初中七年级数学整式的乘法
- 格式:doc
- 大小:714.00 KB
- 文档页数:2
七年级下册数学整式的乘除
在七年级下册数学中,学习了一些关于整式的乘除运算。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法是指将两个或多个整式相乘的运算。
乘法的运算法则包括:同底数幂相乘、同底数幂相除、乘法分配律等。
例如,(2x + 3)(4x - 5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15。
2. 整式的除法:整式的除法是指将一个整式除以另一个整式
的运算。
在整式除法中,除数不能为零。
除法的运算法则包括:整式除整式、整式除单项式、整式除多项式等。
例如,(6x^2 + 3x) ÷ 3x = 2x + 1。
3. 整式的约分:整式的约分是指将一个整式的各项的公因式
提取出来并约去的运算。
约分可以简化整式的形式,使其更简洁。
例如,6x^2 + 9x可以约分为3x(2x + 3)。
这些是七年级下册数学中关于整式的乘除运算的一些基本知识点。
希望对你有帮助!。
2021-2022学年七年级数学【赢在寒假】同步精讲精练系列第1章整式的乘除第02讲整式的乘法【考点梳理】考点1:单项式、多项式及整式的概念1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
如:bc a 22-的系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x 按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x 按y 的升幂排列:3223221yy x xy x --++-按y 的降幂排列:1223223-++--x xy y x y 考点2:单项式及多项式的乘法法则1、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
注意:①积的系数等于各因式系数的积,先确定符号,再计算绝对值。
②相同字母相乘,运用同底数幂的乘法法则。
③只在一个单项式里含有的字母,则连同它的指数作为积的一个因式④单项式乘法法则对于三个以上的单项式相乘同样适用。
⑤单项式乘以单项式,结果仍是一个单项式。
如:=∙-xy z y x 32322.单项式乘以多项式就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)注意:①积是一个多项式,其项数与多项式的项数相同。
初中数学整式的乘法与因式分解例题解析一、整式的乘法例题例1:计算:a2·(-a)3·(-a);x n·x n+1·x n-1·x;(x-2y)2·(2y-x)3解:原式=a2·(-a)3·a1=-a2·a3·a4=-a9;原式=x n+n+1+n-1+1=x3n+1;方法一:原式=(x-2y)2·[-(x-2y)]3=-(x-2y)5方法二:原式=(2y-x)2·(2y-x)3=(2y-x)5例2:下列运算中正确的是()A.a2+a3=a5B.a2·a3=a6C.a2+a3=aD.(a2)3=a6解析:a2与a3不是同类项,不能合并,A错误;a2·a3=a2+3=a5≠a6,B错误;a3与a2不是同类项,不能合并,C错误;D正确;(a2)3=a2×3=a6。
答案:D例3:已知a m=4,a n=10,求a2m+n的值。
解析:将代数式a2m+n变形为含a m、a n的代数式,依据是幂的运算法则。
解:a2m+n=a2m·a n=(a m)2·a n=42×10=160.例4:计算:(-x2y)3·3xy2·(2xy2)2;-6m2n·(x-y)3·mn2(y-x)2.解:原式=-x6y3×3xy2×4x2y4=-x9y9.原式=-6×m3n3(x-y)5=-2m3n3(x-y)5.例5:计算:(-2ab)(3a2-2ab-4b2);5ax(a2+2a+1)-(2a +3)(a-5)解:原式=-6a3b+4a2b2+8ab3原式=5a3x+10a2x+5ax-(2a2-10a+3a-15)=5a3x+10a2x+5ax-2a2+7a+15例6:计算:(5mn2-4m2n)(-2mn);(x+7)(x-6)-(x-2)(x+1)解:原式=-10m2n3+8m3n2.原式=x2-6x+7x-42-x2-x+2x+2=2x-40二、因式分解例题例7:下列式子中,从左到右变形属于因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25解析:根据因式分解的概念,只有B选项满足:等号左边是多项式,等号右边是几个整式的积的形式,并且经检验运算过程正确,故选B.答案 B例8:若代数式x2+ax可以分解因式,则常数a不可以取( )解析:因为代数式x2+ax可以分解因式,所以常数a不可以取0.例9:下面分解因式正确的是()A.x2+2x+1=x(x+2)+1B.(x2-4)x=x3-4xC.ax+bx=(a+b)xD.m2-2mn+n2=(m+n)2解析:根据因式分解的概念,A项、B项不是分解因式;C项是提公因式法分解因式;D项虽是分解因式,但错误,应是m2-2m +n2=(m-n)2答案:C例10:把下列各式分解因式:-16x4y6+24x3y5-9x2y4;4(x+y)2-4(x+y) ·z+z2;(a-b)3-2(b-a)2+(a-b);9(x+a)2+30(x+a)(x+b)+25(x+b)2解:原式=-x2y4(16x2y2-24xy+9)=-x2y4(4xy-3)2;原式=[2(x+y)]2-2×2(x+y)·z+z2=[2(x+y)-z]2=(2x+2y-z)2;原式=(a-b)[(a-b)2-2(a-b)+1]=(a-b)[(a-b)-1]2=(a-b)(a-b-1)2;原式=[3(x+a)]2+2·3(x+a)·5(x+b)+[5(x+b)]2=[3(x+a)+5(x+b)]2=(3x+3a+5x+5b)2=(8x+3a+5b)2.关键提醒:因式分解的步骤:(1)先看各项有没有公因式,若有公因式,则先提取公因式.(2)再看能否使用公式法.(3)用分组分解法,即通过分组后再提出公因式或运用公式法来达到分解的目的.(4)因式分解的最后结果,必须是几个整式的积.(5)因式分解的结果必须进行到每个因式不能再分解为止。
初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
七年级下册整式的乘除一、整式乘除的意义和基本概念在七年级下册的数学课程中,我们将会学习一项重要的内容——整式的乘除。
整式的乘除是数学基本技能的重要组成部分,它不仅在日常生活和实际应用中有着广泛的应用,而且对于培养我们的逻辑思维和抽象思维能力也具有关键作用。
我们来理解一下什么是整式。
整式是包含加、减、乘、除四种运算的代数式,它不同于我们过去学习的算术式,例如:2x + 3y就不能简单地通过加减得到结果,而是需要我们进行进一步的运算。
二、整式乘除的规则和方法整式的乘除是按照特定的规则进行的。
乘法满足交换律、结合律和分配律,例如,(ab)c=ab(c),(ab)c=a(bc),(a+b)c=ac+bc等。
这些规则可以帮助我们进行大规模的运算,简化复杂的问题。
而除法则有一些不同。
在整式除法中,我们通常通过乘以一个数的倒数来将除法问题转化为乘法问题。
例如,如果我们要计算a除以b,我们可以乘以b的倒数1/b,这样就可以转化为乘法问题a×(1/b)。
三、整式乘除的应用整式的乘除不仅在数学中有着广泛的应用,在我们的日常生活中也有着广泛的应用。
例如,在解决物理问题、化学问题以及工程问题时,我们都需要使用到整式的乘除。
通过这些应用,我们可以看到数学在我们生活中的重要性,以及我们学习数学的意义。
四、结语七年级下册的整式乘除是一项非常重要的数学技能。
我们需要理解其基本概念和规则,掌握其方法,才能有效地应用到实际生活和各种问题中。
通过学习整式的乘除,我们也可以进一步培养我们的逻辑思维和抽象思维能力。
因此,我们应该认真对待这一部分的学习,打好数学基础。
七年级上册整式乘除试卷及答案一、填空题(每题2分,共20分)1、单项式相乘,把他们的_________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的_________,再把所得的积_________。
初中数学整式的乘法教案1总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。
同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。
而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。
因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义。
本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用。
一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础。
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力。
二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用。
(2)了解完全平方公式的几何背景。
数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力。
(2)发展学生的数形结合的数学思想。
情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”。
三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用。
初中数学《整式的乘法》教学反思及体会
本次教学反思:
一、教学内容结构合理,知识点接踵而来。
本课的教学内容结构设计恰当,从基础认知出发,围绕“相乘因式”,“乘法法则”,“公因式”,“标准乘法”等知识点,让学生从浅入深,容易理解,充分发挥教师和学生的主观能动性。
二、教学过程互动性强,教学效果明显。
教学过程中,教师设计了多种教学活动,如课堂对话、活动练习等,增强了教学过程的互动性,学生不单是被动听课,而是积极思考,与老师一起探究,学生的学习兴趣大大提高。
三、教学内容巩固,反馈有益
在复习部分,教师及时将学生忘记的重点知识进行巩固,引导学生回顾前面学过的知识点,这种及时的反馈有利于学生对知识点的形成全面性认知。
培养学生的学习能力,帮助学生掌握新的知识点。
教学体会:
教学过程是一件很有趣的事情,与学生一起成长,有让自己感到欣慰的时刻,也有失败的时候,但是,只要能够在失利中吸取教训,从中学习,找到合理的改进方法,就能获取很大的进步。
教学也不断提升自己的能力,本次教学也给了自己一次大的考验,虽然时效性相对薄弱,但我努力了。
贴近实际,提出合理的解决办法,思路清晰,实施现行,这是教师所应该做到的。
有时教学中会出现困难,但经过耐心和沟通,可以更好地解决教学中出现的问题。
作为一名教师,让自己不忘初心,人人都积极努力,珍惜当下,共同进步,既让学生受益,也得到自己的进步。
初中数学如何计算整式的乘法
计算整式的乘法是初中数学中的基础知识之一。
下面我将详细介绍整式的乘法运算步骤,并提供一些例子来说明。
整式的乘法运算步骤如下:
1. 将被乘数和乘数按照相同的顺序排列。
2. 从被乘数中选取一项,与乘数中的每一项逐一相乘。
3. 将每一项的乘积相加,得到最终的结果。
下面是一个例子来说明整式的乘法运算:
考虑两个整式:A = 2x + 3,B = 4x - 5。
我们可以计算A * B。
将被乘数A和乘数B按照相同的顺序排列:
2x + 3
* 4x - 5
从被乘数A中选取一项,与乘数B中的每一项逐一相乘:
(2x) * (4x) = 8x²
(2x) * (-5) = -10x
(3) * (4x) = 12x
(3) * (-5) = -15
将每一项的乘积相加:
8x² + (-10x) + 12x + (-15)
最后,将相同次数的项合并:
8x² + 2x - 15
所以,A * B = 8x² + 2x - 15。
以上就是整式的乘法运算的基本步骤。
在实际计算中,可能会遇到更复杂的整式乘法问题,涉及多个变量和更多的项。
但是,无论多复杂,我们都可以按照相同的步骤进行计算:按顺序排列、逐项相乘、合并同类项。
总结:
计算整式的乘法可以按照以下步骤进行:将被乘数和乘数按照相同的顺序排列,从被乘数中选取一项,与乘数中的每一项逐一相乘,将每一项的乘积相加,最后合并同类项。
掌握整式的乘法运算可以帮助我们解决代数问题,进一步提升数学能力。
初中数学什么是整式的乘法整式的乘法指的是将两个或多个整式相乘得到一个新的整式。
整式是由常数、变量及它们的乘积和幂次的和或差组成的代数式。
下面将详细介绍整式的乘法运算的定义、性质以及如何进行整式的乘法。
一、整式的乘法定义设有两个整式A和B,表示为:A = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀B = bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀其中,aₙ、aₙ₋₁、...、a₂、a₁、a₀和bₙ、bₙ₋₁、...、b₂、b₁、b₀为常数系数,x为变量,n和m 为幂次。
整式A和B的乘积表示为A * B,即:A *B = (aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₂x² + a₁x + a₀) * (bₙxᵐ + bₙ₋₁xᵐ⁻¹ + ... + b₂x² + b₁x + b₀)二、整式乘法的性质整式的乘法具有以下性质:1. 乘法交换律:对于任意两个整式A和B,有A * B = B * A。
即整式的乘法满足交换律。
2. 乘法结合律:对于任意三个整式A、B和C,有(A * B) * C = A * (B * C)。
即整式的乘法满足结合律。
3. 乘法分配律:对于任意三个整式A、B和C,有A * (B + C) = A * B + A * C。
即整式的乘法满足左分配律。
三、整式的乘法运算整式的乘法运算可以通过展开和合并同类项的方法进行。
例如,设有两个整式A和B,表示为:A = 2x² + 3xy - 4y²B = 5x - 2y我们将A与B相乘,即A * B,得到:A *B = (2x² + 3xy - 4y²) * (5x - 2y)按照乘法分配律的定义进行展开和合并,得到:A *B = 2x² * 5x + 2x² * (-2y) + 3xy * 5x + 3xy * (-2y) - 4y² * 5x - 4y² * (-2y)进一步计算,得到:A *B = 10x³ - 4x²y + 15x²y - 6xy² - 20xy² + 8y³将上述结果进行合并同类项,得到最后的乘积结果:A *B = 10x³ + 11x²y - 26xy² + 8y³总结:整式的乘法是将两个或多个整式相乘得到一个新的整式。
《整式的乘法》的教学反思《整式的乘法》的内容,也是比较有难度的内容。
主要包括,同底数幂相乘、幂的乘方、积的乘方、单项式乘单项式、单项式乘多项式、和乘法的两个公式。
整式乘法是整式乘除与因式分解的基础,是学好最后一章的关键,因此是我教学的重点内容。
而其中的同底数幂相乘、幂的乘方、积的乘方又是整式乘法的基础内容,所以它更是教学的重点,需要把更多的时间放到这一部分中,让学生有学有练,打好坚实基础。
在这一部分教学时,我主要采用归纳式教学法。
首先,举一些简单的例子,然后让学生总结归纳其中的规律,最后形成有关的乘法运算法则。
例如:a×a=a2,a×a×a=a3,a2×a3= a×a×a×a×a=a5···利用这些简单的例子,从学生的原有知识出发,总结归纳出新的运算方法。
这样让学生主动的去思考总结,老师在一旁辅助,这样学生更容易记住获得的知识。
得出运算的法则后,要让学生适当的练习,让学生写到黑板上,以发现其中存在的问题。
教学时发现学生很容易把一些运算的法则搞混淆。
例如:进行以下计算(a2)3=a5,a3×a4=a12,这就是混淆了运算的法则。
出现这种问题,一个是因为运算的法则没有记忆牢固,但更重要的原因是粗心大意,做题时只凭自己的第一反应,不根据运算法则进行计算。
数学是个严谨的学科,很多同学不能取得好的成绩不是因为学不会,而是不认真、过于草率久而久之养成坏的习惯,形成错误的运算方法,以致影响后面内容的学习。
所以,我认为数学课不能只是简单的传授知识,它跟重要的作用应该是使学生养成良好的习惯,培养他们分析问题解决问题的能力。
在以后的教学中,应该严格、严谨的要求学生,不能小而不顾。
对于发现的问题,应及时解决,趁热打铁。
数学是个连贯的体系,前面学习的好坏会直接影响以后的学习。
很多同学学会了有关幂的运算,但是在作单项式成单项式和单项式乘多项式时,还是出现了很多问题。
第一讲整式乘除1.1 整式的乘法◆赛点归纳整式的乘法包括单项式以单项式、单项式乘以多项式、多项式乘以多项式等内容.◆解题指导例1(2001,全国竞赛)若a,b是正数,且满足12345=(111+a)(111-b),则a 与b•之间的大小关系是().A.a>b B.a=b C.a<b D.不能确定【思路探究】由题设易得乘积式111(a-b),若能说明111(a-b)>0,即可比较a•与b的大小.这可利用多项式乘法推得.例2求在展开(5a3-3a2b+7ab2-2b3)(3a2+2ab-3b2)中,a3b2和a2b3的系数.【思路探究】若根据多项式乘以多项式法则直接运算,计算量就比较大;若用竖式计算,就很方便.【思维误区】有位同学这样解答例2,你认为对吗?【解】5 -3 7 -1×) 3 2 -3________________________________________________-15 +9 -21 +6+10 -6 +14 -4+) +15 -9 +21 -6___________________________________________________+15 +1 0 +17 -25 +6∴原式=15a5+a4b+17a2b3-25ab4+6b5.因为展开后的多项式没有a3b2项,所以a3b2系数不存在,a2b3的系数为17.例3 (2001,武汉市竞赛)若3x3-x=1,则9x4+12x3-3x2-7x+2001的值等于().A.1999 B.2001 C.2003 D.2005【思路探究】显然是无法直接代入求值的,必须将要求的代数式经过变形,使之含有3x3-x-1的乘积的代数和的形式,再求其值就不难了.例4 (2002,黄冈市竞赛)已知m、n互为相反数,a、b互为负倒数,x•的绝对值等于3,则x3-(1+m+n+ab)x2+(m+n)·x2001+(-ab)2002的值等于________.【思路探究】要求此多项式的值,显然不能直接运用多项式乘法展开它,由题设可知,多项式(1+m+n+ab)、(m+n)与(-ab)都等于特殊值.例5 (2000,“希望杯”,初二)已知多项式2x2+3xy-2y2-x+8y-6•可以分解为(•x+2y+m)(2x-y+n)的形式,那么3211mn+-的值是______.【思路探究】由题设可知,两个一次三项式的积等于2x2+3xy-2y2-x+8y-6.•根据多项式恒等的条件可列出关于m、n的二元一次方程组,进而不难求出m、n的值.【拓展题】按下面规则扩充新数:已知a和b两数,可按规则c=ab+a+b扩充一个新数,而a,b,c•三个数中任取两数,按规则又可扩充一个新数,……,每扩充一个新数叫做一次操作.现有数1和4.(1)求按上述规则操作三次得到的最大新数;(2)能否通过上述规则扩充得到1999,并说明理由.◆探索研讨在求解整式乘法比较复杂的相关问题时,运用整式乘法法则进行计算或求解相关问题,一般不宜直接运用整式乘法法则,请结合本节例题,总结自己的发现.◆能力训练1.已知m2+m-1=0,那么代数式m3+2m2-1997的值是().A.1997 B.-1997 C.1996 D.-19962.若19a+98b=0,则ab是().A.正数B.非正数C.负数D.非负数3.(2002,“希望杯”,初二)已知a>b>c,M=a2b+b2c+c2a,N=ab2+bc2+ca2,则M与N的大小关系是( ).A .M<NB .M>NC .M=ND .不能确定4.(2001,山东省竞赛)某商店经销一批衬衣,进价为每件m•元,•零售价比进价高a%,后因市场的变化,该店把零售价调整为原来零售价的b%出售,•那么调价后每件衬衣的零售价是( ).A .m (1+a%)(1-b%)元B .ma%(1-b%)元C .m (1+a%)b%元D .m (1+a%b%)元5.若a=199519951996199619971997,,199619961997199719981998b c ==,则( ). A .a<b<c B .b<c<a C .c<b<a D .a<c<b6.若n 是奇自然数,a 1,a 2,…,a n 是n 个互不相同的负整数,则( ).A .(a 1+1)(a 2+2)…(a n +n )是正整数B .(a 1-1)(a 2-2)…(a n -n )是正整数C .(11a +1)(21a +2) (1)a +n )是正数 D .(1-11a )(2-21a )…(n -1n a )是正数 7.(x ,y )称为数对,其中x ,y 都是任意实数,定义数对的加法,乘法运算如下: (x 1,y 1)+(x 2,y 2)=(x 1+x 2,y 1+y 2),(x 1,y 1)·(x 2,y 2)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2).则不成立的运算规律是( ).A .乘法交换律:(x 1,y 1)·(x 2,y 2)=(x 2,y 2)·(x 1,y 1)B .乘法结合律:(x 1,y 1)(x 2,y 2)·(x 3,y 3)=(x 1,y 1)((x 2,y 2)·(x 3,y 3))C .乘法对加法的分配律:(x ,y )·((x 1,y 1)+(x 2,y 2))=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2))D .加法对乘法的分配律:(x ,y )+((x 1,y 1)·(x 2,y 2))=((x ,y )+(x 1,y 1))·((x ,y )+(x 2,y 2))8.计算:(3x+9)(2x-5)=________.9.若m=-1998,则│m2+11m-999│-│m2+22m+999│+20=______.10.若x3+x2+x+1=0,则y=x97+x98+…+x103的值是_____.11.如果(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,那么│a1│+│a2│+│a3│+│a4│+│a5│的值为_________.12.已知a,b,c,d是四个不同的有理数,且(a+c)(a+d)=1,(b+c)(b+d)=1,则(a+c)(b+c)的值为________.13.已知A,B,C,D为一直线上的顺次四点,且AC=10,BD=8,求AB·CD+BC·AD的值.14.计算:(12+13+…+12002)(1+12+…+12001)-(1-12+…+12002)(12+13+…+12001).15.在(x2-ax+b)(ax2+x-b)的展开式中,x2的系数是1,x的系数是9,求整数a和b 的值.16.已知3n+11m能被10整除,试证:3n+4+11m+2也能被10整除.答案:解题指导例1 A [提示:∵12345=(111+a )(111-b )=1112+111(a -b )-ab ,∴111(a -b )=12345-1112+ab=24+ab .∵a>0,b>0,∴ab>0.∴24+ab>0,即a -b>0,∴a>b .]例2 a 3b 2的系数为0,a 2b 3的系数为17.例3 D [提示:由已知有3x 3-x -1=0,9x 4+12x 3-3x 2-7x+2001=3x (3x 3-x -1)+4(3x 3-x -1)+2005=2005.若将3x 3-x=1代入,如何求?]例4 28或-26. [提示:∵m 、n 互为相反数,∴m+n=0.∵a 、b 互为负倒数,∴ab=-1.∴x 3-(1+m+n+ab )x 2+(m+n )x 2001+(-ab )2002=x 3-(1+0-1)x 2+0+[-(-1)] 2002=x 3+1=±│x│3+1=28(3),26(3).x x =⎧⎨-=-⎩] 例5 -78. [提示:由题意知(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2-x+8y -6.又(x+2y+m )(2x -y+n )=2x 2+3xy -2y 2+(2m+n )x+(2n -m )y+nm ,根据多项式恒等的条件,得3221,2,1728, 3.186.m n m m n m n n mn +=-⎧=-⎧+⎪-==-⎨⎨=-⎩⎪=-⎩解得故.] 【拓展题】(1)第一次只能得到1×4+4+1=9.若要求最大新数,第二次应取4和9,得到4×9+4+9=49.同理,第三次取9和49,得9×49+9+49=499.则499就是扩充三次的最大数.(2)∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1).取数a和c可得新数d=(a+1)(c+1)-1,∴d+1=(a+1)(c+1)=(a+1)(a+1)(b+1)=(a+1)2(b+1).取数b和c可得新数e=(b+1)(c+1)-1,k∴e+1=(b+1)(c+1)=(b+1)(a+1)(b+1)=(b+1)2(a+1).设扩充后的新数为x,则总存在x+1=(a+1)m·(b+1)n(m、n为正整数).当a=1,b=4时,x+1=2m×5n,又1999+1=2000=24×53,∴1999可以通过上述规则扩充得到.能力训练1.D [提示:由m2+m-1=0,知m2+m=1,∴m3+2m2-1997=m(m2+m)+m2-1997=m+m2-1997=-1996.]2.B [提示:由19a+98b=0,得a=-9819b,ab=9819-b2≤0.]3.B [提示:证明M-N>0.]4.C [提示:由题意知,每件衬衣进价为m元,零售价比进价高a%,•那么零售价是m+ma%元,后又调整为原来零售价的b%出售,那么调整后每件衬衣的零售价为m(1+a%)×b%]5.A [提示:设A=19951995,B=19961996,C=19971997,D=•19981998,•则有B=•A+10001,C=B+10001,D=C+10001.∴(B+10001)(B -10001)=B 2-100012,即C·A=B 2-100012. ∴C·A<B 2.由于B 、C 均为正数,所以1995199519961996,1996199619971997A B B C <<即. 同理,可以得到1996199619971997,1997199719981998B C C D <<即.] 6.D [提示:a 1,a 2,…a n 是n 个互不相同的负整数,其中n 是奇自然数,若a 1=-1,a 1+1=0, 则(a 1+1)(a 2+2)…(a n +n )=0,排除A ;若a 1=-1,a 2=-2,a 3=-3,…,a n =-n ,则(a 1-1)(a 2-2)…(a n -n )=(-2)(-4)(-6)…(-2n )=(-1)n 2×4×6×…×(2n )<0.因为n 是奇数,故排除B ;若a 1=-1,+1=0,则(11a +1).(21a +2) (1)a +n )=0,又排除C . 如果运用直接证法,如何证明?]7.D [提示:易见乘法交换律成立.由((x 1,y 1)·(x 2,y 2))·(x 3,y 3)=(x 1x 2-y 1y 2,x 1y 2+y 1x 2)·(x 3,y 3)=(x 1x 2x 3-y 1y 2x 3-x 1y 2y 3-y 1x 2y 3,x 1x 2y 3-y 1y 2y 3+x 1y 2x 3+y 1x 2x 3=(x 1,y 1)·(x 2x 3-y 2y 3,x 2y 3+y 2x 3)=(x 1,y 1)·((x 2,y 2)·(x 3,y 3)),知乘法结合律成立.由(x ,y )·((x 1,y 1)+(x 2,y 2))=(x ,y )·(x 1+x 2,y 1+y 2)=(x (x 1+x 2)-y (y 1+y 2),x (y 1+y 2)+y (x 1+x 2))=(xx 1-yy 1,xy 1+yx 1)+(xx 2-yy 2,xy 2+yx 2)=((x ,y )·(x 1,y 1))+((x ,y )·(x 2,y 2)).知乘法对加法的分配律成立.由(1,0)+(1,0)·(1,0)=(1,0)+(1,0)=(2,0)≠(2,0)·(2,0)=((1,0)+(1,0))·((1,0)+(1,0)),知加法对乘法的分配律不成立.]8.6x2+3x-45.9.20000.[提示:∵m=-1998,∴m+11=-1987,m+22=-1976.∴m2+11m=m(m+11)=1998×1987.∴m2+11m-999>0.∵m2+22m=m(m+22)=1998×1976,∴m2+22m+999>0.∴│m2+11m-999│-│m2+22m+999│+20=(m2+11m-999)-(m2+22m+999)+20=11m-999-22m-999+20=-11m-1998+20=(-1998)(-11)-1998+20=20000.]10.-1.[提示:由已知,得x4=1.∴y=x97+x98+…+x103=x97(1+x+x2+x3)+x101(1+x+x2+x3)-x104=-(x4)26=-1.]11.1023.[提示:易知a1,a3,a5均小于0,a2,a4均大于0,取x=-1时,a0-a1+a2-a3+a4-a5=45,∴-a1+a2-a3+a4-a5=1023.]12.-1.[提示:设a+b+c+d=m,a+c=x,b+c=y,则a+d=m-y,b+d=m-x,由已知得x(m-y)=y(m-x),即mx-my=0,∴m(x-y)=0,又a,b,c,d互不相同,①②∴a+c≠b+c ,即x≠y . ∴m=0.又x (m -y )=1, ∴-xy=1.故(a+c )(b+c )=xy=-1.]13.设BC=x ,则AB=10-x ,CD=8-x ,AD=18-x .∴AB·CD+BC·AD=(10-x )(8-x )+x (18-x )=80.14.设12+13+…+12001=a ,则 原式=(a+12002)(1+a )-(1+a+12002)a=12002. 15.由条件知1,9.ab b a ab b --=⎧⎨+=⎩ 由①得(a -1)(b -1)=2,因为a 、b 是整数,于是 11,12,11,12,1211121 1.a a a a b b b b -=-=-=--=-⎧⎧⎧⎧⎨⎨⎨⎨-=-=-=--=-⎩⎩⎩⎩或或或 由②检验知a=2,b=3.16.3n+4+11 m+2=3 4×3 n +11 2×11 m =81×3 n +121×11 m =80×3 n +120×11 m +(3 n +11 m ).∵10│80×3 n ,10│120×11 m ,10│3 n +11 m ,∴10│(80×3 n +120×11 m +(3 n +11 m )),即10│(3 n+4 +11 m+2).。
第八章整式的乘法一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“整式的乘法”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段“数与代数”领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.学生在前面的学习中已经理解了整式的概念,掌握了合并同类项和去括号的法则,能进行简单的整式加减运算,学生通过进一步学习,能根据整数指数幂的基本性质进行幂的运算,会用科学记数法表示数(包括在计算器上表示);能进行简单的整式乘法运算(多项式乘法仅限于一次式之间和一次式与二次式的乘法).理解乘法公式(a+b)(a-b)=a2-b2,(a±b)=a2±2ab+b2,了解公式的几何背景,能利用公式进行简单的计算和推理.通过代数式与代数式的运算学习,让学生进一步理解字母表示数的意义,让学生通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.2.本单元教学内容分析冀教版教材七年级下册第八章“整式的乘法”,本章包括六个小节:8.1同底数幂的乘法;8.2幂的乘方与积的乘方;8.3同底数幂的除法;8.4整式的乘法;8.5乘法公式;8.6科学记数法.“整式的乘法”的主要学习内容:同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、单项式乘单项式、单项式乘多项式、多项式乘多项式(含平方差公式及完全平方公式)和科学记数法.本单元学习内容是在学习完数的运算、字母表示数、合并同类项、去括号等内容,具备了由数的运算转化为式的运算的知识基础,类比有理数运算学习整式的运算,可以帮助学生认识到代数与现实世界、学生生活、相关学科联系十分密切,为数学本身和其他学科的研究提供了语言、方法和手段.本单元内容是在学生学习了整式的加减的基础上进行的,作为铺垫,又提前安排了同底数幂的乘法、幂的乘方、积的乘方等知识,然后通过实例引入了整式的乘法,使学生通过对乘法分配律等法则的运用探索整式乘法的运算法则以及重要的公式——平方差公式、完全平方公式,所以本单元知识既是对前面所学知识的综合应用,也为后面学习整式除法、因式分解打好基础.本单元突出了乘法公式“由特殊到一般”的过程,乘法公式实际上是两个特殊整式相乘而得出的特殊结果,但又在应用上具有一般性,即公式中“a”和“b”可以是一个数或字母,也可以是一个整式(实际上不限于整式).这部分的学习不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是冀教版教材数学七年级下册第八章整式的乘法,学生在前面已学习了数的运算、字母表示数、合并同类项、去括号等内容,了解有关运算律和法则,在前面几节课先学习同底数幂的乘法、幂的乘方、积的乘方法则,具备了类比有理数运算进行整式运算的知识基础,对于整式乘法法则的理解,不是学生学习的难点,需要注意的是学生在运用法则进行计算时易混淆对于幂的运算性质法则的应用,出现计算错误,所以应加强训练,教师帮助学生提高认识.四、单元学习目标1.探索并了解正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方),并会运用它们进行计算.2.经历探索单项式与单项式、单项式与多项式、多项式与多项式相乘的法则的过程,培养学生归纳、概括能力,以及运算能力,了解法则并会简单的整式的乘法运算.3.体验由整式的乘法推导乘法公式的过程,掌握乘法公式,并能运用公式进行简单的计算.4.探索并理解科学记数法,会用科学记数法表示数.5.主动参与到一些探索过程中去逐步形成独立思考、培养主动探索的习惯,提高数学学习兴趣.五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
第三讲整式的乘法整式的乘法1.乘方知识回顾求多个相同因数的乘积的运算,叫做乘方。
一般地将乘方写做a n ,读作a 的n 次方,也读作a 的n 次幂,其中a 叫做底数,n 叫做指数,乘方的结果叫做幂和数字的乘方运算类似,字母的乘方运算也遵循以下法则(1)同底数幂相乘,底数不变,指数相加,即m n m n a a a+⋅=(2)乘积的幂,等于各因数的幂的乘积,即()n n n a b a b⋅=⋅(3)幂的乘方,底数不变,指数相乘,即()n m mna a =(4)同底数幂相除,底数不变,指数相减,即()m n m n a a am n -÷=>(5)任何不为0的数的0次幂都是“1”,即a 0=1一般的,我们不用特意强调字母a 、b 的取值范围,但是我们默认它们要使得整个式子有意义,例如上面的(4)、(5)中,都要求a ≠0在整式的乘法运算中,我们主要会用到上面的(1)、(2)、(3)2.单项式乘以单项式(1)系数相乘作为积的系数;(2)相同字母的因式相乘,应用同底数幂的运算法则底数不变,指数相加;(3)只在一个单项式里含有的字母,连同它的指数也作为积的一项例如:()()()3232525(25)10x x y x x y x y⨯=⨯⨯⋅⨯=注意:单项式与单项式的乘积仍然是单项式3.单项式乘以多项式利用乘法分配律,用单项式分别去乘多项式的每一项,转化为单项式与单项式相乘的形式,再把得到的所有乘积相加例如:()()()2323253235232(5)610a a ab a a a ab a a b ⎡⎤⨯-=⋅+⋅-=-⎣⎦4.多项式乘以多项式先把其中一个多项式看作整体,用它去乘另一个多项式的每一项,利用分配律拆开括号。
此时括号由两个减少为一个。
再利用单项式乘以多项式的方法,将所有括号拆开,最后将所有项加起来例如:注意:把所有括号展开后,最后一定要记得合并同类项例1.计算:()()54232233232224(1)(2)3()3(3)(4)m n m n a a x xy z ⋅⨯⨯-⨯⎡⎤⎢⎥⎣⎦()()()()()()()()232222432322322(1)371(2)2(3)354(4)332ax a xy mn mnx a b a bc ac a b ab a b ⋅---⋅-⋅--⋅-⋅-例3.计算:()()()232222(1)(4)3211(2)8742(3)()25(4)7834xy x xy x x x x y xy a ab b b a b +-⎛⎫--+ ⎪⎝⎭+⎛⎫--++- ⎪⎝⎭()()()()22222222(1)(31)(2)(2)(2)35(3)2(32)(54)1(4)4(32)2(5)2326(6)(232)23x y a b a b x y x y m n n m n x y z x y z bc ab ac a b c ++--+-⎛⎫++ ⎪⎝⎭++-+++-+例5.计算:(1) (x+2)(y+2)(z+2)(2) (x+1)(y+1)(z+1)(3) (x+7)(y+2)(1-x+xy)(4) (3x+2)(6y+5)(2z+1)一元整式的乘法关于一元整式(只含有一个字母)的乘法,我们可以运用列竖式来运算。
●方法点拨
[例1]计算
(1)(-3.5x2y2)·(0.6xy4z)
(2)(-ab3)2·(-a2b)
点拨:先确定运算顺序,再利用单项式乘单项式的法则进行计算.(1)直接作乘法即可,(2)先作乘方运算,再作乘法运算.
解:(1)(-3.5x2y2)·(0.6xy4z)
(系数相乘)(相同字母相乘)(不同字母相乘)(在x2·x中,x的指数是1,不要漏掉)
=-2.1x3y6z
(2)(-ab3)2·(-a2b)
=a2b6·(-a2b)——先算乘方
=-(a2·a2)(b6·b)——再算乘法
=-a4b7
[例2]计算
(1)a m(a m-a3+9)
(2)(4x3)2·[x3-x·(2x2-1)]
点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幂的乘方,单乘多及去括号几种运算公式及方法,要一步步进行.
解:
[例3]计算
(1)(2a+3b)(3a+2b) (2)(3m-n)2
点拨:这两题都需运用多项式相乘的法则进行计算,能合并同类项的要将结果化到最简的形式.注意第(2)题要化为多乘多的形式.
解:
(2)(3m-n)2注意乘方的意义
=(3m-n)(3m-n)
=3m·3m-3m·n-n·3m+n·n
=9m 2-3mn -3mn +n 2
=9m 2-6mn +n 2
[例4](1)(-3
1xy 2)2·[xy (2x -y )+xy 2] (2)(-3x )2-2(x -5)(x -2)
点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结果要打上括号才能进行下一步运算.
解:(1)(-
31xy 2)2·[xy (2x -y )+xy 2] =9
1x 2y 4·[2x 2y -xy 2+xy 2] =9
1x 2y 4·(2x 2y ) =9
2x 4y 5 (2)(-3x )2-2(x -5)(x -2)
=9x 2-2(x 2-2x -5x +10)
=9x 2-2(x 2-7x +10)
=9x 2-2x 2+14x -20
=7x 2+14x -20
说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项数,再进行下一步的运算.
[例5]解下列方程
8x 2-(2x -3)(4x +2)=14
点拨:利用多乘多法则将方程左边部分化简,再运用解方程的方法求出x .
解:8x 2-(2x -3)(4x +2)=14
8x 2-(8x 2+4x -12x -6)=14
8x 2-(8x 2-8x -6)=14
8x 2-8x 2+8x +6=14
8x =8
x =1
[例6]长方形的一边长3m +2n ,另一边比它大m -n ,求长方形的面积.
点拨:先分别求出长和宽,再根据“长方形的面积=长×宽”求出面积.列式的时候,表示每条边的多项式都要用括号括起来.
解:长方形的宽:3m +2n
长方形的长=(3m +2n )+(m -n )=4m +n
长方形的面积:(3m +2n )·(4m +n )
=3m ·4m +3m ·n +2n ·4m +2n ·n
=12m 2+3mn +8mn +2n 2
=12m 2+11mn +2n 2
答:长方形的面积是12m 2+11mn +2n 2.。