七年级数学《平移》
- 格式:ppt
- 大小:5.59 MB
- 文档页数:21
七年级下册数学平移知识点数学中的平移是一种固定向量的特殊变换,它是一种二维几何变换,可以将一个对象平移至另一个位置,而保持其大小、形状和方向不变。
在七年级下册数学中,学生们将学到平移的基本概念和相关知识点。
本文将围绕这些知识点进行详细说明。
一、平移的定义及基本概念平移是一种二维几何变换,它通过将一个对象沿着一个方向移动一段距离来创建一个新的对象。
这个方向和距离都是固定的,因此平移是一个刚体变换,能够保持对象的大小、形状和方向不变。
在平面直角坐标系中,一个点的平移可以表示为(x + a, y + b),其中(x, y)是原点,(a, b)是移动的向量。
对于每个点都会应用这个向量,从而创建一个新的对象。
二、平移的性质1.平移是一个可逆变换,也就是说,如果一个对象使用向量(a,b)平移了x单位,那么使用向量(-a, -b)就可以将它平移回原来的位置。
2.平移是一个保形变换,即保持对象的大小和形状不变。
3.平移是一个等距变换,即保持对象的方向不变,也就是说,距离不发生变化。
4.平移可以与旋转,缩放和其他变换组合使用,以创建更复杂的变换。
三、平移的相关知识点1. 平移的向量平移的向量是确定平移方向和距离的向量,它与原点有关。
当以固定向量(a,b)平移时,这个向量就是(a,b),称作平移向量。
2. 平移的方式一般而言,平移可以通过以下两种方式实现:(1)基于向量的平移:平移向量是当前点与目标点的向量,计算公式为(x2 - x1, y2 - y1)。
(2)基于矩阵的平移:平移矩阵是下面的式子:[1 0 a][0 1 b][0 0 1]其中,a和b分别代表平移的水平和垂直距离。
3. 平移和向量运算向量的加法是平移向量的一种运算,它将向量原始位置移动到一个新的位置。
在实际应用中,平移向量经常被用来表示位移和方向。
四、平移在实际问题中的应用平移在很多实际问题中都有着广泛的应用。
以下是一些例子:1.图形变换平移可以改变图形的位置而不改变其形状,可以用于计算机图形学中,设计新建筑等领域。
《平移》教案一、教学目标1.经历观察、分析、操作、欣赏以及抽象、归纳等过程,以及与他人合作交流探索的过程,进一步发展空间观念,增强审美意识,学会用运动的观点分析问题.2.通过实例,认识图形平移,了解平移的特征,理解平移的含义,会进行点的平移.3.理解平移前后两个图形对应点连线平行且相等的性质,能解决简单的平移问题.二、教学重点与难点重点:图形平移的特征和作平移图形.难点:平移的性质探索和理解.三、教学过程(一)创设情境,引入新课1.感受平移,体验新知你坐过公车和搭过电梯吗?它是一种什么样的运动?这样的运动在生活中还有哪些现象?(活动1:学生讨论)2.观察图形,形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,并回答问题.(1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案?(活动2:师生交流.)这些美丽的图案是由若干个相同的图案组合而成的,每个图形都有“基本图形”,而“基本图形”是什么?如第一个图形是中间一个正方形,上、下有正立与倒立的正三角形,下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.3.实践探索,得出新知探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案如:引导学生找规律,发现平移特征,回答下面问题:1、图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2、经过平移,每一组对应点所连成的线段________.归纳 (活动3:分组讨论)平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移简单归纳为两点:1.平移的方向. 2.平移的距离四、典例剖析,深化巩固1. 把鱼往左平移8cm.(假设每小格是1cm2)五、小结(学生回答):这节课你学了什么?知道了什么?学会了什么?六、课后作业必做题:教科书习题:3.6题《平移》习题1、决定平移的基本要素是____和____。
七年级数学下册平移知识点整理
1、概念:把图形的整体沿着某一方向移动一定的距离,得到一个新的图形,这种图形的移动,叫平移。
2、特征:
① 发生平移时,新图形与原图形的形状、大小完全相同(即:对应线段、对应角均相等);
② 对应点之间的线段互相平行(或在同一直线上)且相等,均等于平移距离。
确定平移,关键是要弄清平移的方向(并不一定是水平移动或垂直移动哦)与平移的距离。
如果是斜着平移的,则需把由起始位置至最终位置拆分为先水平移动,再上下移动,或拆分为先上下移动,再水平移动。
当然,如果是在格点图内平移,则可利用已知点的平移距离是某一矩形的对角线这一特点来对应完成其它顶点的平移。
3、画法:掌握平移方向与平移距离,利用对应点(一般指图形的顶点)之间连线段平行、连线段相等性质描出原图形顶点的对应点,再依次连接,就形成平移后的新图形。
(1)确定平移后图形的基本要素有两个:平移方向、平移距离.
(2)作图时要先找到图形的关键点,分别把这几个关键点按照平移的方
向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案。
七年级下册数学平移七年级下册数学平移一、引言数学是一门重要的科学学科,不仅能培养学生的逻辑思维和分析能力,还能帮助他们解决现实生活中的问题。
在七年级下册的数学课程中,数学平移是一个重要的概念。
平移不仅在几何中有广泛的应用,还能帮助学生提升对坐标系和图形变换的理解。
本文将介绍七年级下册数学平移的基本概念、性质和一些实际应用。
二、数学平移的基本概念数学平移指的是在平面上将一个点或一个图形按照一定的方向和距离移动的操作。
平移可以用向量来表示,其中向量的大小和方向分别表示平移的距离和方向。
三、数学平移的性质1. 平移不改变图形的形状、大小和面积。
2. 平移保持图形内的所有线段的平行关系不变。
3. 平移保持图形内的所有角的大小关系不变。
四、平面上的数学平移平面上的数学平移可以通过向量的相加来实现。
假设有一个向量v=(a, b),那么平移向量为这个向量的简单复制。
任给平面上的一个点P(x, y),将P沿着向量v平移后得到点P',其坐标为P'(x+a, y+b)。
五、平移的应用举例1. 城市规划:在城市规划中,平移可以用来设计道路和建筑物的布局,确保交通合理和空间的充分利用。
2. 导航系统:导航系统中的地图平移功能可以帮助人们找到目的地,并提供导航指引。
3. 数字图像处理:在计算机图像处理中,平移可以用来调整图像的位置和大小,以达到理想效果。
六、总结数学平移作为数学的一个重要概念,不仅有着广泛的实际应用,还能培养学生的空间想象能力和逻辑思维能力。
通过七年级下册的数学平移学习,学生能够更加深入地理解几何的相关知识,并在实际问题中灵活应用。
希望本文能够帮助学生们更好地掌握数学平移,并在日常学习和生活中发挥更大的作用。
七年级平移的知识点平移是初中数学中重要的内容之一,也是数学中的基本概念。
在七年级的数学学习过程中,平移也是必须要学习的。
本文将详细介绍七年级平移的知识点,包括平移的定义、平移的原理、平移的性质等。
一、平移的定义平移是指物体在平面上沿着某个方向移动一定距离后所得到的新位置,移动前后的图形形状大小不变。
平移的基本要素包括平移向量和被平移图形。
二、平移的原理平移是将向量作为操作工具的一种数学运算方式。
向量是指既有大小又有方向的量,平移向量是指平移的方向和距离。
三、平移的性质1. 平移性质一:平移是一种等距变换,即形状和大小不变。
2. 平移性质二:平移叠加原理,即两个或多个平移操作可以看作是一次平移操作。
3. 平移性质三:平移可以用向量表示,平移向量的方向、模长、起点等信息均可以确定一次平移操作。
4. 平移性质四:平移和旋转、翻转、缩放等变换操作可以相互转换。
四、平移的应用在日常生活和工作中,平移有着广泛的应用。
1. 平面图形的排版、设计、图案制作等;2. 工程绘图中的构建、计算、布置等;3. 地图绘制、流程图、架构图、电路图等的制作。
五、平移的练习1. 给定图形和平移向量,画出平移后的图形。
2. 已知图形的某一点的坐标和平移向量,求点的平移后的坐标。
3. 证明两个平移可以相互转化成一次平移和一个等比例变换。
六、学习平移需要注意的注意事项1. 熟练掌握平移的定义和原理;2. 了解平移的性质,理解平移的应用;3. 平移的练习需要逐步加深难度,注意形象思维能力的训练。
综上所述,平移是数学中的基本概念之一,也是七年级数学学习中必须要掌握和理解的内容。
理解平移的定义、原理和性质,掌握平移的应用和练习技巧,对于数学的学习和日常生活有很大的帮助。