2013广东省初中数学竞赛初赛试题及答案 (1)
- 格式:doc
- 大小:1.60 MB
- 文档页数:5
初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。
点 P的坐标即为 (7, 8)。
10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。
2013年高中数学联赛初赛广东省试题一、填空题(每小题8分,满分64分)1、已知sin cos ,cos sin 2αβαβ==,则22sin cos βα+=_______. 解:0或3.2已知两式平方相加,得2sin 0β=或21cos .4β=222sin cos 2sin βαβ+==0或3.22、不等式632(2)(2)x x x x -+>+-的解集为_________. 解:(,1)(2,).-∞-⋃+∞原不等式等价于623(2)(2).x x x x +>+++ 设3()f x x x =+,则()f x 在R 上单调增.所以,原不等式等价于22()(2)21 2.f x f x x x x x >+⇔>+⇔<->或3、已知错误!未找到引用源。
(错误!未找到引用源。
表示不超过x 的最大整数),设方程12012{}2013x x -=的两个不同实数解为12,x x ,则2122013()x x ⨯+=__________. 解:2011-.由于1{}[0,1),(0,1)2013x ∈∈,所以112012(1,1).20122012x x ∈-⇒-<< 当102012x -<<时,原方程即21120121201320122013x x x -=+⇒=-; 当102012x ≤<时,原方程即2212012201312013x x x -=⇒=.4、在平面直角坐标系中,设点*(,)(,)A x y x y N ∈,一只虫子从原点O 出发,沿x 轴正方向或y 轴正方向爬行(该虫子只能在整点处改变爬行方向),到达终点A 的不同路线数目记为(,)f x y . 则(,2)f n =_______.解:1(1)(2).2n n ++ 111(1,2)323,(2,2)634,(3,2)104 5.222f f f ==⨯⨯==⨯⨯==⨯⨯猜测1(,2)(1)(2)2f n n n =++,可归纳证明.5、将一只小球放入一个长方体容器内,且与共点的三个面相接触.若小球上一点P 到这三个面的距离分别为4、5、5,则这只小球的半径为___________.解:3或11.分别以三个面两两的交线为x 轴、y 轴、z 轴,建立空间直角坐标系.设点P 坐标为(4,5,5),小球圆心O 坐标为(,,).r r r6、将20132012表示成两个*1()n n N n+∈型分数的乘积的不同方法数是________.(其中ab 与ba 是同一种表示方法)解:24.设,p q 是正整数,满足201311201220132012.20122012p q p p q q ++⨯=⋅⇒=+- 220122013231161503⨯=⨯⨯⨯⨯的正因数的个数为4(12)(11)48+⨯+=.注意到(,)()p q p q ≠与(,)q p 是相同的表示方法,故所求的方法数为24.7、设E 为正方形ABCD 边AB 的中点,分别在边AD 、BC 上任取两点P 、Q ,则∠PEQ 为锐角的概率为__________.解:3ln 4.4- 设正方形边长为1,,AP x BQ y ==.则1()()0.4EP EQ EA AP EB BQ EA EB AP BQ xy ⋅=+⋅+=⋅+⋅=-> 从而,14xy >. 又01,01x y <<<<. 故所求概率为两直线1,1x y ==及曲线14xy =所围成图形的面积与边长为1的正方形的面积之比,即1214313ln 41:1.4444x ⎛⎫⨯-=-⎪⎝⎭⎰8、已知实系数一元二次方程20ax bx c ++=有实根,则使得2222()()()a b b c c a ra -+-+-≥成立的正实数r 的最大值为____________.解:max 9.8r =不妨设1a =,方程20x bx c ++=的两实根为12,x x .由韦达定理,1212,.b x x c x x =--=222222()()()(1)()(1)a b b c c a b b c c ∴-+-+-=-+-+-22212121212(1)()(1)x x x x x x x x =++++++-2211222(1)(1)x x x x =++++2212131392[()][()].24248x x =++⋅++≥从而,98r ≤,当1212x x ==-时等号成立.二、解答题(第一道小题满分16分,后两道小题每题满分20分)9、已知数列{}n a 的各项均为正数,121,3a a ==,且对任意*n N ∈,都有2122n n n a a a ++=+.问:是否存在常数λ,使得21n n n a a a λ+++=对任意*n N ∈都成立? 解:在2122n n n a a a ++=+中,令1n =,得37.a = 若存在常数λ使得21n n n a a a λ+++=,则1328.3a a a λλ+=⇒=∵2122n n n a a a ++=+,∴2*112(2,)n n n a a a n n N -+=+≥∈.∴222212111112n n n n n n n n n n n n a a a a a a a a a a a a ++-++-++-=-⇒+=+.由于0n a >,上式两边同除以1n n a a +,得1121(2).n n n n n n a a a a n a a +-++++=≥所以,21113128.3n n n n n n a a a a a a a a a +-+++++====即存在常数83λ=,使得21n n n a a a λ+++=对任意*n N ∈都成立.34OM OA OB =+,点N 由34OM OA OB =+,得M点.所以,由椭圆定义有||||2 2.NCND +=11、已知*(,)m n m n N <∈,两个有限正整数集合,A B 满足:||||,||A B n A B m ==⋂=(这里用||X 表示集合X 的元素个数).平面向量集{,}k u k A B ∈⋃满足1i j i Aj Bu u ∈∈==∑∑. 证明:22||.k k A B u m n ∈⋃≥+∑ 证明:不妨设{1,2,,},{1,2,,2}.A n B n m n m n m ==-+-+-令121221,n m n n n m a a a a a a -++-======== 12 4.n m n m n a a a -+-+====由柯西不等式,注意到212()42().n mii an m m n m -==-+=+∑从而,22212||||.n m k i k A Bi u u m n-∈⋃==≥+∑∑。
A 0xyB 0xyCxyxy2006年广东省初中数学竞赛初赛试卷说明:考试时间:60分钟。
总分120分。
每小题4分。
在每小题给出的四个选项中,只有 一项是符合题目要求的,并将答案填在下面的答题卡上。
1.直角坐标平面上将二次函数y=-2(x -1)-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为( )。
A. (0,0)B. (1,-2)C. (0,-1)D.(-2,1) 2.下列的计算正确的是( ).A .(ab 4)4=ab 8; B.(-3pq)2=-6p 2q 2C. x2-21x +41=( x -21)2;D.3(a2)3-6a6=-3a63.如图1.以直角三角形ABC 三边为直径的半圆面积分别是S 1、S 2、S 3,直角三角形ABC 面积是S ,则它们之间的关系为( ). A. S= S 1+S 2+S 3 B. S 1= S 2+S 3 C. S= S 1+S 2C. S= S 14. 一辆公共汽车从车站开出,加出速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的是( ).(A)时间速度(B)时间速度(C)时间速度(D)时间速度5.如图所示,在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再把剩余的部分剪拼成一个矩形,通过计算图形(阴影部分 的面积,验证了一个等式是( )A. a 2-b 2=(a+b )(a-b ) B. (a+b )2= a 2+2ab+ b 2C. (a-b )2= a 2-2ab+ b 2D.(a+2b )(a-b )= a 2+ab-2b 26.在一个仓库里堆积着正方体的货箱若干,要搬运这些箱子很困难,可是仓库管理员要落实一下箱子的数量,于是就想出一个办法:将这堆货物的三种视图画了出来,如图.你能根据三视图,帮他清点一下箱子的数量吗?这些正方体箱的个数是( ).A. 6B. 7C. 8D. 9主视图 左视图 俯视图7.在Rt △ABC 中,∠C=90°,则下列式子中不一定成立的是( ).A.sinA=sinBB. cosA=cosBC.sinA=cosBD. sin(A+B)=sinC8.体育课上全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中正号表示成绩大于18秒,负号成表示绩小于18秒,则这组女生的达标率是( ).A.41B.2C.4D.89.函数y=kx 和y=xk(k ﹤0)在同一坐标系中的图象是( ).10.将一张正方形纸按图所示的方式二次折叠,折叠后再按图所示沿MN 裁剪,则可得( ).A.多个等腰直角三角形;B.一个等腰直角三角形和一个正方形;C.四个相同的正方形;D.两个相同的正方形。
2013年广东省初中数学竞赛初赛试题(考试时间:2013年3月3日上午9:30—10:30)说明:1.本卷考试时间为60分钟,共30小题,每小题4分,满分120分。
以下每题均给出了代号为A, B, C, D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入答题栏里。
不填、多填或错填都得0分。
2. 答卷前,考生必须将自己的姓名、考号、学校要求填写在密封线左边的空格内。
3. 答题可用黑色或蓝色钢笔、 圆珠笔按各题要求答在试卷上, 但不能用铅笔或红笔,解答书写时不要超过装订线。
4. 考试结束时,将试卷交回,草稿纸不用上交。
1、已知ca 、、b 都是实数,并且>b>c a ,那么下列式子中,正确的是( ) A .>bc ab B.c >b ++b a C.b-c>b a - D.cb>c a 2、化简aba b a +-222的结果为( )。
A.ab - B.a ba - C.ab a + D.b -3、下列函数中,自变量x 的取值范围是﹥2x 的函数是( )A .2-=x y B.21-=x y C.12-=x y D.121-=x y 4、若一次函数b kx y +=的函数值y 随x 的增大而减小,且图象与y 轴的正半轴相交,那么k 和b 的符号判断正确的是( )。
A .k >0, b >0B .k >0.b <0C .k <0,b >0D .k <0,b <05、由于干旱,某水库的蓄水量随时间的增加而直线下降。
若该水库的蓄水量V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是( )。
A.干旱开始后,蓄水量每天减少20万米3B.干旱开始后,蓄水量每天增加20万米3C.干旱开始时,蓄水量为200万米3D.干旱第50天时,蓄水量为1200万米3题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 B B B C A D D C D D A A B B C 题号 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 答案 D A C B D D B C B D D C D C D第8题DCBA第12题D C B A6、把1枚质地均匀的普通硬币重复掷两次,落地后两次都在正面朝上的概率是( )。
2013年白云区八年级初二数学竞赛初赛试题(全卷共三大题,17小题,满分100分,时间60分钟,不得使用计算器)班级某某成绩一、选择题(10题,每题4分,共40分)1.在函数21yx=-中,自变量x的取值X围是( * )A.1x-≥B.1x>-且12x≠C.1x≥-且12x≠D.1x-≥2.若x的相反数是3,y=5,则x+y的值为(*)A. –8B. 2C. 8或–2D. –8或23.如果代数式-2+38a b+的值为18,那么代数式962b a-+的值等于(*)A. 28 B . –28 C. 32 D. –324.已知函数25(1)my m x-=+是反比例函数,且图象在第二、四象限内,则m的值是(*) A.2 B.2-C.2±D.12-5.有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57名,仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数为(*)A. 129B. 120C. 108D. 966.现规定一种运算:a b ab a b*=+-,其中,a b为实数,则()a b b a b*+-*等于(*)A. 2a b- B. 2b b- C. 2b D. 2b a-7.几位同学拍了一X合影做留念,已知冲一X底片需要0.8元,洗一X相片需要0.35元,在每位同学得到一X相片、共用一X底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数(*)A. 至多6人B. 至少6人C. 至少5人D. 至多5人8.函数y ax a=-与ayx=(a≠0)在同一直角坐标系中的图象可能是(*).xA .B .C .D .9.下列命题中的假命题是 (*)A. △ABC 中,若∠A =∠C -∠B ,则△ABC 是直角三角形;B. △ABC 中,若222c b a =+,则△ABC 是直角三角形;C. △ABC 中,若∠A 、∠B 、∠C 的度数比是5︰2︰3,则△ABC 是直角三角形;D. 在△ABC 中,若三边长a :b :c =2:2:3,则△ABC 是直角三角形.10.如图1所示,点P 是AB 上任意一点,ABC ABD ∠=∠,还应补充一个条件,才能推出APC APD ∆≅∆,从下列条件中补充一个条件,不一定能推出APC APD ∆≅∆的是(*)A. BC = BDB. AC = ADC. ACB ADB ∠=∠D.CAB DAB ∠=∠二、填空题(5题,每题6分,共30分)11.有一组数:1,2,5,10,17,26,……,请你观察这组数的构成规律,用你发现的规律确定第8个数为 * .12.已知113x y -=,则代数式21422x xy y x xy y----的值为 * . 13、如图2,在ABC ∆中,90,50,30,ACB AB cm BC cm CD AB ∠=︒==⊥于D ,则 CD= * .BCD P A 图1 B D AC图214.已知:244x x -+与 |1y -| 互为相反数,则式子()x y x y y x ⎛⎫-÷+ ⎪⎝⎭的值等于.15.如图,一次函数y =kx +b 与反比例函数ay x=(x >0) 的图象交于A (1,6)、B (2,3)两点。
2.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是 。
3.将60分成10个质数之和,要求最大的质数尽可能小,那么其中最大的质数是 。
4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。
5.右面残缺算式中已知三个“4”,那么补全后它的乘积是 。
6.有A 、B 两个整数,A 的各位数字之和为35,B 的各位数字之和为26,两数相加时进位三次,那么A+B 的各位数字之和是 。
7.苹果和梨各有若干只,如果5只苹果和3只梨装一袋,还多4只苹果,梨恰好装完;如果7只苹果和3只梨装一袋,苹果恰好装完,梨还多12只,那么苹果和梨共有______只。
8.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分,那么乙班的平均成绩是______分。
9.在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是 。
10.高中学生的人数是初中学生的56,高中毕业生的人数是初中毕业生的1217,高、初中毕业生毕业后,高、初中留下的人数都是520人,那么高、初中毕业生共有 人。
11.如图,一个长方形的纸盒内,放着九个正方形的纸片,其中正方形A 和B 的边长分别为4和7,那么长方形(纸盒)的面积是 。
12.甲、乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地。
摩托车开始速度是50千米/d,时,中途减速为40千米/小时。
汽车速度是80千米/小时。
汽车曾在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的_________小时。
。
3.下面五个图形中,有一个不是正方体的展开图:那么“不是的”图形的编号是_________。
4.34减去一个分数,513一个分数,两次计算结果相等,那么这个相等的结果是 。
5.规定:③=2×3×4,④=3×4×5,⑤=4×5×6,…,⑩=9×10×11,…如果,那么方框代表的数是________。
全国数学竞赛2013年初中数学联赛广东分赛区初赛试卷2013年全国初中数学联赛初赛试卷(广州市)时间:2013年3月7日一、选择题(7×4=28分) 1、下列计算准确的是 A 、23622aa a= B 、3629(3)a a= C 、623aa a÷= D 、362()a a--=2、曾两度获得若贝尔(物理、化学)的居里夫人发现了镭这种放射性元素。
已知1kg 镭完全衰变后,放出的热量相当于375000kg 煤燃烧放出的热量。
估计地壳内含有100亿kg 镭,这些镭完全衰变后放出的热量相当于 kg 煤燃烧所放出的热量。
A 、133.7510B 、143.7510C 、153.7510D 、163.75103、直线y=2x -5与2(4)3y x m m =++-(m 为任意实数)的交点不可能在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4、实数b 满足b<3 ,并且有实数a 使a <b 恒成立,则a 的取值范围是A 、小于或等于3的实数B 、小于3的实数C 、小于或等于-3的实数D 、小于-3的实数5、一块手表每小时比准确时间慢3分钟,若在清晨4::30时与准确时间对准,则当天上午该手表时间是10:50时,准确时间应该是A 、 11:10B 、11:09C 、 11:08D 、 11:076、若直角三角形的斜边长为c ,内切圆半径r ,则内切圆的面积与三角形的面积之比是A 、2rc rπ+ B 、rc rπ+ C 、2rc rπ+ D 、22rcrπ+7、我们将1×2×3×…n 记作n !(读作n 的阶乘),如:2!=1×2, 3!=1×2×3, 4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+……+2013×2013!,则S 除以2014的余数是A 、0 B 、1 C 、1007 D 、2013 二、填空题(7×4=28分)8、函数2y x =+ 的自变量x 的取值范围是9、设12,x x 是方程20x k x ++= 的两个实数根,若恰好2211222k x x x x ++= 成立,则k 的值等于10、已知二函数2y bx c x =++ 的图象上有三个点(-1,1y ),(1,2y )(3,3y )。
2013年全国初中数学联赛(初二组)初赛试卷一、选择题(本题满分42分,每小题7分) 1、()︒---+1|3|4π的值是( )A 、4B 、5C 、8D 、9 2、若()()222-+=+-bx x a x x ,则=+b a ( )A 、1-B 、0C 、1D 、23、如图,已知在ABC ∆中,BO 平分ABC ∠,CO 平分ACB ∠,且AB OM //,AC ON //,若6=CB ,则OMN ∆的周长是( )A 、3B 、6C 、9D 、12 4、不等式组⎪⎩⎪⎨⎧++≥+23131221x x x x 的解是( ) A 、16≤-x B 、16 x - C 、16 x ≤- D 、16≤≤-x5、非负整数x ,y 满足1622=-y x ,则y 的全部可取值之和是( ) A 、9 B 、5 C 、4 D 、36、如图,已知正方形ABCD 的边长为4,M 点为CD 边上的中点,若M 点是A 点关于线段EF 的对称点,则EDAE等于( ) A 、35 B 、53 C 、2 D 、21二、填空题(本题满分28分,每小题7分)1、已知0|3|22=++-+-y x x ,则_________22=+y x .2、已知31=+x x ,则_____________132=++x x x. 3、设⎩⎨⎧=++=++36542332z y x z y x ,则___________23=+-z y x .4、如图,在ABC ∆中,BC AC =,且︒=∠90ACB ,点D 是AC 上一点,BD AE ⊥,交BD 的延长线于点E ,且BD AE 21=,则_________=∠ABD . 三、(本大题满分20分)先化简后,再求值:244412222+-÷⎪⎭⎫ ⎝⎛++--+-a a a a a a a a ,其中12-=a .MNO ACBFE M GDA CB2013年全国初中数学联赛(初二组)初赛试卷参考答案及评分标准一、选择题(本大题满分42分,每小题7分) 1、A 2、B 3、B 4、C 5、D 6、A 二、填空题(本大题满分28分,每小题7分) 1、13 2、1013、104、︒5.22 三、(本大题满分20分)解原式()()2421222+-÷⎥⎦⎤⎢⎣⎡+--+-=a a a a a a a (5分) ()4224222-+⋅+--=a a a a a a ()21+=a a (10分)()()1212121=+--=(5分)四、(本大题满分25分) 解:∵822=-=OC OB CB∴B 点坐标(8,6) (5分) 又∵A (10,0)∴AB 的中点坐标为(9,3)∴OD 的表达式为:x y 31= (10分)∵A (10,0),C (0,6)∴AC 的表达式为:653+-=x y (15分)由⎪⎪⎩⎪⎪⎨⎧+-==65331x y x y ,解得:⎪⎪⎩⎪⎪⎨⎧==715745y x (20分) 故点D 的坐标为(745,715) (25分) 五、(本大题满分25分)证明:连结AC ,取AC 的中点K ,连结EK ,FK (5分) ∵ED AE =,KC AK = ∴DC EK //,DC EK 21=(10分)同理AB FK //,AB FK 21= (15分) ∴EK DC AB FK ===2121 ∴EFK FEK ∠=∠ (20分) ∵DC EK // ∴FEK CMF ∠=∠ ∵AB FK // ∴EFK BNF ∠=∠∴CMF BNF ∠=∠ (25分) 四、(本大题满分25分)如图,已知直角梯形OABC 的A 点在x 轴上,C 点在y 轴上,6=OC ,10==OB OA ,AB PQ //交AC 于D 点,且︒=∠90ODQ ,求D 点的坐标。
初中数学(实数)竞赛专项训练(1)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( )A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则 ( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( )A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6 C. 8 D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。