (-⅛ + (--|) 4+(_吉)]O ,=∙l 1Z √s (1)计算:=15+ .-;(2)计算mf;18. 计算:31+ (- 102) + (+39) + (+102) + (- 31)19. 口算:(-13) + (+19)=(-4.7 ) + (- 5.3 )=(-2009) + (+2010)=(+125) + (- 128)=(+0.1 ) + (- 0.01 )=(-1.375 ) + (- 1.125 )=(-0.25 ) + (+ ')=4(-8 J + (- 4 :)=3 2u(-r + (-)=3 4 127(-1.125) + (+ )=g(-15.8 ) + (+3.6 )=(-5 ) +0=620. 已知凶=2003 , ∣y∣=2002 ,且x>0, y V 0,求x+y 的值.21. 计算题(1) 5.6+4.4+ (- 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3) ' + (- :) + - : ^ I : ' I4 3 6 4 3(6) (- 18-) + (+53 J + (- 53.6 ) + (+18 :) + ( - 100)5 5 522. 计算下列各式:(1)(- 1.25 ) + ( +5.25 )(2)(- 7) + (- 2)(3)— + Wl - 8(5)0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6):∣f •-「一」」23. 在右面空格内填上的适当的不相同的整数,使得横、竖、对角线上的所有3个数之和为0.24.观察算式:1+3+5+7」"1+3」',1+3+5^ ',21+3+5+7+9= ' ,按规律计算:(1)1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n- 1)25. 已知:∣m∣=3 , ∣n∣=2 ,且mκ n,求m+n的值.26. 计算题(1) 5.6+ (—0.9 ) +4.4+ (—8.1 ) + (- 0.1 )(2)- 0.5+ (- 3—) + (- 2.75 ) + ( +7—)42(3) 1 '+ (- 1 ')+ + (- 1)+ (- 3 ;)3535(4)+ (- :) +(-')+ (--)+ (- ^)2 3523(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6) (- 1 J + (-6 ) + (- 2.25 ) + '.4 3 327. 已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.28. 若|a|=5 , |b|=3 , (1)求a+b 的值;(2)若∣a+b∣=a+b ,求a- b 的值.29. 已知|a|=2 , |b|=3 , |c|=4 , a>b>c,求a- b - C 的值. 30.若a,b,c 是有理数,|a|=3 ,|b|=10 ,|c|=5 ,且a,b 异号,b,c 同号,求a- b- (- C)的值.2016.6有理数、数轴、绝对值、加减法练习卷参考答案与试题解析一•选择题(共15小题)1.(2014?南岗区校级一模)六月份某登山队在山顶测得温度为零下32度, 此时山脚下的温度为零上12度,则山顶的温度比山脚下的温度低()A. 20°B. - 20 C C. 44 C D . - 44 C【分析】用山脚下的温度减去山顶的温度,然后根据有理数的减法运算,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12-(- 32)=12+32=44 C.故选C.2. (2016?德州)2的相反数是()A^- - B. C- 2 D. 22 2【分析】根据相反数的概念解答即可.【解答】解:2的相反数是-2,故选:C.3. (2016?亭湖区一模)如图,数轴上有A, B, C, D四个点,其中到原点距离相等的两个点是()AB C D—*-------- ⅛-------- 1—•—I ---------- •->-2 -1 0 1 2A.点B与点DB.点A与点CC.点A与点DD.点B与点C 【分析】根据数轴上表示数a的点与表示数-a的点到原点的距离相等,即可解答.【解答】解:由数轴可得:点A表示的数为-2 ,点D表示的数为2, 根据数轴上表示数a的点与表示数-a的点到原点的距离相等,•••点A与点D到原点的距离相等,故选:C.4. (2016?海淀区二模)如图,数轴上有M N P, Q四个点,其中点P所表示的数为a ,则数-3a所对应的点可能是()MNPQOA. MB. N C P D. Q【分析】根据数轴可知-3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,即可解答.【解答】解:•••点P所表示的数为a,点P在数轴的右边,•••- 3a 一定在原点的左边,且到原点的距离是点P到原点距离的3倍,•••数-3a所对应的点可能是M故选:A.5. (2016?花都区一模)a, b在数轴上的位置如图,化简∣a+b∣的结果是()A.- a - bB. a+bC. a - b D . b - a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可. 【解答】解:由图形可知,a v 0,b v 0,所以a+b V0,所以∣a+b∣= - a - b.故选:A.6. (2016?石景山区二模)如图,数轴上有四个点M, P,N, Q,若点M N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()--- «---- •_∙→-- >M PΛ' QA.点MB.点NC.点PD.点Q【分析】先利用相反数的定义确定原点为线段MQ的中点,则可判定点Q 到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:•••点M N表示的数互为相反数,•原点为线段MQ的中点,•点Q到原点的距离最大,•点Q表示的数的绝对值最大.故选D.7. (2016?鄂城区一模)I - 2∣=x ,则X的值为()A. 2B. - 2 C ⅛2 D. √j【分析】根据负数的绝对值等于它的相反数,即可解答.【解答】解:••• | - 2|=2 ,.∙. x=2,故选:A.& (2016春?上海校级月考)下列说法错误的是()A. 绝对值最小的数是0B. 最小的自然数是1C最大的负整数是-1D.绝对值小于2的整数是:1, 0, - 1【分析】根据绝对值,和有关有理数的定义逐项分析即可.【解答】解:A.有理数的绝对值都是非负数,0的绝对值是0,绝对值最小的数是0,所以此选项正确;B. 最小的自然数是0 ,所以此选项错误;C. 最大的负整数是1 ,所以此选项正确;D. 可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1 , 1, 0,所以绝对值小于2的整数是:-1 , 0, 1,所以此选项正确.故选B.9. (2015秋?苏州期末)a、b是有理数,如果|a - b∣=a+b ,那么对于结论:(1) a 一定不是负数;(2)b可能是负数,其中()A.只有(1)正确B.只有(2)正确C (1) , (2)都正确D. (1), (2)都不正确【分析】分两种情况讨论:(1)当a- b≥0时,由|a - b∣=a+b得a- b=a+b, 所以b=0, (2)当 a - b V 0 时,由|a - b∣=a+b 得-(a - b)=a+b,所以a=0.从而选出答案.【解答】解:因为|a - b| ≥0,而a- b有两种可能性.(1)当a- b≥0 时,由|a - b∣=a+b 得a- b=a+b,所以b=0,因为a+b≥,所以a≥);(2)当a- b V 0 时,由|a - b∣=a+b 得-(a- b)=a+b,所以a=0,因为a- b v 0,所以b>0.根据上述分析,知(2)错误.故选A.10. (2 015秋?内江期末)若|a|=8 , ∣b∣=5 , a+b> 0,那么a - b的值是()A. 3 或13 B. 13 或-13 C. 3 或-3 D.- 3 或13【分析】绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.有理数的减法运算法则:减去一个数,等于加这个数的相反数.【解答】解:∙∙∙∣a∣=8 , ∣b∣=5 ,.∙. a= ±, b=±5, 又T a+b> 0,∙'∙ a=8, b=±5.∙∙∙ a - b=3 或13 .故选A.11. (2015秋?青岛校级期末)若a≤),则∣a∣+a+2等于( )A. 2a+2B. 2C. 2- 2aD. 2a- 2【分析】由a≤)可知IaF - a,然后合并同类项即可.【解答】解:T a ≤),∙IaI= - a. 原式=- a+a+2=2. 故选:B.12. (2015秋?南京校级期末)下列式子中,正确的是( )A. I - 5I=- 5B.- I - 5I=5C.-(- 5) =- 5D.-(- 5)=5【分析】根据绝对值的意义对A、 B 进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、| - 5|=5 ,所以A选项错误;B- | - 5|= - 5,所以B选项错误;C-(- 5) =5,所以C选项错误;D-(- 5) =5,所以D选项正确.故选D.13. ( 2015 秋?高邮市期末)下列说法正确的是( )A. 最小的正整数是1B. —个数的相反数一定比它本身小C. 绝对值等于它本身的数一定是正数D. —个数的绝对值一定比0大【分析】A根据整数的特征,可得最小的正整数是 1 ,据此判断即可.B:负数的相反数比它本身大,0的相反数等于它本身,据此判断即可.C:绝对值等于它本身的数是正数或0 ,据此判断即可.D: —个非零数的绝对值比0大,0的绝对值等于0 ,据此判断即可.【解答】解:•••最小的正整数是1,•••选项A正确;•••负数的相反数一定比它本身大,O的相反数等于它本身,•选项B不正确;•••绝对值等于它本身的数是正数或O,•选项C不正确;•一个非零数的绝对值比O大,O的绝对值等于O,•选项D不正确.故选:A.14. (2O15秋?东明县期末)有理数a在数轴上的对应点的位置如图所示,b a贝U a、b、- a、∣b∣的大小关系正确的是()? A∙ ∣b∣> a>- a> b B. ∣b∣> b > a >-a C. a > ∣b∣> b>- a D. a>∣b∣>- a> b【分析】观察数轴,则a是大于1的数,b是负数,且∣b∣> ∣a∣,再进一步分析判断.【解答】解:• a是大于1的数,b是负数,且∣b∣> ∣a∣,•∣b∣>a>- a>b.故选A.15. (2OO7?天水)对于实数a, b,如果a > O, b v O且∣a∣< ∣b∣,那么下列等式成立的是()A. a+b=∣a∣+∣b∣B. a+b= -(∣a∣+∣b∣)C. a+b=-(∣a∣- ∣b∣)D. a+b=-(∣b∣- ∣a∣)【分析】题中给出了a, b的范围,根据正数的绝对值是其本身,负数的绝对值是其相反数,O的绝对值是O”进行分析判断.【解答】解:由已知可知:a, b异号,且正数的绝对值<负数的绝对值.• a+b= -(∣b∣- ∣a∣).故选D.二.解答题(共15小题)16. (2O15秋?民勤县校级期末)某自行车厂计划一周生产自行车14OO辆,平均每天生产2OO辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?【分析】(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车 (5 - 2 - 4+13 - 10+16 - 9) +200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16-(- 10) =26 辆;(4)这一周的工资总额是200×7>60+ (5- 2 - 4+13- 10+16- 9) ×( 60+15)=84675 辆.【解答】解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13 辆,故该厂星期四生产自行车213辆;(2)根据题意 5 - 2- 4+13 - 10+16 - 9=9,200X7+9=1409 辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216- 190=26 辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×50+9×75=84675元,故该厂工人这一周的工资总额是84675元.17. (2015秋?简阳市校级期中)先阅读第(1)小题,仿照其解法再计算第(2)小题:(1)计算:「.- .■: ■ -6342 4—解:原式=| '' '' ::'-■ '-' II1[¢-1) + (-5) +24+ (-3) ] + [ (-⅛ + (--∣) 4+ (-i)]'∙.∙l,J1Z√s=15+ ; Λj =13 ;;4【分析】 首先分析(1)的运算方法:将带分数分解为一个整数和一个分 数;然后重新组合分组:整数一组,分数一组;分别计算求值.【解答】 解:原式=(-205) +400+ + (-204) + (- :) + (- 1 )+(-•)=-Y: •18. (2015秋?克拉玛依校级期中)计算: 31+ (- 102) + (+39) + (+102) + (- 31)【分析】先将互为相反数的两数相加,然后再进行计算即可. 【解答】 解:原式=[31+ (- 31) ]+[ (- 102) + ( +102) ]+39=0+0+39 =39.19. (2015秋?南江县校级月考)口算: (-13) + (+19)= (-4.7 ) + (- 5.3 )= (-2009) + (+2010)= (+125) + (- 128)= (+0.1 ) + (- 0.01 )= (-1.375 ) + (- 1.125 )= (-0.25 ) + (+ ;)=(-8 ■) + (- 4 J =3 2「"+(-_:) + (-')=(2)计算 I二仁'4 =(400 - 205- 204 - 1) + (—'-)4 3 Ξ3 4 12(-1.125) + (+ )=S(-15.8 ) + (+3.6 )=(-5 ) +0=6【分析】根据有理数的加法,即可解答.【解答】解:(-13) + (+19) =6;(-4.7 ) + (- 5.3 ) =- 10;(-2009) + (+2010) =1;(+125) + (- 128) =- 3;(+0.1 ) + (- 0.01 ) =0.09 ;(-1.375 ) + (- 1.125 ) =-2.5 ;(-0.25 ) + (+ J =;4 Ξ(-8?+ (- T =-12';⑴+ (- J + (- ') =0;3 4 127 1(-1.125) + (+ )=-;8 4(-15.8 ) + (+3.6 ) =- 12.2 ;(-5—) +0=- 5 .6 620. (2015 秋?德州校级月考)已知∣x∣=2003 , ∣y∣=2002 ,且x>0, y V 0, 求x+y的值.【分析】根据正数的绝对值是它本身,负数的绝对值是它的相反数,根据异号两数相加,取绝对值较大加数的符号,用较大的绝对值减较小的绝对值,可得答案. 【解答】解:由∣x∣=2003 , ∣y∣=2002 ,且X > 0, y v 0,得x=2003, y= - 2002.x+y=2003 - 2002=1 .21. (2015秋?盐津县校级月考)计算题(1) 5.6+4.4+ ( - 8.1 )(2)(- 7) + (- 4) + (+9) + (- 5)(3)' + (- ') +'•4 3 64 3(5) (- 9十)+15 I ' - ■ ; ! - :... ! - J'-(6)(- 18 ) + (+53 ') + (- 53.6 ) + (+18 J + (- 100) 5 5 5【分析】(1)从左往右依此计算即可求解;(2)先化简,再计算加减法;(3)(4) (5)根据加法交换律和结合律计算即可求解;(6)先算相反数的加法,再相加即可求解.【解答】解:(1) 5.6+4.4+ (- 8.1 )=10- 8.1=1.9 ;(2)(- 7) + (- 4) + (+9) + (- 5)=-7 —4+9— 5=-16+9=-7 ;(3)^+ (- :) + .-亠■--4 3 6 √3=(5^) +(- 5 - >=10- 6=4;=0- 1+ :(5) 0.36+ (- 7.4 ) +0.5+0.24+ (- 0.6 )(6)斤「〔一 - . _: !. ■【分析】(1)根据有理数的加法法则计算,即可解答; (2) 根据有理数的加法法则计算,即可解答; (3) 根据有理数的加法法则计算,即可解答; (4) 利用加法的结合律和交换律,即可解答; (5) 禾U 用加法的结合律和交换律,即可解答. 【解答】解; (1) (- 1.25 ) + (+5.25 ) =5.25 - 1.25 =4; (2) (- 7) + (- 2) =-(7+2) =-7 ; (3)二;+ - - : - 83 2=-3 二+7— - 86 6(5) (- 9 ) +15 I12 4(-3⅛÷(-22.5)÷(-ι⅛ =(-9— - 15一) +[ (15三-3 )- 22.5] 121244=-25+[12.5 - 22.5] =-25- 10 =-35;(6) (- 18 ) + (+53 J + (- 53.6 ) + (+18 ) + (- 100) 5 5 5=(-18 +18 ) + ( +53 '- 53.6 ) + (- 100)5 5 5=0+0- 100 =-100.22. (2015秋?克什克腾旗校级月考)计算下列各式: (1) (- 1.25 ) + ( +5.25 ) (2) (- 7) + (- 2)(3)-Ty - 8=11 '; 6(5) 0.36+ (- 7.4 ) +0.5+0.24+(- 0.6 ) =1.1+ ( - 8)=-6.9 ;(6) .: ! : . . - . _: !.:=8.7 - 3.7=5.23. (2014秋?巩留县校级期中)在右面空格内填上的适当的不相同的整数, 【分析】由于竖线上的所有 3个数之和为0,所以第一排第二个数(即-1 右边的数)等于0+2=2的相反数,是-2;由于横线上的所有 3个数之和 为0,所以第一排第三个数等于- 1 - 2=- 3的相反数,是3;同样,第三 排第一个数等于2+1=3的相反数,是-3;同理,求出第二行的两个数.24. (2014秋?文登市校级期中)观察算式: d O (1+3) ×2 dn c (1+5) ×3 TCUr (IT) X4 1+3= , 1+3+5=, 1+3+5+7= , 2 2 2 (1+9) X 5 1+3+5+7+9= ,…, 按规律计算:(1) 1+3+5+∙∙+99(2) 1+3+5+7+∙∙+ (2n - 1)【分析】(1)根据公式,可得出结果;(2)再根据题意,可得出公式 ___ 「:2【解答】 解:(1)由题意得:1+3+5+∙∙+99=「 ’ ' =2500;2 (2) 1+3+5+7+∙∙+ (2n - 1) = '〔' =nl使得横、竖、对角线上的所有【解答】-1-2 3 40 -4 -32 1225. (2014秋?滕州市校级月考)已知:∣m∣=3 , ∣n∣=2 ,且πκ n,求m+n 的值.【分析】利用绝对值求出m n的值,再代入求值.【解答】解:∙∙∙∣m∣=3 , ∣n∣=2 ,∕∙ m=±3, n=⅛2■/ m< n,∕∙ m=- 3, n =翌,.∙. m+n=— 3±2= - 1 或—5.26. (2014秋?长沙校级月考)计算题(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )(2)- 0.5+ (- 3 ') + (- 2.75 ) + (+7 )4 2(3) 1 :+ (- V :) +■+ (- 1) + (- 3 J3 5 3 512 4 1 1(4)+ (- ') + (- ) + (- ) + (-)2 3 5 2 3(5)(- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5(6)(- 1 ') + (-6—) + (- 2.25 ) + * '.4 3 3【分析】根据有理数的加法,逐一解答即可.【解答】解:(1) 5.6+ (- 0.9 ) +4.4+ (- 8.1 ) + (- 0.1 )=5.6+4.4+ (- 0.9 - 8.1 - 0.1 )=10+ (- 9.1 )=0.9 .(2)- 0.5+ (- 3 ) + (- 2.75 ) + (+7 )4 2=(-0.5 ) + (+7 ) +[ (- 3 ) + (- 2.75 )]2 4=6+ (- 6)=0.(3) 1 '+ (- V :) +■+ (- 1) + (- 3 J3 5 3 5=(1 :+厶)+ (- 1 —1 - 3 ')3 3 5 5=3+ (- 6)=-3.(4)'+ (- :) + (- J + (- ^) + (- ^ )2 3 5 2 3=[+ ( — )]+[ (- :) + (- J +(-一)]2 23 5 3=0+ (- 1 )(5) (- 0.8 ) +1.2+ (- 0.7 ) + (- 2.1 ) +0.8+3.5=[(-0.8) +0.8]+[ (- 0.7 ) + (- 2.1 ) ]+ (1.2+3.5 ) =0+ (- 2.8 ) +4.7=1.9 .(6)(- 1 ;) + (-6 ) + (- 2.25 ) + '4 3 3=(-1 - 2.25 ) +[ (- 6 ) + ']4 3 3=-4+ (- 3)=-7.27. (2015 秋?自贡期末)已知∣a∣=5 , ∣b∣=3 ,且Ia - b∣=b - a,求a+b 的值.【分析】根据绝对值的性质求出a、b ,再判断出a、b的对应情况,然后相加即可得解.【解答】解:∙∙∙∣a∣=5 , |b|=3 ,.∙. a= ±, b=±3,■/ |a - b|=b - a,.∙. a= - 5 时,b=3 或-3,.∙. a+b= - 5+3= - 2,或a+b= - 5+ (- 3) = - 8,所以,a+b的值是-2或-8.28.(2013 秋?滨湖区校级期末)若|a|=5 ,|b|=3 ,(1)求a+b 的值;(2)若∣a+b∣=a+b ,求 a - b 的值.【分析】(1)由∣a∣=5 , ∣b∣=3可得,a=±5, b= ±,可分为4种情况求解;(2)由|a+b|=a+b 可得,a=5,b=3 或a=5,b=- 3,代入计算即可. 【解答】解:(1)τ ∣a∣=5 , |b|=3 ,.∙∙ a= ±,b=±3,当a=5,b=3 时,a+b=8;当a=5, b=- 3 时, a+b=2;当a=- 5, b=3 时, a+b=- 2;当a=- 5, b=- 3 时, a+b=- 8.(2)由|a+b|=a+b 可得, a=5, b=3 或a=5, b=- 3.当a=5, b=3 时, a- b=2,当a=5, b=- 3 时, a- b=8.29. 已知∣a∣=2 , ∣b∣=3 , ∣c∣=4 , a>b>c,求a- b - C 的值.【分析】根据绝对值的性质和有理数的大小比较确定出a、b、C的值,然后代入代数式进行计算即可得解.【解答】解:∙∙∙∣a∣=2 , ∣b∣=3 , ∣c∣=4 ,.∙. a=塑,b=±3 , C= ±,■/ a > b > C ,.∙∙ a=塑,b=- 3 , C= - 4 ,.∙. a - b - C=2 -(- 3)-(- 4)=2+3+4=9 ,或a- b- C=(- 2)-(- 3)-(- 4)=- 2+3+4=5综上所述,a+b - C的值为9或5.30. 若a , b , C 是有理数,∣a∣=3 , Ibl=Io , ∣c∣=5 ,且a , b 异号,b ,C 同号,求a- b-(- C)的值.【分析】根据题意,利用绝对值的代数意义求出 a , b , C的值,即可确定出原式的值.【解答】解:∙∙∙ a , b , C是有理数,|a|=3 , |b|=10 , |c|=5 ,且a , b异号, b , C同号,• ∙a=3, b= —10, C= —5; a= —3, b=10, c=5, 则原式=a- b+C=8 或- 8.。