数学知识点苏科版八上《矩形、菱形、正方形》word教案-总结
- 格式:doc
- 大小:123.50 KB
- 文档页数:6
初中数学平行四边形、矩形、菱形、正方形有关概念知识点总结平行四边形、矩形、菱形、正方形知识点总结:(3)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(4)表示方法:用“ ”表示平行四边形,例如:平行四边形ABCD记作 ABCD,读作“平行四边形ABCD”.2.熟练掌握性质:平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等(2)边:平行四边形两组对边分别平行且相等(3)对角线:平行四边形的对角线互相平分;3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;② 一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.① 有一组邻边相等且有一个直角的平行四边形② 有一组邻边相等的矩形;③ 对角线互相垂直的矩形④ 有一个角是直角的菱形⑤ 对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形① 同一底两个底角相等的梯形;② 对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD 的任意一个角为直角.② 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③ 说明四边形ABCD的四条相等.(3)识别正方形的常用方法① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法① 先说明四边形ABCD为梯形,再说明两腰相等.② 先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③ 先说明四边形ABCD为梯形,再说明对角线相等.。
§矩形、菱形、正方形定义:有一个角是直角的平行四边形性质: 4 个角是直角,对角线相等3个角是直角的四边形对角线相等的平行四边形有一个角是直角的平行四边形(定义)定义:有一组邻边相等的平行四边形性质: 4 条边相等,对角线相互垂直4条边相等的四边形对角线相互垂直的平行四边形有一组邻边相等的平行四边形(定义)定义:有一组邻边相等且有 1 个角是直角的平行四边形性质: 4 条边相等, 4 个角都是90°,对角线相互垂直均分有一组邻边相等的矩形有 1 个角是直角的菱形有一组邻边相等且有 1 个角是直角的平行四边形(定义)1、在矩形ABCD 中, DE 均分∠ ADC,若∠ EDO=15°,则∠ COB=D COA E B2、在△ ABC 中, AB>BC>AC,可可依以下方法作图:① 作∠ C的角均分线交AB 于点 D;② 作 CD 的中垂线,分别交AC,BC 于点 E, F;③ 连结 DE, DF.依据小华所作的图,以下说法必定正确的是()A.四边形CEDF为菱形B.DE=DA⊥ CB D.CD=BD3、在正方形ABCD中,若∠DAF=25°,AF交对角线BD 于点 E,交 CD 于点 F,则∠BEC=4、在矩形ABCD中, AB=3,BC=4,点 E 是 BC 边上一点,连结AE,把∠ B 沿 AE 折叠,使点 B 落在点 B’处,当△ CEB’为直角三角形时,BE 的边长为5、如图,正方形 ABCD 与等边△ AEF,将△ AEF绕 A 点旋转,在旋转过程中,当BE=DF时,∠ BAE=6、如图,ABCD与DCEF的周长相等,若∠BAD=60°,∠ F=110°,则∠ DAE=7、如图,在Rt△ ABC中,∠ ACB=90°, AC=BC=6cm,点 P 从 A 出发,沿AB 方向以每秒 2 cm 的速度向终点 B 运动。
平行四边形、矩形、菱形、正方形知识点总结平行四边形:性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分;判定:①定义:两组对边分别平行的四边形②方法1:两组对角分别相等的四边形③方法2:两组对边分别相等的四边形④方法3:对角线互相平分的四边形⑤方法4:一组平行且相等的四边形矩形:性质:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;判定:①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等菱形:性质:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④面积:则S菱形=底×高=ah;或者S菱形=12ab(对角线乘积的一半).判定:①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.正方形:性质:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;判定:①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.。
1. 矩形、菱形和正方形的定义及特点- 矩形是指具有四个直角的四边形,对角线相等,且相对边长相等。
- 菱形是指具有四个边长相等的四边形,对角线垂直且平分。
- 正方形是一种特殊的矩形和菱形,具有四个直角和四个边长相等的特点。
2. 矩形、菱形和正方形的性质和公式- 矩形的周长和面积分别用公式2*(长+宽)和长*宽表示。
- 菱形的周长和面积分别用公式4*边长和(对角线1*对角线2)/2表示。
- 正方形的周长和面积分别用公式4*边长和边长^2表示。
3. 矩形、菱形和正方形在几何图形中的应用- 矩形常见于建筑物的平面设计、画框、电视屏幕等。
- 菱形在菱形格子、菱形图案、梁的截面等中常见应用。
- 正方形常见于棋盘、地砖、窗户等设计中。
4. 矩形、菱形和正方形与其他几何图形的联系和区别- 矩形是特殊的平行四边形,与平行四边形和正方形有联系。
- 菱形是特殊的平行四边形,与平行四边形和正方形有联系。
- 正方形是特殊的矩形和菱形,具有独特的特点和应用。
5. 实际生活中的矩形、菱形和正方形的应用案例- 通过实际案例,解释矩形、菱形和正方形在生活中的运用和意义,如建筑结构、家居设计、工程绘图等。
- 分析实际案例中矩形、菱形和正方形的优缺点,引导读者对几何图形的深入思考和应用。
个人观点和总结通过对矩形、菱形和正方形的深入研究和比较,我深刻地认识到这些几何图形在我们日常生活中的重要性和应用广泛性。
它们不仅是数学中的重要概念,也是实际工程和设计中不可或缺的元素。
在未来的学习和工作中,我将更加注重对这些几何图形的认识和运用,以提高自己的学术和职业能力。
PS: 本文仅代表个人观点,如有不同意见,请指正。
矩形、菱形和正方形是我们生活中常见的几何图形,它们在建筑、设计、工程、艺术等领域都有着广泛的应用。
下面将对它们在不同领域的具体应用进行更详细地介绍。
我们来看矩形在建筑和设计中的应用。
矩形具有四个直角和对角线相等的特点,这使得它成为建筑物中常见的平面结构。
例4、已知正方形ABCD。
(1)如图1,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,求证:BE=GH;
(2)如图2,过正方形ABCD内任意一点作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,EF与GH相等吗?请写出你的结论;
(3)当点O在正方形ABCD的边上或外部时,过点O作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD外一点O作互相垂直的两条直线m、n,m与AD、BC的延长线分别交于点E、F,n与AB、DC的延长线分别交于点G、H,试就该图对你的结论加以证明。
三.巩固练习
1、(2006年潍坊市)如图7,边长为1的正方形ABCD绕点A逆时针旋转30•°到正方形AB′C′D′,图中阴影部分的面积为()
A. B. C.1- D.1-
2、已知:如图,正方形ABCD的周长为4a,四边形EFGH四个顶点E、F、G、H分别在
AB、BC、CD、DA上滑动,在滑动过程中,始终有EH∥BD∥FG,且EH=FG,那么四边形EFGH的周长是否可求?若能求出,它的周长是多少?若不能求出,请说明理由.
四.小结
(1)正方形与矩形,菱形,平行四边形的关系如下图。
(2)正方形的性质:。
教学过程一.新课导入1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形? (同桌互相帮助。
)2.探索。
请你作该菱形的对角线,探索菱形有哪些特征,并填空。
(从边、对角线入手。
)(1)边:都相等; (2)对角线:互相垂直。
(学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。
)问题:你怎样发现的?又是怎样验证的?(可以指名学生到讲台上讲解一下他的结果。
)二.新课讲授菱形特征1:菱形的四条边都相等。
菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
引导学生剖析矩形与菱形的区别。
矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。
4.请你折—折,观察并填空。
(引导学生归纳。
)(1)菱形是不是中心对称图形?对称中心是_______。
(2)是不是轴对称图形?对称轴有几条?_______。
二、合作交流问题一观察平行四边形和菱形的对角线把它们所分成的三角形,你有何发现?(引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动的经验)问题二证明:菱形的4条边都相等。
菱形的对角线互相垂直,并且每一条对角线平分一组对角。
分析:第一条定理可先用“两组对边分别相等”证明平行四边形,再利用一组邻边相等得证;第二条定理可利用“三线合一”证得。
问题三已知菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为5;面积为24)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积等于它的两条对角线长的积的面积。
例 1、如图3个全等的菱形构成的活动衣帽架,顶点A、E、F、C、G、H 是上、下两排挂钩,根据需要可以改变挂钩之间的距离(比如AC两点可以自由上下活动),若菱形的边长为13厘米,要使两排挂钩之间的距离为24厘米,并在点B、M处固定,则B、M之间的距离是多少?A板书设计作业设计1.已知菱形的周长为16cm,则菱形的边长为_____cm.2.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,•菱形的边长是________cm.3.已知菱形的边长是5cm,一条对角线长为8cm,则另一条对角线长为______cm.4.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.5.如图,四边形ABCD是菱形,∠ABC=120°,AB=12cm,则∠ABD的度数为_____,•∠DAB的度数为______;对角线BD=_______,AC=_______;菱形ABCD的面积为_______.6.菱形的两条对角线把菱形分成全等的直角三角形的个数是().(A)1个(B)2个(C)3个(D)4个7.如图,在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积.教学反思页边批注。
∴∠OFC=90° ∵OC=OD ∴F 是CD 的中点方法二 ∵∠EA ’F=90°,AC ⊥BD ∴∠EOC+∠COF=∠DOF+∠COF=90°∴∠EOC=∠DOF 又OC=OD,∠OCE=∠ODF=45° ∴△OCE ≌△ODF(ASA) ∴DF=CE=21BC=21CD,即F 是CD 的中点。
(2)证明方法同前方法二。
由(1)、(2)可以得到什么结论?(无论正方形A ’B ’C ’D ’绕点O 旋转并与正方形ABCD 分别交BC 、CD 于点E 、F ,总有OE=OF ,BE=CF ,EC=FD ,两个正方形的重叠部分的面积始终等于正方形ABCD 面积的四分之一等等)练习如图,将n 个边长都为1cm 的正方形按如图所示摆放,点A 1、A 2、…、A n 分别是正方形的中心,则n 个这样的正方形重叠部分的面积和为( C )A .41cm 2B .4n cm 2C .41 n cm 2D .n )41( cm 2例2、已知,在正方形ABCD 中,E 是BC 的中点,点F 在CD 上,∠FAE ﹦∠BAE.求证:AF ﹦BC+FC.例3、 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
例4、已知正方形ABCD 。
(1)如图1,E 是AD 上一点,过BE 上一点O 作BE 的垂线,交AB 于点G ,交CD 于点H ,求证:BE =GH ;(2)如图2,过正方形ABCD 内任意一点作两条互相垂直的直线,分别交AD 、BC 于点E 、F ,交AB 、CD 于点G 、H ,EF 与GH 相等吗?请写出你的结论;(3)当点O 在正方形ABCD 的边上或外部时,过点O 作两条互相垂直的直线,被正方形相对的两边(或它们的延长线)截得的两条线段还相等吗?其中一种情形如图3所示,过正方形ABCD 外一点O 作互相垂直的两条直线m 、n ,m 与AD 、BC 的延长线分别交于点E 、F ,n 与AB 、DC 的延长线分别交于点G 、H ,试就该图对你的结论加以证明。
页边批注教学课题:§3.5.2矩形、菱形、正方形(二)教学时间(日期、课时):教材分析:1、会归纳菱形的特性并进行证明2、能运用菱形的性质定理进行简单的计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力,进一步体会证明的必要性学情分析:教学目标:教学准备《数学学与练》集体备课意见和主要参考资料教学过程一.新课导入1.将一张矩形的纸对折再对折,然后沿着图中的虚线剪下,打开,你发现这是一个什么样的图形? (同桌互相帮助。
)2.探索。
请你作该菱形的对角线,探索菱形有哪些特征,并填空。
(从边、对角线入手。
)(1)边:都相等; (2)对角线:互相垂直。
(学生通过自己的操作、观察、猜想,完全可以得出菱形的特征,这对学生来说是富有意义的活动,学生对此也很感兴趣。
)问题:你怎样发现的?又是怎样验证的?(可以指名学生到讲台上讲解一下他的结果。
)二.新课讲授菱形特征1:菱形的四条边都相等。
菱形特征2:菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
引导学生剖析矩形与菱形的区别。
矩形的对边平行且相等,四个角都是直角,对角线相等且互相平分;菱形的四条边都相等,对边平行,对角相等,对角线互相垂直平分,每条对角线平分它的一组对角。
4.请你折—折,观察并填空。
(引导学生归纳。
)(1)菱形是不是中心对称图形?对称中心是_______。
(2)是不是轴对称图形?对称轴有几条?_______。
二、合作交流问题一观察平行四边形和菱形的对角线把它们所分成的三角形,你有何发现?(引导学生不断地学会从多个角度观察、认识图形,主动地发现和获得新的数学结论,不断地积累数学活动的经验)问题二证明:菱形的4条边都相等。
菱形的对角线互相垂直,并且每一条对角线平分一组对角。
分析:第一条定理可先用“两组对边分别相等”证明平行四边形,再利用一组邻边相等得证;第二条定理可利用“三线合一”证得。
问题三已知菱形的两条对角线长分别为6和8,由此你能获得有关这个菱形的哪些结论?(可得到边长为5;面积为24)你认为菱形的面积与菱形的两条对角线的长有关吗?如果有关,怎样根据菱形的对角线的计算它的面积?由此可得:菱形的面积等于它的两条对角线长的积的面积。
课题:3.5矩形菱形正方形【教学目标】1.理解并掌握矩形、菱形、正方形的性质和它们的判定方法。
2.能熟练运用其性质与判定解题。
【重点、难点】矩形、菱形、正方形性质与判定。
学生有条理地表达能力。
.【教学过程】一、课前准备二、合作探究分别以⊿ABC三边为边在BC的同侧作三个等边⊿ABD、⊿BCE、⊿ACF,则(1)四边形ADEF是什么四边形?(2)当⊿ABC满足什么条件时,四边形ADEF是矩形;(3)当⊿ABC满足什么条件时,四边形ADEF是菱形。
三、例题讲解例1、如图,正方形ABCD,AC、BD相交于点O,点E在AC上,连接BE,AG⊥BE,垂足为E,且交直线BD于F。
(1)试说明:OE=OF;(2)若点E在AC的延长线,其余条件不变,(1)的结论还成立吗?画出图形,并说明理由。
例2、如图,点P为正方形内一点,若PA:PB:PC=1:2:3,求∠APB的度数。
如果:PA=1,PB=2,PC=3.PD=?四、课堂小结五、当堂反馈1、矩形ABCD的对角线AC、BD相交于点O,AB=5cm,∠AOB=600,则AC=____,面积=_______。
2、若菱形的周长为20,一条对角线长为6,则菱形的面积为________。
3、已知,E是正方形ABCD的一边AD上任一点,EG⊥BD于G,EF⊥AC于F,若AB=4cm,则EF+EG=____cm。
4、如图,菱形ABCD中,∠BAD=700,AB的垂直平分线交AC于F,则∠CDF=____________。
DCDCBDC如图,矩形ABCD中,AB=5,AD=20,点M在BC上,且BM:MC=2:1,DE⊥AM于点E,求DE的长。
六、教学后记。
教学准备
1. 教学目标
教学目标: 1.通过对生活中熟悉的图形认识,理解菱形的概念;
2.探索并证明菱形的性质定理,在活动过程中发展学生的探究意识和有条理的表达能力;
3.能运用菱形的性质定理解决有关简单的问题.
2. 教学重点/难点
帮助学生探索并证明菱形的性质定理.菱形的性质定理的探索.
3. 教学用具
4. 标签
教学过程
导语:
同学们,请观察这几幅图片,有你熟悉的图形吗?这些图形有什么特征?
归纳:
结合图形,你认为怎样的图形是菱形呢?(小组讨论)
活动一:
1.(说一说)菱形是特殊的平行四边形,那么它具有平行四边形的一切性质,你能说说吗?
2.(议一议)菱形是中心对称图形吗?是轴对称图形吗?
活动二:
拿出准备好的平行四边形的活动框架(每小组至少1个),对角线是两根橡皮筋.如果把DC沿CB方向平行移动,你会发现□ABCD的边、内角、对角线都随着变化.
当平移DC使BC=AB时:
(1)□ABCD四条边的大小有什么关系?
(2)对角线AC、BD的位置有什么关系?
请同学们小组合作完成证明过程,并尝试用文字语言叙述.
定理:菱形的四条边相等,对角线互相垂直.
例1 如图,木制活动衣帽架由3个全等的菱形构成,在A、E、F、C、G、H处安装上、下两排挂钩,可以根据需要改变挂钩间的距离,并在B、M处固定.已知菱形ABCD的边长为13cm,要使两排挂钩间的距离为24cm,求B、M之间的
练习:
P79第1、2题.
总结:
理解菱形概念,探索菱形的性质定理,并能运用定理解决简单的实际问题.
课堂作业:
P84习题9.4第7、8题.。