2017-2018学年七年级数学下册8.2整式乘法第1课时单项式与单项式相乘课件(新版)沪科版
- 格式:ppt
- 大小:650.00 KB
- 文档页数:9
第2讲 整式乘法1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算.2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.知识点01单项式的乘法单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式. (3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成. (4)三个或三个以上的单项式相乘同样适用以上法则.【知识拓展1】计算:(1)221323ab a b abc ⎛⎫⋅-⋅ ⎪⎝⎭; (2)121(2)(3)2n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭;(3)232216()()3m n x y mn y x -⋅-⋅⋅-.知识精讲目标导航【即学即练1】 计算: (1)()()121232n n x y xy x z +⎛⎫-⋅-⋅- ⎪⎝⎭(2)322325(3)(6)()(4)a bb ab ab ab a -+----.知识点02单项式与多项式相乘单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加. 即()m a b c ma mb mc ++=++.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号. (4)对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果. 【知识拓展1】 计算: (1)21242233ab ab ab b ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭; (2)22213(6)32xy y x xy ⎛⎫-+-- ⎪⎝⎭;(3)2222340.623a ab b a b ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭;【即学即练1】 224312(6)2m n m n m n ⎛⎫-+- ⎪⎝⎭.【即学即练2】若n 为自然数,试说明整式()()2121n n n n +--的值一定是3的倍数.【知识拓展2】计算:(1)(2)2(1)3(5)x x x x x x --+-- (2)2322(32)3(21)a a a a a a +--+-+【知识拓展3】化简求值: (1)已知()2352122=-+-,求代数式a b ab a a b a b 的值(2)已知33202()48+=+++-,求a b a ab a b b 的值.(3)已知210+-=m m ,求3222010++m m 的值.【知识拓展4】若20x y +=,求332()4x xy x y y +++的值.知识点03多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘:()()()2x a x b x a b x ab ++=+++.【知识拓展1】计算:(1)(32)(45)a b a b +-; (2)2(1)(1)(1)x x x -++;(3)()(2)(2)()a b a b a b a b +--+-; (4)25(21)(23)(5)x x x x x ++-+-.【知识拓展2】求方程(1)(21)(21)(2)x x x x -+=-+的解.【即学即练1】求出使(32)(34)9(2)(3)x x x x +->-+成立的非负整数解.【知识拓展3】若多项式21ax bx ++与2231x x -+的积不含3x 项,也不含x 项,求a 和b 的值.【即学即练1】在()()22231x ax b x x ++-- 的积中,3x 项的系数是-5,2x 项的系数是-6, 求a 、b .1.已知(m - x )⋅ (-x ) + n (x + m ) = x 2 + 5x - 6 对于任意数 x 都成立, 求 m (n -1) + n (m +1) 的值.能力拓展2.已知a + 2b = 0 ,求a 3 + 2ab (a + b ) + 4b 3 - 8 的值.3.已知(x + ay )(x + by ) = x 2 - 4xy - 6y 2 ,求代数式3(a + b ) - 2ab 的值.4.(x + y + z )4的乘积展开式中,各项系数之和是.题组A 基础过关练一、单选题1.(2021·北京市第一六一中学分校七年级期中)化简8(21)x --的结果是( ) A .161x --B .161x -+C .168x -+D .168x --2.(2021·上海黄浦·七年级期末)若x 2+px +q =(x ﹣3)(x +5),则p 的值为( ) A .﹣15B .﹣2C .2D .83.(2021·安徽·淮南市田家庵区教育体育局教研室七年级期中)如图所示,一块“L ”型菜地,小新在求菜地面积的面积时,列出了下列4个式子,其中错误的是( )A .()ab a c a +-B .()ac a b a +-C .ab ac +D .()()bc c a b a ---4.(2021·湖南·邵阳市第六中学七年级阶段练习)如图,阴影部分的面积是( )A .112xy B .132xy C .6xy D .3xy分层提分5.(2021·北京市第三十五中学七年级期中)规定新运算“ω”的运算规则为:aωb=3a-2b,则(x+y)ω(x-y)等于()A.x+y B.x+2yC.2x+2y D.x+5y6.(2021·广东·深圳市新华中学七年级阶段练习)“数形结合”思想是一种常用的数学思想,其中“以形助数”是借助图形来理解和记忆数学公式.例如,根据图1的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图2的面积可以说明多项式的乘法运算是()A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a﹣b)=a2+2ab﹣3b2二、填空题7.(2021·上海市傅雷中学七年级期中)计算:23(66)32ab ab a b--+=______.8.(2021·北京市三帆中学七年级期中)如图(图中长度单位:m)阴影部分的面积是_____m2(用含x的式子表示),面积表达式是_____次三项式.9.(2021·江苏·梅岭中学教育集团运河中学七年级期中)一套住房的平面图如图所示,其中卫生间、厨房的占地面积之和是______.(用含x、y的代数式表示)三、解答题10.(2021·山西省灵石县教育局教学研究室七年级期中)为庆祝六一儿童节,某书店为了鼓励广大儿童阅读《世界经典童话》(如图(1)),推出了一系列优惠活动,购买此书籍则赠送如图(2)所示的精致矩形包书纸.在图(2)的包书纸示意图中,虚线是折痕,阴影是裁掉的部分,四角均为大小相同的正方形,正方形的边长为折进去的宽度.已知该包书纸正好可以包好图(1)中的《世界经典童话》这本书,该书的长为24 cm ,宽为17 cm ,厚度为2 cm .设用该包书纸包这本书时折进去的宽度为a cm .(1)该包书纸的长为_____________cm ,宽为___________cm (用含a 的代数式表示); (2)当a =2时,求该包书纸的面积(含阴影部分).11.(2021·广西·大新县养利学校七年级期中)填空:()()23a a ++= ;()()23a a +-= ; ()()35a a ++= ;()()35a a --= ;(1)从上面的计算中总结规律,写出下式结果:()()x a x b ++= ; (2)运用上述结果,写出下列各题结果: ①()()20121000x x +-= ; ②()()20122000x x --=题组B 能力提升练一、填空题1.(2021·广东·深圳市新华中学七年级阶段练习)如图,我们知道(a+b )n 展开式中的各项系数依次对应杨辉三角第n +1行中的每一项,给出了“杨辉三角”的前7行,如第4行对应的等式为:4322344()464a b a a b a b ab b +=++++,照此规律,计算:65423262152202152621+⨯+⨯+⨯+⨯+⨯+=__________;2.(2021·上海市民办新竹园中学七年级期中)若22(4)(3)x mx x x n ++-+展开后不含3x 和x 项,则m n +的值为___.3.(2021·上海市民办新竹园中学七年级期中)计算:211(4)(2)42x x x ++-=__. 二、解答题4.(2022·全国·七年级)计算(1)232232213(-)334()a b ab a b (2)223-53()-6a ab a (3)()()223x x -+5.(2021·全国·七年级专题练习)已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.6.(2021·上海市西延安中学七年级期中)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a +b )n (n 为非负整数)展开式的项数及各项系数的相关规律. 例如:(a +b )0=1,它只有一项,系数为1;(a +b )1=a +b ,它有两项,系数分别为1,1,系数和为2;(a +b )2=a 2+2ab +b 2,它有三项,系数分别为1,2,1,系数和为4;根据以上规律,解答下列问题:(1)(a +b )5展开式的系数和是 ;(a +b )n 展开式的系数和是 .(2)当a =2时,(a +b )5展开式的系数和是 ;(a +b )n 展开式的系数和是 .7.(2021·广东·深圳市新华中学七年级阶段练习)定义 ac bd =ad bc -,如 12 34=14232⨯-⨯=-.(1)若11x x +-11x x -+=4,求x 的值;(2)若1x m nx +-121x x -+的值与x 无关,求n m 值.8.(2021·上海市民办新竹园中学七年级期中)有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若123456789123456786x =⨯,123456788123456787y =⨯,试比较x ,y 的大小.解:设123456788a =,那么2(1)(2)2x a a a a =+-=--2(1)y a a a a =-=-22(2)()20x y a a a a -=----=-<x y ∴<看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若20072007200720112007200820072010x =⨯-⨯,20072008200720122007200920072011y =⨯-⨯,试比较x ,y 的大小.9.(2021·上海奉贤·七年级期中)图1是一个长方形窗户ABCD ,它是由上下两个长方形(长方形AEFD 和长方形EBCF )的小窗户组成,在这两个小窗户上各安装了一个可以朝一个方向水平方向拉伸的遮阳帘,这两个遮阳帘的高度分别是a和2b(即DF=a,BE=2b),且b>a>0.当遮阳帘没有拉伸时(如图1),窗户的透光面积就是整个长方形窗户(长方形ABCD)的面积.如图2,上面窗户的遮阳帘水平方向向左拉伸2a至GH.当下面窗户的遮阳帘水平方向向右拉伸2b时,恰好与GH在同一直线上(即点G、H、P在同一直线上).(1)求长方形窗户ABCD的总面积;(用含a、b的代数式表示)(2)如图3,如果上面窗户的遮阳帘保持不动,将下面窗户的遮阳帘继续水平方向向右拉伸b至PQ时,求此时窗户透光的面积(即图中空白部分的面积)为多少?(用含a、b的代数式表示)(3)如果上面窗户的遮阳帘保持不动,当下面窗户的遮阳帘拉伸至BC的中点处时,请通过计算比较窗户的透光的面积与被遮阳帘遮住的面积的大小.题组C 培优拔尖练一、单选题1.(2021·浙江·七年级专题练习)已知在216()()x mx x a x b +-=++中,a 、b 为整数,能使这个因式分解过程成立的m 的值共有( )个A .4B .5C .8D .102.(2021·全国·七年级期中)我国南宋数学家杨辉用“三角形”解释二项和的乘方规律,称之为“杨辉三角”,这个“三角形”给出了()(1,2,3,4,)n a b n +=的展开式的系数规律(按n 的次数由大到小的顺序)1 1 1()a b a b +=+1 2 1 222()2a b a ab b +=++1 3 3 1 +=+++33223()33a b a a b ab b1 4 6 4 1 4322344()464a b a a b a b ab b +=++++… … 请依据上述规律,写出20212x x ⎛⎫- ⎪⎝⎭展开式中含2019x 项的系数是( )A .-2021B .2021C .4042D .-4042 3.(2021·浙江浙江·七年级期中)如图,长为(cm)y ,宽为(cm)x 的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为5cm ,下列说法中正确的是( )①小长方形的较长边为15y -;②阴影A 的较短边和阴影B 的较短边之和为5x y -+;③若x 为定值,则阴影A 和阴影B 的周长和为定值;④当15x =时,阴影A 和阴影B 的面积和为定值.A .①③B .②④C .①③④D .①④二、填空题4.(2021·山东·青岛市城阳第六中学七年级期中)数学兴趣小组发现:(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1利用你发现的规律:求:20212020201977771+++⋯++=__________5.(2020·浙江杭州·模拟预测)若2()()6x a x b x mx ++=++,其中,,a b m 均为整数,则m 的值为_______.6.(2021·全国·七年级专题练习)若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则=a ___________. 7.(2021·浙江南浔·七年级期末)建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为a 的正方形EFGH 四周分别放置四个边长为b 的小正方形,构造了一个大正方形ABCD ,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作1S ,每一个边长为b 的小正方形面积记作2S ,若126S S =,则a b的值是______.三、解答题8.(2020·重庆文德中学校七年级期中)数学上,我们把a bc d 称作二阶行列式,规定它的运算法则为a bad bc c d=-,例23=2534245⨯-⨯=-,请根据阅读理解上述材料解答下列各题: (1)64132-=___________;(2)计算:12569798+++347899100(3)已知实数a b ,满足行列式2 15 1a a b a -=-+-,求代数式534222a b ab ab b --+-+的值.9.(2021·江苏锡山·七年级期中)(感悟数学方法)已知:2A ab a =-,2B ab a b =-++.(1)计算:52A B -;(2)若52A B -的值与字母b 的取值无关,求a 的值.(解决实际问题)请利用上述问题中的数学方法解决下面问题:新冠疫情期间,某医药器材经销商计划同时购进一批甲、乙两种型号的口罩.已知甲型号口罩每箱进价为800元,乙型号口罩每箱进价为600元.该医药公司根据疫情,决定购进两种口罩共20箱,有多种购进方案,现销售一箱甲型口罩,利润率为45%,乙型口罩的售价为每箱1000元.而且为了及时控制疫情,公司决定每售出一箱乙型口罩,返还顾客现金m 元,甲型口罩售价不变,要使不同方案所购进的口罩全部售出后经销商最终获利相同,求m 的值.10.(2020·河南·七年级期中)已知x y 、为有理数,现规定一种新运算#,满足3#2x y xy x =-. ()1求(2)#4-的值;()2求()1#3#2⎡⎤⎣⎦-的值;()30a ≠,探索#)(a b c +与##a b a c +两个式子是否相等,说明理由.11.(2021·贵州织金·七年级期末)为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段以达到节水的目的.如图所示是该市自来水收费价格见价目表.(1)填空:若某户居民2月份用水34m ,则2月份应收水费______元;若该户居民3月份用水38m ,则3月份应收水费______元;(2)若该户居民4月份用水量3m a (a 在6至310m 之间),则应收水费包含两部分,一部分为用水量为36m ,水费12元;另外一部分用水量为______3m ,此部分应收水费______元;则4月份总共应收水费______元.(用a 的整式表示并化简)(3)若该户居民5月份用水3m (10)x x >,求该户居民5月份共交水费多少元?(用x 的整式表示并化简)12.(2021·全国·七年级单元测试)在长方形ABCD 内,将两张边长分别为a 和b (a b >)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为1S ,图2中阴影部分的面积为2S ,当42AD AB -=时求21S S -的值(用含a 、b 的代数式表示).13.(2021·陕西·西安市中铁中学七年级阶段练习)(1)填空:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=;(2)猜想:(x﹣1)(x n+x n﹣1+……+x+1)=(n为大于3的正整数),并证明你的结论;(3)运用(2)的结论计算(32019+32018+32017+……+32+3+1)﹣(31050×2)2÷(8×380);(4)32019﹣32018+32017﹣32016+……+35﹣34+33﹣32+3=.。
整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+∙+6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m m n a a a )()(==如:23326)4()4(4== 已知:23a =,326b =,求3102a b +的值;7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。
第一章整式的乘除(二)一、整式的乘法1. 单项式与单项式相乘:法则:把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(-5a2b2)·(-4 b2c)·(-ab)= [(-5)×(-4)×(-1)]·(a2·a)·(b2·b2)·c=-30a3b4c2.单项式与多项式相乘法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.用字母表示:a(b+c+d)= ab + ac + ad例:= (-3x2)·(-x2)+(-3x2)·2 x一(-3x2)·1=3.多项式与多项式相乘法则:多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.用字母表示:( a+b)(c+d)= ac + ad + bc + bd例:(m+n)(a+b)= (m+ n)a+( m +n)b= ma+ na+mb+nb二、乘法公式1. 平方差公式:两数和与这两数差的积,等于它们的平方差。
(a+b)(a-b)=a2-b2例:①(x-4)(x+4) = ( )2 - ( )2 =________;②(-m+n )( m+n ) = ( ) ( )=___________________;③=( ) ( )=___________;④(2a+b+3)(2a+b-3) =( )2-( )2=______________= ;⑤(2a—b+3)(2a+b-3)=()()=( )2-( )2⑥ ( m +n )( m -n )( m 2+n 2 ) =( )( m 2+n 2 ) = ( )2 -( )2 =_______; ⑦ (x +3y )( ) = 9y 2-x 22. 完全平方公式: 两数和(或差)的平方,等于它们的平方和,加上(或减去)们的 积的2倍。
沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。