浙教版数学八年级上册第一章《三角形的初步知识》复习.doc
- 格式:doc
- 大小:401.50 KB
- 文档页数:3
《第1章三角形的初步认识》一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.132.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有个.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是.(只填写一个条件)13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 度.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= ,∠C= .15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= .16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于度.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为cm,∠FAN= .三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?26.(14分)课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= ;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)《第1章三角形的初步认识》参考答案与试题解析一、填空题1.已知三角形的两边分别为4和9,则此三角形的第三边可能是()A.4 B.5 C.9 D.13【考点】三角形三边关系.菁优网版权所有【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【解答】解:根据三角形的三边关系,得第三边大于5,而小于13.故选C.【点评】本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单.2.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.50° B.30° C.20° D.15°【考点】平行线的性质;三角形的外角性质.菁优网版权所有【专题】计算题.【分析】首先根据平行线的性质得到∠2的同位角∠4的度数,再根据三角形的外角的性质进行求解.【解答】解:根据平行线的性质,得∠4=∠2=50°.∴∠3=∠4﹣∠1=50°﹣30°=20°.故选:C.【点评】本题应用的知识点为:三角形的外角等于与它不相邻的两个内角的和.两直线平行,同位角相等.3.如图所示,△ACB≌A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20° B.30° C.35° D.40°【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB即可.【解答】解:∵△ACB≌A′CB′,∴∠ACB=∠A′CB′,∴∠ACB﹣∠A′CB=∠A′CB′﹣∠A′CB,∴∠ACA′=∠BCB′,∵∠BCB′=30°,∴∠ACA′=30°,故选B.【点评】本题考查了全等三角形性质的应用,注意:全等三角形的对应角相等.4.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种【考点】三角形三边关系.菁优网版权所有【专题】常规题型.【分析】要把四条线段的所有组合列出来,再根据三角形的三边关系判断能组成三角形的组数.【解答】解:四根木条的所有组合:9,6,5和9,6,4和9,5,4和6,5,4;根据三角形的三边关系,得能组成三角形的有9,6,5和9,6,4和6,5,4.故选:C.【点评】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.5.尺规作图是指()A.用直尺规范作图B.用刻度尺和圆规作图C.用没有刻度的直尺和圆规作图D.直尺和圆规是作图工具【考点】作图—尺规作图的定义.菁优网版权所有【分析】根据尺规作图的定义作答.【解答】解:根据尺规作图的定义可知:尺规作图是指用没有刻度的直尺和圆规作图.故选C.【点评】尺规作图是指用没有刻度的直尺和圆规作图.6.如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°【考点】三角形内角和定理;角平分线的定义.菁优网版权所有【分析】根据数据线的内角和定理以及角平分线的定义,可以证明.【解答】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.【点评】注意此题中的∠A和∠BDC之间的关系:∠BDC=90°+∠A.7.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45° B.54° C.40° D.50°【考点】平行线的性质;三角形内角和定理.菁优网版权所有【分析】根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.【解答】解:∵∠B=46°,∠C=54°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.8.一副三角板如图叠放在一起,则图中∠α的度数为()A.75° B.60° C.65° D.55°【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【分析】因为三角板的度数为45°,60°,所以根据三角形内角和定理即可求解.【解答】解:如图,∵∠1=60°,∠2=45°,∴∠α=180°﹣45°﹣60°=75°,故选A.【点评】本题利用三角板度数的常识和三角形内角和定理,熟练掌握定理是解题的关键.9.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB,则∠BAD的度数为()A.30° B.35° C.40° D.50°【考点】旋转的性质.菁优网版权所有【分析】根据两直线平行,内错角相等可得∠ACB=∠CAB,根据旋转的性质可得AC=AE,∠BAC=∠DAE,再根据等腰三角形两底角相等列式求出∠CAE,然后求出∠DAB=∠CAE,从而得解.【解答】解:∵CE∥AB,∴∠ACB=∠CAB=75°,∵△ABC绕点A逆时针旋转到△AED,∴AC=AE,∠BAC=∠DAE,∴∠CAE=180°﹣70°×2=40°,∵∠CAE+∠CAD=∠DAE,∠DAB+∠CAD=∠BAC,∴∠DAB=∠CAE=40°.故选C.【点评】本题考查了旋转的性质,平行线的性质,等腰三角形两底角相等的性质,熟记各性质并求出∠DAB=∠CAE是解题的关键.10.如图所示,△ABC与△BDE都是等边三角形,AB<BD.若△ABC不动,将△BDE绕点B旋转,则在旋转过程中,AE与CD的大小关系为()A.AE=CD B.AE>CD C.AE<CD D.无法确定【考点】全等三角形的判定与性质;等边三角形的性质.菁优网版权所有【分析】本题可通过证△ABE和△CBD全等,来得出AE=CD的结论.两三角形中,已知了AB=BC、BE=BD,因此关键是证得∠ABE=∠CBD;由于△ABC和△BED都是等边三角形,因此∠EBD=∠ABC=60°,即∠ABE=∠CBD=120°,由此可得证.【解答】解:∵△ABC与△BDE都是等边三角形,∴AB=BC,BE=BD,∠ABC=∠EBD=60°;∴∠ACB+∠CBE=∠EBD+∠CBE=120°,即:∠ABE=∠CBD=120°;∴△ABE≌△CBD;∴AE=CD.故选A.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,当出现两个等边三角形时,一般要利用等边三角形的边和角从中找到一对全等三角形.二、认真填一填11.若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有 5 个.【考点】三角形三边关系;一元一次不等式组的整数解.菁优网版权所有【分析】设第三边的长为x,根据三角形的三边关系的定理可以确定x的取值范围,进而得到答案.【解答】解:设第三边的长为x,则4﹣3<x<4+3,所以1<x<7.∵x为整数,∴x可取2,3,4,5,6.故答案为5.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.12.如图,在△ABC和△DEF中,已知:AC=DF,BC=EF,要使△ABC≌△DEF,还需要的条件可以是AB=DE .(只填写一个条件)【考点】全等三角形的判定.菁优网版权所有【专题】开放型.【分析】根据“SSS”添加条件.【解答】解:若加上AB=DE,则可根据“SSS”判断△ABC≌△DEF.故答案为AB=DE.【点评】本题考查了全等三角形的判定:判定方法有“SSS”、“SAS”、“ASA”、“AAS”.13.若△ABC≌△DEF,且∠A=110°,∠F=40°,则∠E= 30 度.【考点】全等三角形的性质.菁优网版权所有【分析】根据全等三角形的性质得出∠D=∠A=110°,∠C=∠F=40°,进而得出答案.【解答】解:∵△ABC≌△DEF,∠A=110°,∠F=40°,∴∠D=∠A=110°,∠C=∠F=40°,∴∠DEF=180°﹣110°﹣40°=30°.故答案为:30;【点评】此题主要考查了全等三角形的性质,利用其性质得出对应角相等是解题关键.14.在△ABC中,∠A:∠B:∠C=1:2:3,则∠A= 30°.,∠C= 90°..【考点】三角形内角和定理.菁优网版权所有【分析】有三角形内角和180度,又知三角形内各角比,从而求出.【解答】解:由三角形内角和180°,又∵∠A:∠B:∠C=1:2:3,∴∠A=180°×=30°,∠C=180°×=90°.故填:30°,90°.【点评】本题考查三角形内角和定理,结合已知条件,从而很容易知道各角所占几分之几.而解得.15.如图,在△ABC中,∠B=60°,∠C=40°,AD⊥BC于D,AE平分∠BAC;则∠DAE= 10°.【考点】三角形内角和定理;三角形的外角性质.菁优网版权所有【分析】根据∠B=60°,∠C=40°可得∠BAC的度数,AE平分∠BAC,得到∠BAE和∠CAE 的度数,利用外角的性质可得∠AED的度数,再根据垂直定义,得到直角三角形,在直角△ABD中,可以求得∠DAE的度数.【解答】解:∵∠C=40°,∠B=60°,∴∠BAC=180°﹣40°﹣60°=80°,∵AE平分∠BAC,∴∠BAE=∠CAE=40°,∴∠AED=80°,∵AD⊥BC于D,∴∠ADC=90°,∴∠DAE=180°﹣80°﹣90°=10°,故答案为:10°.【点评】本题主要考查角平分线的定义和垂直的定义,外角性质,三角形内角和定理,综合利用各定理及性质是解答此题的关键.16.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1﹣S2的值为 1 .【考点】三角形的面积.菁优网版权所有【专题】压轴题.【分析】根据等底等高的三角形的面积相等求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比求出△ACD的面积,然后根据S1﹣S2=S△ACD﹣S△ACE计算即可得解.【解答】解:∵BE=CE,∴S△ACE=S△ABC=×6=3,∵AD=2BD,∴S△ACD=S△ABC=×6=4,∴S1﹣S2=S△ACD﹣S△ACE=4﹣3=1.故答案为:1.【点评】本题考查了三角形的面积,主要利用了等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比,需熟记.17.如图,将纸片△ABC沿DE折叠,点A落在点P处,已知∠1+∠2=100°,则∠A的大小等于50 度.【考点】三角形内角和定理;翻折变换(折叠问题).菁优网版权所有【分析】根据已知求出∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,根据折叠求出∠ADE+∠AED=×260°=130°,根据三角形内角和定理求出即可.【解答】解:∵∠1+∠2=100°,∴∠ADP+∠AEP=360°﹣(∠1+∠2)=260°,∵将纸片△ABC沿DE折叠,点A落在点P处,∴∠ADE=∠ADP,∠AED=∠AEP,∴∠ADE+∠AED=×260°=130°,∴∠A=180°﹣(∠ADE+∠AED)=50°,故答案为:50.【点评】本题考查了三角形的内角和定理和折叠的性质的应用,注意:三角形的内角和等于180°,题目比较好,难度适中.18.如图,△ABC中,∠BAC=100°,EF,MN分别为AB,AC的垂直平分线,如果BC=12cm,那么△FAN的周长为12 cm,∠FAN= 20°.【考点】线段垂直平分线的性质.菁优网版权所有【分析】由EF,MN分别为AB,AC的垂直平分线,可得AF=BF,AN=CN,即可得△FAN的周长等于BC;又由∠BAC=100°,求得∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,继而求得答案.【解答】解:∵EF,MN分别为AB,AC的垂直平分线,∴AF=BF,AN=CN,∴△FAN的周长为:AF+FN+AN=BF+FN+CN=BC=12cm;∴∠BAF=∠B,∠CAN=∠C,∵△ABC中,∠BAC=100°,∴∠BAF+∠CAN=∠B+∠C=180°﹣∠BAC=80°,∴∠FAN=∠BAC﹣(∠BAF+∠CAN)=20°.故答案为:12,20°.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想与转化思想的应用.三、解答题19.如图,点A、C、D、B 四点共线,且AC=DB,∠A=∠B,∠E=∠F.求证:DE=CF.【考点】全等三角形的判定与性质.菁优网版权所有【专题】证明题.【分析】根据条件可以求出AD=BC,再证明△AED≌△BFC,由全等三角形的性质就可以得出结论.【解答】证明:∵AC=DB,∴AC+CD=DB+CD,即AD=BC,在△AED和△BFC中,∴△AED≌△BFC.∴DE=CF.【点评】本题考查了线段的数量关系,全等三角形的判定及性质的运用,解答时证明△AED≌△BFC是解答本题的关键.20.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF 即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图,在△ABC中,∠B=40°,∠C=110°.(1)画出下列图形:①BC边上的高AD;②∠A的角平分线AE.(2)试求∠DAE的度数.【考点】作图—复杂作图.菁优网版权所有【分析】(1)利用直角三角板一条直角边与BC重合,沿BC平移使另一直角边过A 画BC边上的高AD即可;再根据角平分线的做法作∠A的角平分线AE;(2)首先计算出∠BAE的度数,再计算出∠BAD的度数,利用角的和差关系可得答案.【解答】解:(1)如图所示:(2)在△ABC中,∠BAC=180°﹣11°﹣40°=30°,∵AE平分∠BAC,∴∠BAE=∠BAC=15°,在Rt△ADB中,∠BAD=90°﹣∠B=50°,∴∠DAE=∠DAB﹣∠BAE=35°.【点评】此题主要考查了复杂作图,以及角的计算,关键是正确画出图形.22.作图,如图已知三角形ABC内一点P(1)过P点作线段EF∥AB,分别交BC,AC于点E,F(2)过P点作线段PD使PD⊥BC垂足为D点.【考点】作图—基本作图.菁优网版权所有【分析】(1)根据过直线外一点作已知直线平行线的方法作图即可;(2)利用直角三角板,一条直角边与BC重合,沿BC平移,使另一条直角边过点P 画垂线即可.【解答】解:如图所示:.【点评】此题主要考查了基本作图,关键是掌握利用直尺做平行线的方法.23.如图,在△ABC中,AD平分∠BAC,AD的垂直平分线EF交BC的延长线于点F,连接AF,求证:∠CAF=∠B.【考点】线段垂直平分线的性质.菁优网版权所有【专题】证明题.【分析】EF垂直平分AD,则可得AF=DF,进而再转化为角之间的关系,通过角之间的平衡转化,最终得出结论.【解答】证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠CAF=∠B.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.24.如图,点D为锐角∠ABC内一点,点M在边BA上,点N在边BC上,且DM=DN,∠BMD+∠BND=180°.求证:BD平分∠ABC.【考点】全等三角形的判定与性质;角平分线的性质.菁优网版权所有【专题】证明题.【分析】在AB上截取ME=BN,证得△BND≌△EMD,进而证得∠DBN=∠MED,BD=DE,从而证得BD平分∠ABC.【解答】解:如图所示:在AB上截取ME=BN,∵∠BMD+∠DME=180°,∠BMD+∠BND=180°,∴∠DME=∠BND,在△BND与△EMD中,,∴△BND≌△EMD(SAS),∴∠DBN=∠MED,BD=DE,∴∠MBD=∠MED,∴∠MBD=∠DBN,∴BD平分∠ABC.【点评】本题考查了三角形全等的判定和性质,等腰三角形的判定和性质.25.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD的中点,动点P从A点出发,以每秒2cm的速度沿A→B→C→E运动,最终到达点E.若设点P运动的时间是t秒,那么当t取何值时,△APE的面积会等于10?【考点】一元一次方程的应用;三角形的面积.菁优网版权所有【专题】几何动点问题.【分析】分为三种情况讨论,如图1,当点P在AB上,即0<t≤4时,根据三角形的面积公式建立方程求出其解即可;如图2,当点P在BC上,即4<t≤7时,由S△APE=S﹣S△PCE﹣S△PAB建立方程求出其解即可;如图3,当点P在EC上,即7<t≤9四边形AECB时,由S△APE==10建立方程求出其解即可.【解答】解:如图1,当点P在AB上,即0<t≤4时,∵四边形ABCD是矩形,∴AD=BC=6,AB=CD=8.∵AP=2t,∴S△APE=×2t×6=10,∴t=.如图2,当点P在BC上,即4<t≤7时,∵E是DC的中点,∴DE=CE=4.∵BP=2t﹣8,PC=6﹣(2t﹣8)=14﹣2t.∴S=(4+8)×6﹣×(2t﹣8)×8﹣(14﹣2t)×4=10,解得:t=7.5>7舍去;当点P在EC上,即7<t≤9时,PE=18﹣2t.∴S△APE=(18﹣2t)×6=10,解得:t=.总上所述,当t=或时△APE的面积会等于10.【点评】本题考查了矩形的性质的运用,三角形的面积公式的运用,梯形的面积公式的运用.解答时灵活运用三角形的面积公式求解是关键.26.课本拓展旧知新意:我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?1.尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?2.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C= 50°;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案∠P=90°﹣∠A .3拓展提升:(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)【考点】三角形的外角性质;三角形内角和定理.菁优网版权所有【专题】探究型.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB ,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB ,再根据角平分线的定义求出∠PBC+∠PCB ,然后利用三角形内角和定理列式整理即可得解;(4)延长BA 、CD 相交于点Q ,先用∠Q 表示出∠P ,再用(1)的结论整理即可得解.【解答】解:(1)∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB )=360°﹣(180°﹣∠A )=180°+∠A ;(2)∵∠1+∠2=∠180°+∠C ,∴130°+∠2=180°+∠C ,∴∠2﹣∠C=50°;(3)∠DBC+∠ECB=180°+∠A ,∵BP 、CP 分别平分外角∠DBC 、∠ECB ,∴∠PBC+∠PCB=(∠DBC+∠ECB )=(180°+∠A ),在△PBC 中,∠P=180°﹣(180°+∠A )=90°﹣∠A ;即∠P=90°﹣∠A ;故答案为:50°,∠P=90°﹣∠A ;(4)延长BA、CD于Q,则∠P=90°﹣∠Q,∴∠Q=180°﹣2∠P,∴∠BAD+∠CDA=180°+∠Q,=180°+180°﹣2∠P,=360°﹣2∠P.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
EA FB DC 线段垂直平分线上的点到线段两端点的距离相等。
③有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA ”)。
有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS ”)。
角平分线上的一点到角两边的距离相等。
1.6全等三角形问题中常见的辅助线的作法1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.【经典练习】 一、选择题1、下列命题中,为真命题的是( )A. 锐角大于它的余角B. 锐角大于它的补角C. 钝角大于它的补角D. 锐角和钝角的和等于平角 2、下列语句不是命题的是( )A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若|a|=|b|,则a 2=b 2D .同角的补角相等3、 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( )A.∠α=60º,∠α的补角∠β=120º,∠β>∠αB.∠α=90º,∠α的补角∠β=900º,∠β=∠αC.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 4、下列各数中,可以用来证明“奇数是质数”是假命题的反例是( ) A .9 B .7 C .5 D .35、如图,已知点A ,D ,C ,F 在同一条直线上,AB=DE ,BC=EF ,要使 △ABC ≌△DEF ,还需要添加的一个条件是( ) A. BC ∥EF B. ∠BCA=∠F C. ∠B=∠E D. ∠A=∠EDF6、一块三角形玻璃被小红碰碎成四块,如图,小红只带其中的两块去玻璃店,买了一块和以前一样的玻璃,你认为她带哪两块去玻璃店了( )B ′C ′D ′O ′A ′ODCBA(第9题)A .带其中的任意两块B .带1,4或3,4就可以了C .带1,4或2,4就可以了D .带1,4或2,4或3,4均可7、在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( ) A .1<AD <7 B .2<AD <14 C .2.5<AD <5.5 D .5<AD <118、如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .109、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A ′O ′B ′=∠AOB 的依据是( )A .SSSB .SASC .ASAD .AAS10、△ABC 与△A ´B ´C ´中,条件①AB = A ´B ´,②BC = B ´C ´,③AC =A ´C ´,④∠A=∠A ´,⑤∠B =∠B ´,⑥∠C =∠C ´,则下列各组条件中不能保证△ABC ≌△A ´B ´C ´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥11、如图,AD 、BE 、CF 是△ABC 的三条中线,相交于点O ,S △BDO 面积=1,则S △ABC =( ) A.1 B.3 C. 6 D. 无法计算12、如图,AC 与BD 相交于点O,已知AB=CD,AD=BC,则图中全等三角形的对数有( )(A)1 (B)2 (C)3 (D)413、如图, ΔABC 的两条中线相交于点F,若ΔABC 的面积是45cm 2,则四边形DCEF 的面积是( )(A) 30cm 2 (B) 15 cm 2 (C)20 cm 2 (D)不能确定14、如图,在ΔABC 中,BC 边上的垂直平分线交AC 于点D, 已知AB=3,AC=7,BC=8,则ΔABD 的周长为( )(A)10 (B)11 (C)15 (D)1215、在△ABC 中,∠A=50°,那么以点B 、C 为顶点的外角的平分线的夹角为( ) A 、65°或115° B 、65° C 、75° D 、75°或115°16、ΔABC 中的两条角平分线BD,CE 相交于点P,若∠A=α ,则∠BPC 的度数是( ) (A)2∠α (B)2900α-(C)2900α+(C)α21800-A B C DF EED AC B二、填空题1、如图在△ABC 中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则△GBC 的周长是_________.2、如图,在ΔABC 中, ∠C=90O ,BD 平分∠ABC,交AC 于D, 若AB=5,CD=2,则ΔABD 的面积是 .3、如图,能用AAS 来判断△ACD ≌△ABE 需要添加的条件可以是4、如图所示,在△ABC 中,∠A=50°,内角平分线与外角平分线交于点P ,则∠P=5、△ABC 的三边长分别是a ,b ,c ,化简|a-b-c|-|b-c-a|+|c-a-b|=6、已知AD 是△ABC 中BC 边上的高线,∠BAD=70°,∠CAD=20°,那么∠BAC=_______________7、把“同角的补角相等”写成“如果……那么……的形式:8、把“等角的补角相等”写成“如果……那么……的形式:9、把“对顶角相等”写成“如果……那么……的形式:三、解答题1、如图所示,在直角三角形ABC 中,AB=BC ,AD 为BC 边上的中线,过点B 作AD 的垂线与过点C 作BC 的垂线交于点E 。
A B C O B AC D E 三角形的初步知识一、选择题(每题3分,共30分)1、在△ABC 中,三个内角满足以下关系:C B A ∠=∠=∠3121,那么这个三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、任意三角形2、在下列长度的四根木棒中,能与4 cm, 9 cm 长的两根木棒钉成一个三角形的是( )A 、 4 cmB 、 5 cmC 、 9 cmD 、 13 cm3、如图,PD ⊥AB, PE ⊥AC, 垂足分别为D , E ,且AP 平分∠BAC ,则△APD 与△APE 全等的理由是( )A 、SASB 、ASAC 、SSSD 、AAS4、下列说法错误的是( ) A 、有一个外角是锐角的三角形是钝角三角形;B 、有两个角互余的三角形是直角三角形;C 、直角三角形只有一条高;D 、任何一个三角形中,最大角不小于60度.5、在下列条件中,不能说明△ABC ≌△A ’B ’C ’的是( )A 、∠A=∠A ’, ∠B=∠B ’, AC =A ’C ’; B 、∠A=∠A ’, AB=A ’B ’, BC =B ’C ’C 、∠B=∠B ’, BC=B ’C ’, AB =A ’B ’;D 、AB=A ’B ’, BC=B ’C ’, AC =A ’C ’6、如图,AD, BE 都是△ABC 的高,则与∠CBE 一定相等的角是(A. ∠ABE B. ∠BAD C. ∠DAC D. 以上都不是7、下列图中,正确画出AC 边上的高的是( ) A B C D8、如图,在△A BC 中,AB=AC ,AB 的中垂线DE 交AC于点D ,交AB 于E 点,如果BC=10,△BDC 的周长为22,那么△ABC 的周长是( ) A 、24 B 、30 C 、32 D 、349、如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交于点O ,且∠A =α,则∠BOC 的度数是( ) A. 11802α︒- B. 1902α︒+ C. 1902α︒- D. 12α 10、如图,=∠+∠+∠+∠+∠+∠F E D C B A ……( ) A 、1800 B 、2700C 、3600D 、4500 二、填空题(每空3分,共24分) 11、如图(1)∠A =80º,∠2=130º,则∠1=_______º;12、如图(2)已知AC = BD ,要使△A BC ≌DCB ,只需增加的一个条件是___________; B C A P D EB A A B E A B B E F AC BD13、三角形的两边长分别为2cm, 5cm,第三边长x cm也是整数,则当三角形的周长取最大值时 x 的值为__________;14、如图(5)△ABC的高AD和CE相交于点H,若∠B=40º,则∠AHC=_______º;15、如下图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,已知∠APE=50º,∠AEP=80º, 则∠B=________º16、在Rt△AB C中,∠C=90º,CE是△ABC的中线,若AC=2.4cm, BC = 1.5cm, 则△AEC 的面积为________.17、如下图,△ABC的面积为20㎝2,D、E、F分别为中点,则S△DFE= ㎝2。
最新浙教版
初中八年级《数学》上册全册
第一章总复习知识点考点重难点要点整理复习汇总
最新精品完整完美必备复习资料
1.三角形的初步知识
1.1.认识三角形
三角形内角和为180度。
三角形任何两边之和大于第三边。
在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
连结三角形的一个顶点与该顶点的对边中点的线段,叫做三角形的中线。
从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线。
1.2.定义与命题
定义:能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
命题:判断某一件事情的句子叫命题。
在数学上,命题一般由条件和结论两部分组成,条件是已知事项,结论由已知事项得到的事项。
《第1章三角形的初步知识》一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠44.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.1210.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是;等腰三角形的两边长分别是3和7,则其周长为.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是cm2.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= °.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= .16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是(填SSS,SAS,AAS,ASA中的一种).三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:;结沦:;理由:23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)《第1章三角形的初步知识》参考答案与试题解析一、选择题1.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cm C.8cm、6cm、3cm D.11cm、4cm、6cm【考点】三角形三边关系.【分析】利用三角形三边关系判断即可,两边之和>第三边>两边之差.【解答】解:A、2+2=4,故不选;B、2+3=5<6,故不选;C、3+6=9>8>6﹣3=3,符合条件.D、4+6=10<11,故不选.综上,故选;C.【点评】利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和>较大的边,则能组成三角形,否则,不可以.2.下列说法:①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角与一边对应相等的两个三角形全等;④两边与一角对应相等的两个三角形全等.其中正确的有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】根据三角形全等的判定方法分别对四个命题进行判断.【解答】解:三角对应相等的两个三角形不一定全等,所以①错误;三边对应相等的两个三角形全等,所以②正确;两角与一边对应相等的两个三角形全等,所以③正确;两边与它们的夹角对应相等的两个三角形全等,所以④错误.故选B.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.3.如图,三角形的外角是()A.∠1 B.∠2 C.∠3 D.∠4【考点】三角形的外角性质.【分析】根据三角形外角的定义解答.【解答】解:根据三角形外角的定义可知,∠3是此三角形的外角.故选C.【点评】本题考查三角形外角的定义.分析时要严格按照定义进行,要看清是一条边的延长线与它邻边的夹角才是三角形的外角.4.若三角形的一个外角小于和它相邻的内角,则这个三角形为()A.锐角三角形 B.直角三角形 C.钝角三角形 D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角<与它相邻的内角,故内角>相邻外角;根据三角形外角与相邻的内角互补,故内角>90°,为钝角三角形.【解答】解:如图,∵∠1<∠B,∠1=180°﹣∠B,∴∠B>90°.∴△ABC是钝角三角形.故选:C.【点评】本题考查了三角形外角的性质.三角形的一边与另一边的延长线组成的角,叫做三角形的外角,可见外角与相邻的内角互补.5.关于三角形的内角,下列判断不正确的是()A.至少有两个锐角B.最多有一个直角C.必有一个角大于60°D.至少有一个角不小于60°【考点】三角形内角和定理.【分析】可以利用反证的方法来判定各个命题是否正确.【解答】解:根据三角形的内角和定理,不正确的是:必有一个角大于60°.因为当三角形是等边三角形时三个角都相等,都是60度.故选C.【点评】本题主要考查三角形的内角和定理,三角形的内角和是180度.6.下列四组中一定是全等三角形的是()A.两条边对应相等的两个锐角三角形B.面积相等的两个钝角三角形C.斜边相等的两个直角三角形D.周长相等的两个等边三角形【考点】全等三角形的判定.【分析】两边相等,面积相等,一边相等的直角三角形或者角相等的三角形都不能证明三角形全等.【解答】A、错误,两边相等,但锐角三角形的角不一定相等;B、错误,面积相等但边长不一定相等;C、错误,直角三角形全等的判别必须满足直角边相等;D、正确,等边三角形的三边一定相等,又周长相等,故两个三角形的边长分别对应相等.故选D.【点评】本题考查的全等三角形的判定;全等三角形的判别要求严格,条件缺一不可.做题时要结合已知与判定方法逐个验证排除.7.若AD是△ABC的中线,则下列结论错误的是()A.AD平分∠BAC B.BD=DC C.AD平分BC D.BC=2DC【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线的概念:连接三角形的顶点和对边中点的线段叫做三角形的中线.【解答】解:A、AD平分∠BAC,则AD是△ABC的角平分线,故本选项错误;AD是△ABC的中线,则有BD=DC,AD平分BC,BC=2DC,故B、C、D正确.故选A.【点评】本题主要考查三角形的中线的概念,并能够正确运用几何式子表示是解本题的关键.8.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形 B.钝角三角形 C.直角三角形 D.斜三角形【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:α、β、γ,则由题意得:,解得:α=90°故这个三角形是直角三角形.故选C.【点评】本题考查的是三角形内家和定理,熟知三角形的内角和等于180°是解答此题的关键.9.如图,在△ABC中,BC边上的垂直平分线交AC于点D,已知AB=3,AC=7,BC=8,则△ABD的周长为()A.10 B.11 C.15 D.12【考点】线段垂直平分线的性质.【分析】要求△ABD的周长,现有AB=3,只要求出AD+BD即可,根据线段垂直平分线的性质得BD=CD,于是AD+BD=AC,答案可得.【解答】解:∵DE垂直且平分BC∴CD=BD.AD+BD=AD+CD=7∴△ABD的周长:AB+BD+AD=10.故选A【点评】本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.对线段进行等效转移是正确解答本题的关键.10.已知一个三角形的三条高的交点不在这个三角形的内部,则这个三角形()A.必定是钝角三角形B.必定是直角三角形C.必定是锐角三角形D.不可能是锐角三角形【考点】三角形的角平分线、中线和高.【分析】钝角三角形的三条高所在的直线的交点在三角形的外部;锐角三角形的三条高所在的直线的交点在三角形的内部;直角三角形的三条高所在的直线的交点是三角形的直角顶点.【解答】解:一个三角形的三条高的交点不在这个三角形的内部,则这个三角形不可能是锐角三角形.故选D.【点评】通过三角形的形状可以判断三角形高线的位置,反之,通过三条高线交点的位置可以判断三角形的形状.二、填空题11.在△ABC中,AB=3,BC=7,则AC的长x的取值范围是4<x<10 ;等腰三角形的两边长分别是3和7,则其周长为17 .【考点】等腰三角形的性质;三角形三边关系.【分析】(1)根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.(2)因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:(1)根据三角形的三边关系,得AC的长x的取值范围是7﹣3<x<7+3,即4<x<10.(2)分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:4<x<10;17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12.如图,AD是△ABC的中线,△ABC的面积为100cm2,则△ABD的面积是50 cm2.【考点】三角形的面积.【分析】根据等底等高的三角形面积相等可知,中线能把一个三角形分成两个面积相等部分.【解答】解:∵AD是△ABC的中线,△ABC的面积为100cm2,∴△ABD的面积是S△ABC=50cm2.【点评】本题考查了三角形的中线的性质,三角形的中线把一个三角形分成两个面积相等部分.13.一副三角板,如图所示叠放在一起,则图中∠α的度数是75°.【考点】三角形内角和定理.【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【解答】解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.14.如图,△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O,若∠A=70°,则∠BOC= 125 °.【考点】三角形内角和定理.【分析】先求出∠ABC+∠ACB的度数,根据平分线的定义得出∠OBC=∠ABC,∠OCB=∠ACB,求出∠OBC+∠OCB的度数,根据三角形内角和定理求出即可.【解答】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵BO、CO分别是△ABC的角∠ABC、∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.故答案为:125.【点评】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.15.如图,△ABC中,高BD、CE相交于点H,若∠A:∠ABC:∠ACB=3:2:4,则∠BHC= 120°.【考点】三角形内角和定理.【分析】先设∠A=3x,∠ABC=4x,∠ACB=5x,再结合三角形内角和等于180°,可得关于x的一元一次方程,求出x,从而可分别求出∠A,∠ABC,∠ACB,在△ABD中,利用三角形内角和定理,可求∠ABD,再利用三角形外角性质,可求出∠BHC.【解答】解:∵在△ABC中,∠A:∠ABC:∠ACB=3:2:4,故设∠A=3x,∠ABC=2x,∠ACB=4x.∵在△ABC中,∠A+∠ABC+∠ACB=180°,∴3x+2x+4x=180°,解得x=20°,∴∠A=3x=60°.∵BD,CE分别是边AC,AB上的高,∴∠ADB=90°,∠BEC=90°,∴在△ABD中,∠ABD=180°﹣∠ADB﹣∠A=180°﹣90°﹣60°=30°,∴∠BHC=∠ABD+∠BEC=30°+90°=120°.故答案为:120°【点评】本题考查了了三角形内角和定理、三角形外角的性质.三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.16.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS (填SSS,SAS,AAS,ASA中的一种).【考点】全等三角形的判定;作图—基本作图.【专题】计算题;三角形.【分析】利用全等三角形的判定方法判断即可.【解答】解:用直尺和圆规作一个角等于已知角的示意图如图所示,则说明∠A′O′B′=∠AOB的依据是SSS,故答案为:SSS.【点评】此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.三、解答题17.如图,在△ABC中,∠BAC是钝角,按要求完成下列画图,并用适当的符号在图中表示(可以不写作法,必须写出结论):①△ABC的角平分线AD②AC边上的高③AB边上的中线.【考点】作图—基本作图.【分析】①直接利用角平分线的作法得出AD;②直接利用垂线的作法得出BF即可;③首先得出AB的中点,进而得出答案.【解答】解:如图所示:①AD即为所求;②BF即为所求;③CE即为所求.【点评】此题主要考查了基本作图,正确掌握角平分线以及垂线的作法是解题关键.18.尺规作图:已知线段a,b和∠α.求作:△ABC,使BC=a,AC=b,∠C=∠α(画出图形,保留作图痕迹,不写作法,写出结论)【考点】作图—复杂作图.【分析】先作∠C=∠α,再在角的两边作AC=a,BC=b,连接即可.【解答】解.【点评】本题考查了三角形的一些基本画法.19.如图:已知△ABC中,AD⊥BC于D,AE为∠BAC的平分线,且∠B=35°,∠C=65°,求∠DAE的度数.【考点】三角形内角和定理;角平分线的定义.【专题】计算题.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.【点评】本题考查了三角形的内角和定理、角平分线的定义、垂直的定义等知识.20.如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【考点】全等三角形的判定.【专题】证明题.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.21.如图,四边形ABCD的对角线AC与BD相交于O点,∠1=∠2,∠3=∠4.求证:OB=OD.【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【专题】证明题.【分析】根据ASA证△ABC≌△ADC,推出AB=AD,根据等腰三角形的性质三线合一定理求出即可.【解答】证明:在△ABC和△ADC中,∵,∴△ABC≌△ADC(ASA),∴AB=AD,∴△ABD是等腰三角形,且∠1=∠2,∴OB=OD.【点评】本题考查了全等三角形的性质和判定和三线合一定理等知识点,注意:等腰三角形顶角的平分线平分底边.22.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件.请你在其中选三个作为已知条件,余下的一个作为结论,写出一个正确的结沦,并说明理由.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.(填写序号即可)已知:①②④;结沦:③;理由:【考点】全等三角形的判定与性质.【专题】证明题;开放型.【分析】本题考查的是全等三角形的判定,要根据全等三角形判定条件中的SAS,AAS,ASA,SSS等条件,来判断选择哪些条件可得出三角形全等,得出全等后又可得到什么等量关系.【解答】解:已知:①②④结论:③证明:∵BE=CF,∴BE+EC=CF+EC.∴BC=EF.△ABC和△DEF中,∴△ABC≌△DEF(SSS).∴∠ABC=∠DEF.【点评】本题考查了全等三角形的判定和性质,熟练掌握这些知识点是解题的关键.23.如图,点E、A、B、F在同一条直线上,AD与BC交于点O,已知∠CAE=∠DBF,AC=BD.说出∠CAD=∠DBC的理由.【考点】全等三角形的判定与性质.【专题】证明题.【分析】本题可通过全等三角形来证得.三角形CAB和DBA中,已知的条件有AC=BD,公共边AB,只要再证得这两组对应边的夹角相等即可得出三角形全等的结论,我们已知了∠CAE=∠DBF,那么他们的补角就应该相等,即∠CAB=∠DBA,这样就构成了两三角形全等的条件(SAS),就能得出两三角形全等了,也就得出∠CAD=∠DBC.【解答】证明:∵∠CAE=∠DBF(已知),∴∠CAB=∠DBA(等角的补角相等).在△ABC和△DBA中AC=BD(已知),∠CAB=∠DBA,AB=BA(公共边),∴△ABC≌△DBA(SAS).∴∠ABC=∠BAD(全等三角形的对应角相等).∴∠CAB﹣∠BAD=∠DBA﹣∠ABC.即:∠CAD=∠DBC.【点评】本题考查了全等三角形的判定和性质;此题证明角相等,可以通过全等三角形来证明,要注意利用此题中的图形条件,等角的补角相等.24.求作一点P,使点P到∠A两边的距离相等,且点P到点D和点E的距离相等.(保留作图痕迹)【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】先作出∠BAC的平分线AF,再作出线段DE的垂直平分线GH,则AF与GH 的交点P即为所求.【解答】解:如图所示,点P即为所求.【点评】本题主要考查了尺规作图中的复杂作图,解决问题的关键是掌握角平分线的作法以及线段垂直平分线的作法.。
三角形的初步知识1百度文库- 让每个人平等地提升自我浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题知识框图锐角三角形朱国林三角形的分类按角分类直角三角形钝角三角形边的关系任意两边之和第三边;任意两边之差第三边性质三角形的内角和等于;三角形的一个外角和它不相邻的两个内角的和角的关系三角形的一个外角和它不相邻的任意一个内角角平分线交点的位置重要线段中线将一个三角形分成面积相等的两部分高线三角形高线的位置定义真命题命题假命题判断命题是假命题,只需要举一个相关概念基本事实定理推论三角形的一个外角等于不相邻的两个内角的和就是由三角形的内角和定理推出来的一般型证明只需要在“证明:”中写出推理过程证明(1)按题意画出图形文字型证明的步骤(2)结合图形,写出已知和求证(3)在“证明:”中写出推理过程性质用来求线段、角度全等三角形判定SSSSASASA AAS要特别注意:是否有公共角及公共边基本作图作一条线段等于已知线段尺规作图作一个角等于已知角作角的平分线理论依据: SSS 定理作线段的垂直平分线作三角形根据 SSS、 SAS、ASA 作三角形线段垂直平分线的性质理论依据: SAS 定理相关知识角平分线的性质理论依据: AAS 定理百度文库 - 让每个人平等地提升自我考点一、判断三条段能否成三角形考点二、求三角形的某一或周的取范考点三、判断一句是否命,以及改成“如果⋯⋯那么⋯⋯”的形式考点四、利用角平分、垂(90°角)、三角形的外角、内角和、全等三角形来算角度考点五、利用垂直平分的性、角平分的性、全等三角形来算段度考点六、明三角形全等,以及在三角形全等的基之上一步明段、角度之的数量关系考点七、画三角形的高、中、角平分,以及基本形的尺作法考点八、方案,求河等、例 1 已知两条段的分是3cm、 8cm ,要想拼成一个三角形,且第三条段 a 的奇数,第三条段取多少厘米?1、某一三角形的两分是 3 和 5,三角形的周的取范()A、 10≤ a<16 B 、10< a≤16 C 、10< a< 16 D 、2< a< 82、能把一个三角形分成面相等的两部分是三角形的()A、中 B 、高C、角平分 D 、一的中点且和条垂直的直3、已知一个三角形的三条高的交点不在个三角形的内部,个三角形()A. 必定是角三角形B.必定是直角三角形C.必定是角三角形D.不可能是角三角4、△ ABC的三个不相外角的比2: 3: 4,△ ABC的三个内角的度数分。
八年级第一学期数学知识点汇编第一章三角形的初步认识一、三角形的基本概念三角形:不在同一条直线上的三条线段首尾相接所组成的图形。
二、三角形的分类:1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。
2.按边分:不等边三角形、等腰三角形、等边三角形。
三、三角形的基本性质1.三角形的内角和是180°。
2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。
三角形的任何两边的差小于第三边三角形的任何两边之和大于第三边大于两边之差。
应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。
三角形的一个外角等于和他不相邻的两个内角的和(教材P7 做一做)。
四、几条重要的线1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠ 1=∠ 2= 二分之一∠α ;2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式 AP=BP=二分之一 AB 。
等积三角形;周长差三角形3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。
锐角三角形的三条高在三角形的内部相交于一点。
直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。
钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。
会带来面积问题、直角、直角三角形4.线段的垂直平分线(中垂线):垂直并平分一条线段的直线。
中垂线性质:线段的中垂线上的点到线段两端点的距离相等。
逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。
5.角平分线的性质定理:角平分线上的点到角两边的距离相等。
逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。
五、全等三角形1.全等图形:能够完全重合的两个图形。
A B C O B A
C D E 三角形的初步知识
一、选择题(每题3分,共30分)
1、在△ABC 中,三个内角满足以下关系:C B A ∠=∠=∠3
121,那么这个三角形是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、任意三角形
2、在下列长度的四根木棒中,能与4 cm, 9 cm 长的两根木棒钉成一个三角形的是( )
A 、 4 cm
B 、 5 cm
C 、 9 cm
D 、 13 cm
3、如图,PD ⊥AB, PE ⊥AC, 垂足分别为D , E ,且AP 平分∠BAC ,
则△APD 与△APE 全等的理由是( )
A 、SAS
B 、ASA
C 、SSS
D 、AAS
4、下列说法错误的是( ) A 、有一个外角是锐角的三角形是钝角三角形;
B 、有两个角互余的三角形是直角三角形;
C 、直角三角形只有一条高;
D 、任何一个三角形中,最大角不小于60度.
5、在下列条件中,不能说明△ABC ≌△A ’B ’C ’的是( )
A 、∠A=∠A ’, ∠B=∠
B ’, A
C =A ’C ’; B 、∠A=∠A ’, AB=A ’B ’, BC =B ’C ’
C 、∠B=∠B ’, BC=B ’C ’, AB =A ’B ’;
D 、AB=A ’B ’, BC=B ’C ’, AC =A ’C ’
6、如图,AD, BE 都是△ABC 的高,则与∠CBE 一定相等的角是(A. ∠ABE B. ∠BAD C. ∠DAC D. 以上都不是
7、下列图中,正确画出AC 边上的高的是( ) A B C D
8、如图,在△A BC 中,AB=AC ,AB 的中垂线DE 交AC
于点D ,交AB 于E 点,如果BC=10,△BDC 的周长为22,
那么△ABC 的周长是( ) A 、24 B 、30 C 、32 D 、34
9、如图,在△ABC 中,∠ABC 与∠ACB 的角平分线交
于点O ,且∠A =α,则∠BOC 的度数是( ) A. 11802α︒- B. 1902α︒+ C. 1902α︒- D. 12α 10、如图,=∠+∠+∠+∠+∠+∠F E D C B A ……( ) A 、1800 B 、2700
C 、3600
D 、450
0 二、填空题(每空3分,共24分) 11、如图(1)∠A =80º,∠2=130º,则∠1=_______º;
12、如图(2)已知AC = BD ,要使△A BC ≌DCB ,只需增加的一个条件是___________; B C A P D E
B A A B E A B B E F A
C B
D
13、三角形的两边长分别为2cm, 5cm,第三边长x cm也是整数,则当三角形的周长取最大值时 x 的值为__________;
14、如图(5)△ABC的高AD和CE相交于点H,若∠B=40º,则∠AHC=_______º;
15、如下图,在△ABC中,AD是高,E是AB上一点,AD与CE相交于点P,
已知∠APE=50º,∠AEP=80º, 则∠B=________º
16、在Rt△AB C中,∠C=90º,CE是△ABC的中线,若AC=2.4cm, BC = 1.5cm, 则△AEC 的面积为________.
17、如下图,△ABC的面积为20㎝2,D、E、F分别为中点,则S△DFE= ㎝2。
18、如图,正方形ABCD与正方形OEFG的边长都是a,且O是正方形ABCD的
中心,图形阴影部分的面积是____________________
三.解答题(46分)
19、(6分)如图,已知BE=CF,AB=CD,∠B=∠C,问AF=DE吗?请说明理由。
20、(6分)如图,AD是BC的中垂线,DE⊥AB, DF⊥AC, 垂足分别为E , F,
说明下列结论的理由:(1)△ABD≌△ACD;(2)DE = DF.
21、(6分)已知AB=AC,BD=CE,AD=AE,说明∠BAC = ∠DAE的理由。
第17题图第18题图
第15题图
22.(8分)(2015·浙江杭州中考)“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.
(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形,请列举出所有满足条件的三角形;
(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).
23、(8分)如图△ABC中,AB=AC,D、E、F分别是BC、AB、AC上的点,且BD=CF,CD=BE,G为EF的中点,连结DG,问DG与EF之间有何关系?并说明理由。
(提示:有何关系要从数量和位置两个方面考虑;说明理由要添辅助线。
)
24、(12分)如图①,△ABC中,DC,BD分别是∠ACB和∠ABC的平分线,且∠A=α
(1)、用含α的代数式表示∠CDB;
(2)、若图②中DC为∠ACB的外角的平分线,怎样用含α的代数式表示∠CDB?
(3)、若把图①中“DC,DB分别是∠ACB和∠ABC的平分线”改成“DC,BD分别是∠ACB和∠ABC的外角的平分线”,(如图③), 怎样用含α的代数式别是∠CDB?
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】。