江苏专用2018版高考数学专题复习专题7不等式第47练不等式综合练练习文
- 格式:doc
- 大小:3.37 MB
- 文档页数:6
第课基本不等式及其应用应知应会.当>时,函数的最小值是..已知正数满足,那么的最小值为..若,则的最小值为..(·常熟中学)已知>>,且,那么的最小值为..已知>>,且.()求的最小值;()求的最大值..运货卡车以的速度匀速行驶,按交通法规限制≤≤(单位).假设汽油的价格是元,汽车每小时耗油,司机的工资是元.()求这次行车总费用关于的表达式;()当为何值时,这次行车的总费用最低?并求出最低费用.巩固提升.已知>>,若不等式≥恒成立,则的最大值为..(·扬州期末)已知>>,且,那么的最小值为..(·苏州期末)已知∈(),那么的最小值为..(·江苏卷)在锐角三角形中,若,则的最小值是..已知变量满足约束条件若目标函数(>>)的最大值为,求的最小值..(·苏北四市摸底)如图,墙上有一幅壁画,最高点离地面,最低点离地面,观察者从距离墙(>)、离地面高(≤≤)的处观赏该壁画.设观赏视角∠θ.()若,问:观察者离墙多远时,视角θ最大?()若θ,当变化时,求的取值范围.(第题)第课基本不等式及其应用应知应会.【解析】因为>,所以()≥,当且仅当,即时等号成立,故函数的最小值为..【解析】()≥,当且仅当时取等号..【解析】易知≥,当且仅当时等号成立..【解析】因为>>≥,所以()≤,所以≤,所以()()≥,所以≥,所以≥..【解答】()()≥,当且仅当,即时等号成立,所以的最小值为.()由题设得≤,当且仅当,即时取等号,所以的最大值为..【解答】()设所用时间为,则×××∈[],所以这次行车总费用关于的表达式是∈[]. ()≥,当且仅当,即时等号成立.故当行驶的速度为时,这次行车的总费用最低,最低费用为元.巩固提升.【解析】由≥,得≤().又≥,所以≤,所以的最大值为..【解析】因为,所以(),解得或.因为>>,所以∈(),故,从而,因此()≥,当且仅当时等号成立. .【解析】因为∈(),所以.令,则,原式≥,当且仅当,即∈()时取等号,故原式的最小值为.。
第七章 不等式1. 【南师附中2017届高三模拟二】已知实数,x y 满足10{30 330x y x y x y -+≥+-≥--≤,则当2x y -取得最小值时, 22x y +的值为__________. 【答案】5 【解析】画出不等式组10{30 330x y x y x y -+≥+-≥--≤表示的区域如图,结合图形可知当动直线2y x z =-经过点()1,2A 时,在y 轴上的截距z -最大, 2z x y =-最小,此时22145x y +=+=,应填答案5。
2. 【启东中学2018届高三上学期第一次月考(10月)】已知x , y 满足约束条件0,{2, 0,x y x y y -≥+≤≥若z ax y =+的最大值为4,则a 的值为__________.【答案】2【解析】作为不等式组所对应的可行域,如上图阴影部分AOB ∆,则()()20,11A B ,,,若z ax y =+过A 时求得最大值为4,则24,2a a ==,此时目标函数为2z x y =+,变形为2y x z =-+,平移直线2y x z =-+,当经过A 点时,纵截距最大,此时z 有最大值为4,满足题意;若z ax y =+过B 时求得最大值为4,则14,3a a +==,此时目标函数为3z x y =+,变形为3y x z =-+,平移直线3y x z =-+,当经过A 点时,纵截距最大,此时z 有最大值为6,不满足题意,故2a =。
点睛:本题主要考查了线性规划的应用,属于中档题。
结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决此类问题的关键。
3. 【泰州中学2018届高三上学期开学考试】已知点满足,则的最大值为__________. 【答案】3点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.4. 【高邮市2018届高三期初文科】已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 . 【答案】3 【解析】试题分析:作不等式组210x y x y ≤⎧⎪≥⎨⎪-≥⎩表示的可行域,如图ABC ∆内部及边界(阴影);作直线:20l x y +=把直线l 平移到过点,A 此时2z x y =+取最小值;A 点坐标就是2z x y =+取最小值时的最优解,由方程组1y x y =⎧⎨-=⎩得(1,1).A 所以2x y +的最小值是3.考点:简单的线性规划.5.【淮安市淮海中学2018届高三上第一次调研】已知0x >, 0y >, 22x y +=,则22log 2log x y +的最大值为 .【答案】0【解析】∵x>0,y>0,x+y 2=2,∴22212x y xy ⎛⎫+≤= ⎪⎝⎭,∴222log 2log log 10x y +≤=. 故答案为:0.6.【启东中学2018届高三上学期第一次月考(10月)】若正实数,x y 满足2210x xy +-=,则2x y +的最小值为______.【答案】3点睛:基本不等式的考察的一个主要考察方法就是判别式法,可以应用判别式法的题型基本特点:(1)题干条件是二次式;(2)问题是一次式(或可以化简为一次式)。
第七章 不等式 7.1 不等关系与不等式教师用书 理 苏教版1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a > b a -b =0⇔a = ba -b <0⇔a < b(a ,b ∈R );(2)作商法⎩⎪⎨⎪⎧ab>1⇔a > b ab =1⇔a = ba b <1⇔a < b(a ∈R ,b >0).2.不等式的基本性质3.不等式的一些常用性质 (1)倒数的性质 ①a >b ,ab >0⇒1a <1b.②a <0<b ⇒1a <1b.③a >b >0,0<c <d ⇒a c >b d. ④0<a <x <b 或a <x <b <0⇒1b <1x <1a.(2)有关分数的性质 若a >b >0,m >0,则 ①b a <b +m a +m ;b a >b -ma -m(b -m >0). ②a b >a +m b +m ;a b <a -mb -m(b -m >0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若a b>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)一个非零实数越大,则其倒数就越小.( ×) (5)a >b >0,c >d >0⇒a d >b c.(√) (6)若ab >0,则a >b ⇔1a <1b.( √ )1.(教材改编)已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是______________. 答案 a >-b >b >-a解析 ∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .2.(教材改编)若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的____________条件. 答案 充分不必要 解析a -b >0⇒a >b⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.(2016·南京模拟)若a ,b ∈R ,且a +|b |<0,则下列不等式中正确的是________. ①a -b >0; ②a 3+b 3>0; ③a 2-b 2<0; ④a +b <0. 答案 ④解析 由a +|b |<0知,a <0,且|a |>|b |, 当b ≥0时,a +b <0成立, 当b <0时,a +b <0成立,∴a +b <0.4.如果a ∈R ,且a 2+a <0,则a ,a 2,-a ,-a 2的大小关系是________________. 答案 a <-a 2<a 2<-a 解析 由a 2+a <0得a <-a 2, ∴a <0且a >-1,∴a <-a 2<a 2<-a .5.(教材改编)若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为___________.答案 a <2ab <12<a 2+b 2<b解析 ∵0<a <b 且a +b =1, ∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝ ⎛⎭⎪⎫a -122+12<12.即a <2ab <12,又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12,a 2+b 2-b =(1-b )2+b 2-b =(2b -1)(b -1),又2b -1>0,b -1<0,∴a 2+b 2-b <0, ∴a 2+b 2<b ,综上,a <2ab <12<a 2+b 2<b .题型一 比较两个数(式)的大小例1 (1)若a =ln 33,b =ln 44,c =ln 55,则a ,b ,c 的大小关系为________.答案 c <b <a解析 方法一 易知a ,b ,c 都是正数,b a =3ln 44ln 3=log 8164<1, 所以a >b ;b c =5ln 44ln 5=log 6251 024>1, 所以b >c .即c <b <a .方法二 对于函数y =f (x )=ln x x ,y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减. 因为e<3<4<5,所以f (3)>f (4)>f (5), 即c <b <a .(2)已知a >0,试比较a 与1a的大小.解 因为a -1a =a 2-1a=a -a +a,因为a >0,所以当a >1时,a -a +a>0,有a >1a;当a =1时,a -a +a =0,有a =1a;当0<a <1时,a -a +a <0,有a <1a.综上,当a >1时,a >1a; 当a =1时,a =1a;当0<a <1时,a <1a.思维升华 比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数单调性得出大小关系.(1)设a ,b ∈[0,+∞),A =a +b ,B =a +b ,则A ,B 的大小关系是________.(2)若a =1816,b =1618,则a 与b 的大小关系为________. 答案 (1)A ≥B (2)a <b 解析 (1)∵A ≥0,B ≥0,A 2-B 2=a +2ab +b -(a +b )=2ab ≥0, ∴A ≥B .(2)a b =18161618=(1816)161162 =(98)16(12)16=(982)16, ∵982∈(0,1),∴(982)16<1, ∵1816>0,1618>0, ∴1816<1618,即a <b . 题型二 不等式的性质例2 (1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列不等式中一定成立的是________. ①ab >ac; ②c (b -a )<0; ③cb 2<ab 2;④ac (a -c )>0. (2)若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有________.答案 (1)①(2)①④解析 (1)由c <b <a 且ac <0知c <0且a >0. 由b >c 得ab >ac 一定成立.(2)因为1a <1b<0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b , 因为b <0,所以ab <b 2.因此正确的是①④.思维升华 解决此类问题常用两种方法:一是直接使用不等式的性质逐个验证;二是利用特殊值法排除错误答案.利用不等式的性质判断不等式是否成立时要特别注意前提条件.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a (d-c )>b (d -c )中成立的个数是________. 答案 3解析 方法一 ∵a >0>b ,c <d <0, ∴ad <0,bc >0, ∴ad <bc ,故①错误. ∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), ∴a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确. 方法二 取特殊值. 题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立 例3 已知a >b >0,给出下列四个不等式: ①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b .其中一定成立的不等式为________.答案①②③解析方法一由a>b>0可得a2>b2,①成立;由a>b>0可得a>b-1,而函数f(x)=2x在R上是增函数,∴f(a)>f(b-1),即2a>2b-1,②成立;∵a>b>0,∴a>b,∴(a-b)2-(a-b)2=2ab-2b=2b(a-b)>0,∴a-b>a-b,③成立;若a=3,b=2,则a3+b3=35,2a2b=36,a3+b3<2a2b,④不成立.方法二令a=3,b=2,可以得到①a2>b2,②2a>2b-1,③a-b>a-b均成立,而④a3+b3>2a2b不成立.命题点2 求代数式的取值范围例4 已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________. 答案(-4,2) (1,18)解析∵-1<x<4,2<y<3,∴-3<-y<-2,∴-4<x-y<2.由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,∴1<3x+2y<18.引申探究1.将已知条件改为-1<x<y<3,求x-y的取值范围.解∵-1<x<3,-1<y<3,∴-3<-y<1,∴-4<x-y<4.又∵x<y,∴x-y<0,∴-4<x-y<0,故x-y的取值范围为(-4,0).2.若将本例条件改为-1<x+y<4,2<x-y<3,求3x+2y的取值范围.解设3x+2y=m(x+y)+n(x-y),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为(-32,232).思维升华 (1)判断不等式是否成立的方法①判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.②在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数、指数函数的性质等. (2)求代数式的取值范围利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围,是避免错误的有效途径.(1)若a <b <0,则下列不等式一定成立的是________.①1a -b >1b; ②a 2<ab ; ③|b ||a |<|b |+1|a |+1; ④a n >b n. (2)设a >b >1,c <0,给出下列三个结论: ①c a >c b;②a c <b c;③log b (a -c )>log a (b -c ). 其中所有正确结论的序号是________. 答案 (1)③ (2)①②③解析 (1)(特值法)取a =-2,b =-1,逐个检验,可知①,②,④均不正确; ③中,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立. (2)由不等式性质及a >b >1知1a <1b,又c <0,∴c a >c b,①正确; 构造函数y =x c,∵c <0,∴y =x c在(0,+∞)上是减函数, 又a >b >1,∴a c <b c,②正确; ∵a >b >1,c <0,∴a -c >b -c >1,∴log b (a -c )>log a (a -c )>log a (b -c ),③正确.6.利用不等式变形求范围典例 设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________. 错解展示解析 由已知得⎩⎪⎨⎪⎧1≤a -b ≤2, ①2≤a +b ≤4, ②①+②得3≤2a ≤6,∴6≤4a ≤12, 又由①可得-2≤-a +b ≤-1,③ ②+③得0≤2b ≤3,∴-3≤-2b ≤0, 又f (-2)=4a -2b ,∴3≤4a -2b ≤12, ∴f (-2)的取值范围是[3,12]. 答案 [3,12] 现场纠错解析 方法一 由⎩⎪⎨⎪⎧f-=a -b ,f =a +b ,得⎩⎪⎨⎪⎧a =12[f -+f ,b =12[f-f -,∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10.方法二 由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示,当f (-2)=4a -2b 过点A (32,12)时,取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]纠错心得 在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.1.(教材改编)当x >1时,x 3与x 2-x +1的大小关系为______________. 答案 x 3>x 2-x +1 解析 ∵x 3-(x 2-x +1)=x 3-x 2+x -1=x 2(x -1)+(x -1) =(x -1)(x 2+1).又∵x >1,故(x -1)(x 2+1)>0,∴x 3-(x 2-x +1)>0,即x 3>x 2-x +1.2.(2016·镇江模拟)若6<a <10,a 2≤b ≤2a ,c =a +b ,那么c 的取值范围是__________. 答案 (9,30)解析 ∵c =a +b ≤3a 且c =a +b ≥3a 2, ∴9<3a 2≤a +b ≤3a <30. 3.已知x >y >z ,x +y +z =0,则下列不等式成立的是________.①xy >yz; ②xz >yz ;③xy >xz; ④x |y |>z |y |.答案 ③解析 ∵x >y >z 且x +y +z =0,∴x >0,z <0,又y >z ,∴xy >xz .4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的________条件.答案 充分不必要解析 由(a -b )·a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时⇏(a -b )·a 2<0,必要性不成立.5.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是__________. 答案 (-π6,π) 解析 由题设得0<2α<π,0≤β3≤π6, ∴-π6≤-β3≤0,∴-π6<2α-β3<π. 6.已知a ,b ,c ∈R ,那么下列命题中正确的是________.①若a >b ,则ac 2>bc 2;②若a c >b c ,则a >b ;③若a 3>b 3且ab <0,则1a >1b;④若a 2>b 2且ab >0,则1a <1b. 答案 ③解析 当c =0时,可知①不正确;当c <0时,可知②不正确;对于③,由a 3>b 3且ab <0,知a >0且b <0,所以1a >1b成立,③正确; 当a <0且b <0时,可知④不正确.7.若a >b >0,则下列不等式中一定成立的是________.①a +1b >b +1a ; ②b a >b +1a +1; ③a -1b >b -1a ; ④2a +b a +2b >a b. 答案 ①解析 取a =2,b =1,排除②与④;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立. 8.若a >b >0,则下列不等式一定不成立的是________.①1a <1b; ②log 2a >log 2b ; ③a 2+b 2≤2a +2b -2; ④b <ab <a +b 2<a .答案 ③ 解析 ∵(a -1)2+(b -1)2>0(由a >b >0,a ,b 不能同时为1),∴a 2+b 2-2a -2b +2>0,∴a 2+b 2>2a +2b -2,∴③一定不成立.9.若不等式(-2)n a -3n -1-(-2)n<0对任意正整数n 恒成立,则实数a 的取值范围是____________. 答案 ⎝ ⎛⎭⎪⎫12,74 解析 当n 为奇数时,2n (1-a )<3n -1,1-a <13×⎝ ⎛⎭⎪⎫32n 恒成立,只需1-a <13×⎝ ⎛⎭⎪⎫321,∴a >12.当n为偶数时,2n (a -1)<3n -1,a -1<13×⎝ ⎛⎭⎪⎫32n 恒成立,只需a -1<13×⎝ ⎛⎭⎪⎫322,∴a <74. 综上,12<a <74. 10.已知a ,b ,c ,d 均为实数,有下列命题①若ab >0,bc -ad >0,则c a -d b >0;②若ab >0,c a -d b >0,则bc -ad >0;③若bc -ad >0,c a -d b >0,则ab >0.其中正确的命题是________.答案 ①②③解析 ∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab>0,∴①正确; ∵ab >0,又c a -d b >0,即bc -ad ab >0, ∴bc -ad >0,∴②正确;∵bc -ad >0,又c a -d b >0,即bc -ad ab>0, ∴ab >0,∴③正确.故①②③都正确.11.(教材改编)一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为____________.答案 8(x +19)>2 200解析 因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19) km ,则在8天内它的行程为8(x +19) km ,因此,不等关系“在8天内它的行程将超过2 200 km”可以用不等式8(x +19)>2 200来表示.12.已知-1<2x -1<1,则2x-1的取值范围是________. 答案 (1,+∞)解析 -1<2x -1<1⇒0<x <1⇒1x >1⇒2x>2 ⇒2x-1>1. 13.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是__________(用区间表示). 答案 [3,8]解析 ∵z =-12(x +y )+52(x -y ), ∴3≤-12(x +y )+52(x -y )≤8, ∴z 的取值范围是[3,8].14.已知m ∈R ,a >b >1,f (x )=mx x -1,试比较f (a )与f (b )的大小. 解 f (x )=m (1+1x -1),f (a )=m (1+1a -1), f (b )=m (1+1b -1). 由a >b >1,知a -1>b -1>0.∴1a -1<1b -1,∴1+1a -1<1+1b -1. ①当m >0时,m (1+1a -1)<m (1+1b -1),f (a )<f (b ). ②当m =0时,f (a )=f (b )=0.③当m <0时,m (1+1a -1)>m (1+1b -1),f (a )>f (b ). 综上所述,当m >0时,f (a )<f (b );当m =0时,f (a )=f (b );当m <0时,f (a )>f (b ).。
1.(2016·镇江模拟)设A =12a +12b ,B =1a +b (a >0,b >0),则A ,B 的大小关系是________.2.(2017·河南六市第一次联考)若1a <1b <0,则下列结论不正确的是________.(填序号)①a 2<b 2;②ab <b 2;③a +b <0;④|a |+|b |>|a +b |.3.给出下列条件:①1<a <b ;②0<a <b <1;③0<a <1<b .其中,能使log b 1b <log a 1b<log a b 成立的条件的序号是________.4.(2016·济南模拟)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是________.(填序号)①1x 2+1>1y 2+1; ②ln(x 2+1)>ln(y 2+1); ③sin x >sin y ;④x 3>y 3.5.对于实数a ,b ,c 有下列命题:①若a >b ,则ac <bc ;②若ac 2>bc 2,则a >b ;③若a <b <0,则a 2>ab >b 2;④若c >a >b >0,则a c -a >bc -b ;⑤若a >b ,1a >1b ,则a >0,b <0.其中真命题是________.(填序号)6.(2016·北京西城区模拟)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎨⎧ a ,a ≤b ,b ,a >b ,a ∨b =⎩⎨⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则下列结论正确的是________.①a ∧b ≥2,c ∧d ≤2; ②a ∧b ≥2,c ∨d ≥2;③a ∨b ≥2,c ∧d ≤2; ④a ∨b ≥2,c ∨d ≥2.7.若存在x 使不等式x -m e x >x 成立,则实数m 的取值范围为____________.8.设a >0,且a ≠1,P =log a (a 3-1),Q =log a (a 2-1),则P 与Q 的大小关系是________.9.对于0<a <1,给出下列四个不等式:①log a (1+a )<log a (1+1a );②log a (1+a )>log a (1+1a );③a 1+a<a 1+1a ;④a 1+a >a 1+1a . 其中成立的是________.10.(2016·苏州模拟)设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小关系是________.(用“>”连接)11.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是________. 12.(2017·辽宁五校联考)三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则b a 的取值范围是________.13.(2016·长沙模拟)已知a ,b ,c ∈{正实数},且a 2+b 2=c 2,当n ∈N ,n >2时,c n 与a n +b n 的大小关系为______________.(用“>”连接)14.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a,则A ,B ,C ,D 的大小关系是________.(用“>”连接)答案精析1.A >B 2.④ 3.② 4.④5.②③④⑤解析 ①中,c 的符号不确定,故ac 与bc 的大小关系也不能确定,故为假. ②中,由ac 2>bc 2知c ≠0,∴c 2>0,则a >b ,故为真.③中,由⎩⎨⎧ a <b ,b <0可得ab >b 2,由⎩⎨⎧ a <b ,a <0可得a 2>ab ,∴a 2>ab >b 2,故为真.④中,由a >b 得-a <-b ,∴c -a <c -b ,又c >a ,∴0<c -a <c -b ,∴1c -a >1c -b >0.又a >b >0,∴ac -a >bc -b ,故为真.⑤中,由a >b 得a -b >0,由1a >1b 得b -a ab >0,又b -a <0,∴ab <0,而a >b ,∴a >0,b <0,故为真.6.③解析 不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c .若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2.若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2.故③正确.7.(-∞,0)解析 由x -me x >x ,得-m >e x ×x -x (x >0),令f (x )=e x ×x -x (x >0),则-m >f (x )min ,f ′(x )=e x ×x +e x ×12x -1≥2×e x -1>0(x >0),所以f (x )为(0,+∞)上的增函数,所以f (x )≥f (0)=0,-m >0,m <0.8.P >Q解析 由题意可知a >1.∴(a 3-1)-(a 2-1)=a 2(a -1)>0,∴a 3-1>a 2-1,∴log a (a 3-1)>log a (a 2-1),即P >Q .9.②④解析 因为0<a <1,所以(1+a )-(1+1a )=(a +1)(a -1)a <0,则1+a <1+1a ,可知②④成立.10.z >y >x解析 方法一 y 2-x 2=2c (a -b )>0,∴y >x .同理,z >y ,∴z >y >x .方法二 令a =3,b =2,c =1,则x =18,y =20, z =26,故z >y >x .11.27解析 由4≤x 2y ≤9,得16≤x 4y 2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.又x =3,y =1满足条件,这时x 3y 4=27. ∴x 3y 4的最大值是27.12.23,32]解析 两个不等式同时除以a ,得⎩⎪⎨⎪⎧ 1≤b a +c a ≤2, ①b a ≤1+c a ≤2·b a ,②将②乘(-1),得⎩⎪⎨⎪⎧ 1≤b a +c a ≤2,-2·b a ≤-1-c a ≤-b a ,两式相加,得1-2b a ≤b a -1≤2-b a ,解得23≤b a ≤32.13.c n >a n +b n解析 ∵a ,b ,c ∈{正实数},∴a n >0,b n >0,c n >0.而a n +b n c n =⎝ ⎛⎭⎪⎫a c n +⎝ ⎛⎭⎪⎫b c n .∵a 2+b 2=c 2,则⎝ ⎛⎭⎪⎫a c 2+⎝ ⎛⎭⎪⎫b c 2=1,∴0<a c <1,0<b c <1.∵n ∈N ,n >2,∴(a c )n <(a c )2,(b c )n <(b c )2.∴a n +b n c n =(a c )n +(b c )n <a 2+b 2c 2=1.∴a n +b n <c n .14.C >A >B >D解析 由已知得-12<a <0,不妨取a =-14,这时A =1716,B =1516,C =43,D =45.由此猜测:C >A >B >D .∵C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a=-a [(a +12)2+34]1+a .又∵1+a >0,-a >0,(a +12)2+34>0,∴C >A .∵A -B =(1+a 2)-(1-a 2)=2a 2>0,∴A >B .∵B-D=1-a2-11-a=a(a2-a-1)1-a=a[(a-12)2-54]1-a.又∵-12<a<0,∴1-a>0.又∵(a-12)2-54<(-12-12)2-54<0,∴B>D.综上所述,C>A>B>D.。
a 的取值范围为____________.2.(2016·辽宁大连八中月考)已知O 是坐标原点,点P (-1,1),若点M (x ,y )为平面区域⎩⎨⎧x +y ≥4,x ≤2,y ≤4上的一个动点,则OP →·OM→的取值范围是________.3.(2017·昆明质检)某校今年计划招聘女教师a 名,男教师b 名,若a ,b 满足不等式组⎩⎨⎧2a -b ≥5,a -b ≤2,a <7,设这所学校今年计划招聘教师最多x 名,则x =________.4.(2016·沈阳质检)已知实数x ,y 满足⎩⎨⎧2x -y +6≥0,x +y ≥0,x ≤2,若目标函数z =-mx +y 的最大值为-2m +10,最小值为-2m -2,则实数m 的取值范围是____________.5.(2016·泰州模拟)设变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,4x -y -4≤0,x +y ≥3,若目标函数z =x+ky (k >0)的最小值为13,则实数k =________.6.(2016·贵州七校联考)一个平行四边形的三个顶点的坐标分别为(-1,2),(3,4),(4,-2),点(x ,y )在这个平行四边形的内部或边上,则z =2x -5y 的最大值是________.7.(2015·重庆改编)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为______.8.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为________万元.9.(2016·扬州模拟)已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为________.10.(2017·辽宁五校联考)已知A ,B 是平面区域⎩⎨⎧2x -y -4≤0,x +y -2≥0,x -2y +4≥0内的两个动点,向量n =(3,-2),则AB →·n 的最大值是________.11.(2016·全国丙卷)设x ,y 满足约束条件⎩⎨⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.12.(2016·泰州中学期初考试)设m ∈R ,实数x ,y 满足⎩⎨⎧x ≥m ,2x -3y +6≥0,3x -2y -6≤0,若|x +2y |≤18,则实数m 的取值范围是______________.13.(2016·扬州中学月考)已知点x ,y 满足不等式组⎩⎨⎧x ≥0,y ≥0,2x +y ≤2,若ax +y ≤3恒成立,则实数a 的取值范围是__________.14.(2016·绍兴一模)已知函数f (x )=x 2-2x ,点集M ={(x ,y )|f (x )+f (y )≤2},N ={(x ,y )|f (x )-f (y )≥0},则M ∩N 所构成平面区域的面积为______.答案精析1.(-7,24) 2.0,4]解析由题意OA →·OM →=-x +y ,作出不等式组⎩⎨⎧x +y ≥4,x ≤2,y ≤4表示的平面区域,如图中△ABC 内部(含边界),作直线l :-x +y =0,平移直线l ,直线过A (2,2)时,-x +y =0,过C (0,4)时,-x +y =4,所以-x +y 的取值范围是0,4].3.13解析 如图所示,画出约束条件所表示的区域,即可行域,作直线l :b +a =0, 平移直线l ,再由a ,b ∈N ,可知当a =6,b =7时,x max =a +b =13.4.-1,2]解析 可行域如图所示,A (-2,2),B (2,-2),C (2,10).在点C 处z 取得最大值,在点B 处z 取得最小值,观察得直线y =mx +z 的斜率m 的取值范围为m ∈-1,2].5.5或294 解析作出不等式组⎩⎨⎧x -y +2≥0,4x -y -4≤0,x +y ≥3表示的平面区域,如图所示,可知z =x +ky (k>0)过点A (12,52)或B (75,85)时取得最小值,所以12+52k =13或75+85k =13,解得k =5或294.6.20 解析平行四边形的对角线互相平分,如图,当以AC 为对角线时,由中点坐标公式得AC 的中点为(32,0),也是BD 的中点,可知顶点D 1的坐标为(0,-4).同理,当以BC 为对角线时,得D 2的坐标为(8,0),当以AB 为对角线时,得D 3的坐标为(-2,8),由此作出(x ,y )所在的平面区域,如图中阴影部分所示,由图可知当目标函数z =2x -5y 经过点D 1(0,-4)时,取得最大值,最大值为2×0-5×(-4)=20. 7.1解析 不等式组表示的区域如图,易求A ,B ,C ,D 点的坐标分别为A (2,0),B (1-m ,1+m ),C (2-4m 3,2+2m3),D (-2m,0).∴S △ABC =S △ABD -S △ACD =12×(2+2m )×(1+m )-12×(2+2m )×2m +23=(m +1)23=43, ∴m +1=2或-2(舍),∴m =1.8.18解析 设甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示,可得目标函数在点A 处取到最大值. 由⎩⎨⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元). 9.8解析 作出不等式组对应的平面区域如图所示.由z =2x +y ,得y =-2x +z .平移直线y =-2x +z ,由图象可知当直线y =-2x +z 经过点C 时,在y 轴上的截距最大,此时z 最大.由⎩⎨⎧ x -2y +1=0,x -y -1=0,解得⎩⎨⎧x =3,y =2, 即C (3,2),此时z =2×3+2=8. 10.10解析设A (x 1,y 1),B (x 2,y 2),AB →=(x 2-x 1,y 2-y 1),则AB →·n =3(x 2-x 1)-2(y 2-y 1)=3x 2-2y 2-(3x 1-2y 1).令z =3x -2y ,画出不等式组表示的平面区域(如图中阴影部分所示),可知z max =6,z min =-4,则AB →·n 的最大值为z max -z min =10. 11.-10解析 作出不等式组表示的平面区域,如图中阴影部分所示,由图知当z =2x +3y -5经过点A (-1,-1)时,z 取得最小值,z min =2×(-1)+3×(-1)-5=-10. 12.-3,6]解析 令z =x +2y ,由|x +2y |≤18⇒-18≤x +2y ≤18,画出可行域如图,由线性规划知识可得,当直线y =-12x +12z 经过点A (6,6)时,z 取得最大值,当直线y =-12x +12z 经过点B (m ,3m -62)时,z 取得最小值.由m +3m -6=-18,得m =-3,又由图易知,m ≤6,所以-3≤m ≤6.13.(-∞,3]解析不等式组⎩⎨⎧x ≥0,y ≥0,2x +y ≤2表示的平面区域是以O (0,0),A (0,2),B (1,0)为顶点的三角形内部(含边界).由题意得⎩⎨⎧0+0≤3,0+2≤3,a +0≤3,所以a ≤3.14.2π解析 由f (x )+f (y )=x 2-2x +y 2-2y ≤2, 得(x -1)2+(y -1)2≤4,于是点集M ={(x ,y )|f (x )+f (y )≤2}表示的平面区域是以(1,1)为圆心,2为半径的圆面. 同理,由f (x )-f (y )=x 2-2x -y 2+2y ≥0, 可得(x -y )(x +y -2)≥0, 即⎩⎨⎧ x -y ≥0,x +y -2≥0或⎩⎨⎧x -y ≤0,x +y -2≤0. 于是点集N ={(x ,y )|f (x )-f (y )≥0}表示的平面区域就是不等式组所表示的平面区域. 所以M ∩N 所构成的平面区域如图所示,所以S =12·π·r 2=2π.。
2(∁R P )∩Q =____________.2.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,由点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是________.3.(2016·南京一模)若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.4.(2016·徐州质检)若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是______________. 5.(2016·潍坊联考)已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n的最小值为________.6.(2016·山西大学附中检测)已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b的最小值等于________. 7.(2016·宁德质检)设P 是不等式组⎩⎨⎧y ≥0,x -2y ≥-1,x +y ≤3表示的平面区域内的任意一点,向量m =(1,1),n =(2,1).若OP →=λm +μn (λ,μ∈R ),则μ的最大值为________.8.(2016·镇江模拟)设函数f (x )=ln x,0<a <b ,若p =f (ab ),q =f (a +b 2),r =12(f (a )+f (b )),则下列关系式中正确的是________.(填序号) ①q =r <p; ②q =r >p ; ③p =r <q; ④p =r >q .9.(2016·福建长乐二中等五校期中联考)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10000x -1450(万元).通过市场分析,若每件售价为500元时,该厂一年内生产的商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?10.(2016·海口一模)已知函数f (x )=x +m x+2(m 为实常数).(1)若函数f (x )图象上动点P 到定点Q (0,2)的距离的最小值为2,求实数m 的值; (2)若函数y =f (x )在区间2,+∞)上是增函数,试用函数单调性的定义求实数m 的取值范围;(3)设m <0,若不等式f (x )≤kx 在x ∈12,1]时有解,求k 的取值范围.答案精析1.(2,3] 2.4 3解析 由|OA →|=|OB →|=OA →·OB →=2知〈OA →,OB →〉=π3.设OA →=(2,0),OB →=(1,3),OP →=(x ,y ),则⎩⎨⎧x =2λ+μ,y =3μ,解得⎩⎪⎨⎪⎧μ=y 3,λ=12⎝⎛⎭⎪⎫x -y 3.由|λ|+|μ|≤1得|3x -y |+|2y |≤2 3. 作出可行域,如图所示.则所求面积S =2×12×4×3=4 3.3.44.(-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8.当且仅当x =log 32时取等号.5.9解析 易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n =(2m +n )(2m +1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n的最小值为9.6.2 2解析 由函数f (x )=|lg x |,a >b >0,f (a )=f (b ),可知a >1>b >0,所以lg a=-lg b ,b =1a ,a -b =a -1a >0,则a 2+b 2a -b=a 2+(1a )2a -1a=a -1a+2a -1a≥22(当且仅当a -1a =2a -1a,即a =2+62时,等号成立).7.3 解析设P 的坐标为(x ,y ),因为OP →=λm +μn , 所以 ⎩⎨⎧x =λ+2μ,y =λ+μ,解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分,由图可知,当目标函数μ=x -y 过点G (3,0)时,μ取得最大值3-0=3. 8.③解析 因为0<a <b ,所以a +b 2>ab ,又因为f (x )=ln x 在(0,+∞)上为增函数, 故f (a +b 2)>f (ab ),即q >p .又r =12(f (a )+f (b ))=12(ln a +ln b )=12ln a +12ln b =ln(ab )12=f (ab )=p .故p =r <q .9.解 (1)当0<x <80,x ∈N *时, L (x )=500×1000x 10000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L (x )=500×1000x 10000-51x -10000x +1450-250=1200-(x +10000x),∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250(0<x <80,x ∈N *),1200-(x +10000x )(x ≥80,x ∈N *).(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950, ∴当x =60时,L (x )取得最大值L (60)=950. 当x ≥80,x ∈N *时,L (x )=1200-(x +10000x )≤1200-2x ·10000x=1200-200=1000, ∴当x =10000x,即x =100时,L (x )取得最大值L (100)=1000>950.综上所述,当x =100时,L (x )取得最大值1000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. 10.解 (1)设P (x ,y ),则y =x +m x+2,PQ 2=x 2+(y -2)2=x 2+(x +mx)2=2x2+m2x2+2m≥22|m|+2m=2,当m>0时,解得m=2-1;当m<0时,解得m=-2-1.所以m=2-1或m=-2-1. (2)由题意知,任取x1,x2∈2,+∞),且x1<x2,则f(x2)-f(x1)=x2+mx2+2-(x1+mx1+2)=(x2-x1)·x1x2-mx1x2>0.因为x2-x1>0,x1x2>0,所以x1x2-m>0,即m<x1x2.由x2>x1≥2,得x1x2>4,所以m≤4. 所以m的取值范围是(-∞,4].(3)由f(x)≤kx,得x+mx+2≤kx.因为x∈12,1],所以k≥mx2+2x+1.令t=1x,则t∈1,2],所以k≥mt2+2t+1.令g(t)=mt2+2t+1,t∈1,2],于是,要使原不等式在x∈12,1]时有解,当且仅当k≥g(t)]min(t∈1,2]).因为m<0,所以g(t)=m(t+1m)2+1-1m的图象开口向下,对称轴为直线t=-1m>0.因为t∈1,2],所以当0<-1m≤32,即m ≤-23时,g (t )min =g (2)=4m +5;当-1m >32,即-23<m <0时,g (t )min =g (1)=m +3.综上,当m ≤-23时,k ∈4m +5,+∞);当-23<m <0时,k ∈m +3,+∞).。
第3讲 基本不等式及其应用考试要求 1.基本不等式的证明过程,A 级要求;2.利用基本不等式解决简单的最大(小)值问题,C 级要求.知 识 梳 理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( )(2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(3)函数y =x +1x的最小值是2.( )(4)函数f (x )=sin x +4sin x 的最小值为2.( )(5)x >0且y >0是x y +y x≥2的充要条件.( )解析 (2)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(3)函数y =x +1x值域是(-∞,-2]∪[2,+∞),没有最小值.(4)函数f (x )=sin x +4sin x 的最小值为-5.(5)x >0且y >0是x y +y x≥2的充分条件. 答案 (1)√ (2)× (3)× (4)× (5)×2.设x >0,y >0,且x +y =18,则xy 的最大值为________. 解析 xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时等号成立.答案 813.(必修5P106习题16改编)设a >0,b >0.若a +b =1,则1a +1b的最小值是________.解析 由题意1a +1b =a +b a +a +b b =2+b a +ab≥2+2b a ×a b =4,当且仅当b a =a b ,即a =b =12时,取等号,所以最小值为4. 答案 44.(2017·宿迁期末)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________. 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3. 答案 35.一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为______m ,宽为________m 时菜园面积最大.解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.答案 15152考点一 配凑法求最值【例1】 (1)已知x <54,求f (x )=4x -2+14x -5的最大值;(2)求函数y =x -1x +3+x -1的最大值.解 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤ -2-4x15-4x+3=-2+3=1. 当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)令t =x -1≥0,则x =t 2+1, 所以y =tt 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1, 因为t +4t≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15, 即y 的最大值为15(当t =2,即x =5时y 取得最大值).规律方法 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【训练1】 (1)(2017·湖北重点中学一联)若对∀x ≥1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.(2)函数y =x 2+2x -1(x >1)的最小值为________.解析 (1)因为函数f (x )=x +1x -1在[1,+∞)上单调递增,所以函数g (x )=x +1+1x +1-2在[0,+∞)上单调递增,所以函数g (x )在[1,+∞)的最小值为g (1)=12,因此对∀x ≥1不等式x +1x +1-1≥a 恒成立,所以a ≤g (x )最小值=12,故实数a 的取值范围是⎝⎛⎦⎥⎤-∞,12. (2)y =x 2+2x -1=x 2-2x ++x -+3x -1=x -2+x -+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. 答案 (1)⎝⎛⎦⎥⎤-∞,12 (2)23+2 考点二 常数代换或消元法求最值(易错警示)【例2】 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________.(2)(2017·南京模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. (1)解析 法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝⎛⎭⎪⎫15y +35x=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), ∴3x +4y 的最小值是5.法二 由x +3y =5xy ,得x =3y 5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y 5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+45-4y5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)由已知得x =9-3y1+y .法一 (消元法)因为x >0,y >0,所以0<y <3, 所以x +3y =9-3y1+y +3y=121+y+3(y +1)-6≥2121+yy +-6=6,当且仅当121+y =3(y +1),即y =1,x =3时,(x +3y )min =6. 法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6. 答案 (1)5 (2)6规律方法 条件最值的求解通常有三种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;三是对条件使用基本不等式,建立所求目标函数的不等式求解.易错警示 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.【训练2】 (1)已知x >0,y >0且x +y =1,则8x +2y的最小值为________.(2)(2017·盐城模拟)已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________. 解析 (1)(常数代换法) 因为x >0,y >0,且x +y =1, 所以8x +2y =⎝ ⎛⎭⎪⎫8x +2y (x +y )=10+8y x+2xy≥10+28y x ·2xy=18,当且仅当8y x =2xy,即x =2y 时等号成立,所以当x =23,y =13时,8x +2y 有最小值18.(2)由x +2y -xy =0,得2x +1y=1,且x >0,y >0.∴x +2y =(x +2y )×⎝ ⎛⎭⎪⎫2x +1y =4y x+xy+4≥4+4=8.答案 (1)18 (2)8考点三 基本不等式在实际问题中的应用【例3】 (2017·苏、锡、常、镇四市调研)运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 规律方法 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解. 【训练3】 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时.解析 (1)当l =6.05时,F =76 000vv 2+18v +20×6.05,∴F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=1 900,当且仅当v =121v,即v =11时取“=”.∴最大车流量F 为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +20×5=76 000v +100v+18,∴F ≤76 0002v ·100v+18=2 000,当且仅当v =100v,即v =10时取“=”.∴最大车流量比(1)中的最大车流量增加2 000-1 900=100辆/时. 答案 (1)1 900 (2)100[思想方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx(m >0)的单调性. [易错防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可. 2.连续使用基本不等式求最值要求每次等号成立的条件一致.基础巩固题组(建议用时:40分钟)一、填空题 1.下列不等式:①lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0);②sin x +1sin x ≥2(x ≠k π,k ∈Z );③x 2+1≥2|x |(x ∈R ); ④1x 2+1<1(x ∈R ). 其中一定成立的是________(填序号).解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x (x >0),①不正确;运用基本不等式时需保证“一正”“二定”“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 答案 ③2.若2x+2y=1,则x +y 的取值范围是________. 解析 22x +y ≤2x +2y =1,所以2x +y≤14,即2x +y ≤2-2,所以x +y ≤-2. 答案 (-∞,-2]3.(2017·镇江期末)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为________. 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号. 答案 94.(2015·湖南卷改编)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.解析 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为2 2.答案 2 25.(2017·苏、锡、常、镇四市调研)若实数x ,y 满足xy >0,则xx +y +2yx +2y的最大值为________.解析 xx +y +2y x +2y=x x +2y +2y x +y x +y x +2y =x 2+4xy +2y 2x 2+3xy +2y 2=1+xyx 2+3xy +2y 2=1+1x y +3+2y x≤1+13+22=4-22,当且仅当x y =2y x ,即x 2=2y 2时取等号.答案 4-2 26.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是________.解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2. 答案 27.(2017·苏州调研)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n的最大值为________.解析 ∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·m n =-4,当且仅当m =n =-12时,1m+1n取得最大值-4. 答案 -48.若对于任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.解析xx 2+3x +1=13+x +1x,因为x >0,所以x +1x≥2(当且仅当x =1时取等号),则13+x +1x≤13+2=15, 即x x 2+3x +1的最大值为15,故a ≥15.答案 ⎣⎢⎡⎭⎪⎫15,+∞二、解答题9.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x·2x y =7+21020, 当且仅当5y x =2xy时等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 10.(2017·苏北四市联考)如图,墙上有一壁画,最高点A 离地面4米,最低点B 离地面2米,观察者从距离墙x (x >1)米,离地面高a (1≤a ≤2)米的C 处观赏该壁画,设观赏视角∠ACB =θ.(1)若a =1.5,问:观察者离墙多远时,视角θ最大? (2)若tan θ=12,当a 变化时,求x 的取值范围.解 (1)当a =1.5时,过点C 作AB 的垂线,垂足为点D ,则BD =0.5,且θ=∠ACD -∠BCD , 由已知知观察者离墙x 米,且x >1, 则tan ∠BCD =0.5x ,tan ∠ACD =2.5x,所以tan θ=tan(∠ACD -∠BCD )=2.5x-0.5x1+2.5×0.5x 2=2x 1+1.25x 2=2x +1.25x ≤2254=255,当且仅当x =52>1时,等号成立. 又因为tan θ在⎝⎛⎭⎪⎫0,π2上单调递增,所以当观察者离墙52米时,视角θ最大. (2)由题意得tan ∠BCD =2-a x ,tan ∠ACD =4-ax,又tan θ=12,所以tan θ=tan(∠ACD -∠BCD )=2xx 2+a -a -=12, 所以a 2-6a +8=-x 2+4x ,当1≤a ≤2时,0≤a 2-6a +8≤3,所以0≤-x 2+4x ≤3,即⎩⎪⎨⎪⎧x 2-4x ≤0,x 2-4x +3≥0,解得0≤x ≤1或3≤x ≤4,又因为x >1,所以3≤x ≤4, 所以x 的取值范围为[3,4].能力提升题组 (建议用时:20分钟)11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为________.解析 由已知得z =x 2-3xy +4y 2,(*) 则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.答案 112.(2017·衡水中学调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax+2by (a >0,b >0)的最大值为1,则1a 2+14b2的最小值为________.解析 不等式组所表示的平面区域是以(0,0),⎝ ⎛⎭⎪⎫23,0,(1,1)为顶点的三角形区域(包括边界),观察可知,当直线z =ax +2by 过点(1,1)时,z 有最大值,故a +2b =1,故1≥22ab ,故ab ≤18,故1a 2+14b 2≥1ab ≥8,当且仅当a =2b =12时等号成立,故1a 2+14b 2的最小值为8.答案 813.(2017·盐城中学月考)a 是1+2b 与1-2b 的等比中项,则2ab|a |+2|b |的最大值为________.解析 依题意,a 2=1-4b 2,故a 2+4b 2=1≥4ab ,故ab ≤14,2ab |a |+2|b |≤2ab 22ab ≤24,当且仅当⎩⎪⎨⎪⎧a =22,b =24或⎩⎪⎨⎪⎧a =-22,b =-24时,等号成立.答案2414.(2017·南京模拟)一位创业青年租用了如图所示的一块边长为1百米的正方形田地ABCD 来养蜂、产蜜与售蜜,他在正方形的边BC ,CD 上分别取点E ,F (不与正方形的顶点重合),连接AE ,EF ,FA ,使得∠EAF =45°.现拟将图中阴影部分规划为蜂源植物生长区,△AEF 部分规划为蜂巢区,△CEF 部分规划为蜂蜜交易区.若蜂源植物生长区的投入约为2×105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元?解 设阴影部分面积为S ,三个区域的总投入为T .则T =2×105·S +105·(1-S )=105·(S +1),所以只要求S 的最小值即可得T 的最小值. 设∠EAB =α(0°<α<45°),在△ABE 中,因为AB =1,∠B =90°,所以BE =tan α, 则S △ABE =12AB ·BE =12tan α.又∠DAF =45°-α,所以S △ADF =12tan(45°-α).所以S =12[tan α+tan(45°-α)]=12⎝ ⎛⎭⎪⎫tan α+1-tan α1+tan α.令x =tan α∈(0,1),则S =12⎝ ⎛⎭⎪⎫x +1-x 1+x =12⎝ ⎛⎭⎪⎫x -x -1x +1=12⎝ ⎛⎭⎪⎫x +2x +1-1=12⎣⎢⎡⎦⎥⎤x ++2x +1-2≥12(22-2)=2-1. 当且仅当x +1=2x +1,即x =2-1时取等号. 此时T =2×105,所以三个区域的总投入T 的最小值约为2×105元.。
1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数,当两个正数相等时两者相等. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【知识拓展】不等式的恒成立、能成立、恰成立问题(1)恒成立问题:若f (x )在区间D 上存在最小值,则不等式f (x )>A 在区间D 上恒成立⇔f (x )min >A (x ∈D );若f (x )在区间D 上存在最大值,则不等式f (x )<B 在区间D 上恒成立⇔f (x )max <B (x ∈D ). (2)能成立问题:若f (x )在区间D 上存在最大值,则在区间D 上存在实数x 使不等式f (x )>A 成立⇔f (x )max >A (x ∈D );若f (x )在区间D 上存在最小值,则在区间D 上存在实数x 使不等式f (x )<B 成立⇔f (x )min <B (x ∈D ). (3)恰成立问题:不等式f (x )>A 恰在区间D 上成立⇔f (x )>A 的解集为D ; 不等式f (x )<B 恰在区间D 上成立⇔f (x )<B 的解集为D .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y 2)2=81,当且仅当x =y =9时,(xy )max =81.2.(教材改编)若0<x <1,则x (3-2x )的取值范围是____________. 答案 (0,324]解析 由0<x <1知3-2x >0,故x (3-2x )=12·2x (3-2x ) ≤12·2x +(3-2x )2=324,当且仅当x =34时,上式等号成立.∴0<x (3-2x )≤324.3.(教材改编)当点(x ,y )在直线x +3y -2=0上移动时,函数z =3x +27y +3的最小值是____. 答案 9解析 z =3x +33y +3≥23x ·33y +3=23x +3y+3=232+3=9,当且仅当3x =33y ,即x =1,y=13时,z 取最小值. 4.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为______. 答案 2 2解析 因为x 2+2y 2≥2x 2·2y 2=22xy =22, 当且仅当x =2y 时取等号, 所以x 2+2y 2的最小值为2 2.5.(教材改编)①若x ∈(0,π),则sin x +1sin x ≥2;②若a ,b ∈(0,+∞),则lg a +lg b ≥2lg a ·lg b ;③若x ∈R ,则⎪⎪⎪⎪x +4x ≥4.其中正确结论的序号是________. 答案 ①③解析 ①因为x ∈(0,π),所以sin x ∈(0,1], 所以①成立;②只有在lg a >0,lg b >0, 即a >1,b >1时才成立; ③⎪⎪⎪⎪x +4x =|x |+⎪⎪⎪⎪4x ≥2|x |·⎪⎪⎪⎪4x =4,当且仅当x =±2时“=”成立.题型一 利用基本不等式求最值 命题点1 通过配凑法利用基本不等式例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)函数y =x 2+2x -1(x >1)的最小值为________.答案 (1)23 (2)1 (3)23+2解析 (1)x (4-3x )=13·(3x )(4-3x )≤13·[3x +(4-3x )2]2=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x)+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1. (3)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.命题点2 通过常数代换法利用基本不等式例2 已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.答案 4解析 ∵a >0,b >0,a +b =1, ∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4,即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 引申探究1.条件不变,求(1+1a )(1+1b )的最小值.解 (1+1a )(1+1b )=(1+a +b a )(1+a +b b )=(2+b a )·(2+ab )=5+2(b a +ab )≥5+4=9.当且仅当a =b =12时,取等号.2.已知a >0,b >0,1a +1b =4,求a +b 的最小值.解 由1a +1b =4,得14a +14b =1.∴a +b =(14a +14b )(a +b )=12+b 4a +a 4b ≥12+2b 4a ·a4b=1. 当且仅当a =b =12时取等号.3.将条件改为a +2b =3,求1a +1b 的最小值.解 ∵a +2b =3, ∴13a +23b =1, ∴1a +1b =(1a +1b )(13a +23b )=13+23+a 3b +2b 3a ≥1+2a 3b ·2b 3a =1+223. 当且仅当a =2b 时,取等号.思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________.(2)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5.方法二 由x +3y =5xy ,得x =3y5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15) ≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2, ∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b=a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b=a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0,∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 题型二 基本不等式的实际应用例3 (1)设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg z 4lg x +lg zlg y 的最小值为________.(2)(2016·江苏苏州暑假测试)设正四面体ABCD 的棱长为6,P 是棱AB 上的任意一点(不与点A ,B 重合),且点P 到平面ACD ,平面BCD 的距离分别为x ,y ,则3x +1y 的最小值是____.答案 (1)98(2)2+ 3解析 (1)由题意得z 2=xy ,lg x >0,lg y >0, ∴lg z 4lg x +lg z lg y =12(lg x +lg y )4lg x +12(lg x +lg y )lg y =18+lg y 8lg x +12+lg x 2lg y =58+lg y 8lg x +lg x 2lg y ≥58+2116=98, 当且仅当lg y 8lg x =lg x2lg y ,即lg y =2lg x ,即y =x 2时取等号.(2)过点A 作AO ⊥平面BCD 于点O ,则O 为△BCD 的重心,所以OB =23×32×6=2,所以AO =(6)2-(2)2=2. 又V P —BCD +V P —ACD =V A —BCD , 所以13S △BCD ·y +13S △ACD ·x =13S △BCD ·2,即x +y =2.所以3x +1y =12(3x +1y )(x +y )=12(4+x y +3yx)≥2+3, 当且仅当x =3-3,y =3-1时取等号.思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.(1)设x ,y >0,且x +y =4,若不等式1x +4y≥m 恒成立,则实数m 的最大值为_____.(2)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则每台机器为该公司创造的年平均利润的最大值是________万元. 答案 (1)94(2)8解析 (1)1x +4y =(1x +4y )(x +y 4)=14(5+y x +4x y )≥14(5+2×2)=94,当且仅当y =2x =83时等号成立.(2)年平均利润为y x =-x -25x +18=-(x +25x )+18,∵x +25x≥2x ·25x=10, ∴y x =18-(x +25x )≤18-10=8, 当且仅当x =25x ,即x =5时,取等号.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 若不等式x +2xy ≤a (x +y )对任意的实数x ,y ∈(0,+∞)恒成立,则实数a 的最小值为________. 答案5+12解析 由题意得a ≥x +2xyx +y=1+2yx 1+y x 恒成立.令t =y x (t >0),则a ≥1+2t 1+t 2,再令1+2t =u (u >1),则t =u -12,故a ≥u 1+⎝⎛⎭⎫u -122=4u +5u -2.因为u +5u ≥25(当且仅当u =5时等号成立),故u +5u -2≥25-2,从而0<4u +5u -2≤425-2=5+12,故a ≥5+12,即a min =5+12.命题点2 求参数值或取值范围例5 (1)已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 (1)12 (2)[-83,+∞)解析 (1)由3a +1b ≥ma +3b ,得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +a b +6≥29+6=12(当且仅当9b a =ab 时等号成立), ∴m ≤12,∴m 的最大值为12.(2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173,∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(2016·江苏三校联考)北京、张家港2022年冬奥会申办委员会在俄罗斯索契举办了发布会,某公司为了竞标配套活动的相关代言,决定对旗下的某商品进行一次评估.该商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了抓住申奥契机,扩大该商品的影响力,提高年销售量,公司决定立即对该商品进行技术革新和营销策略改革,并提高定价到x 元,公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入x5万元作为浮动宣传费用.试问:当该商品改革后的销售量a至少达到多少万件时,才可能使改革后的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.解 (1)设每件定价为t 元, 依题意得(8-t -251×0.2)t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.所以要使销售的总收入不低于原收入,该商品每件定价最高为40元. (2)依题意知,x >25,且ax ≥25×8+50+16(x 2-600)+15x ,等价于a ≥150x +16x +15(x >25).由于150x +16x ≥2150x ×16x =10, 当且仅当150x =x6,即x =30时等号成立,所以a ≥10.2.当该商品改革后的销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.8.利用基本不等式求最值典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x (x <0)的值域为________.错解展示解析 (1)∵x >0,y >0,∴1=1x +2y ≥22xy, ∴xy ≥22,∴x +y ≥2xy =42, ∴x +y 的最小值为4 2.(2)∵2x +3x ≥26,∴y =1-2x -3x ≤1-2 6.∴函数y =1-2x -3x(x <0)的值域为(-∞,1-26].答案 (1)42 (2)(-∞,1-26] 现场纠错解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y)=3+y x +2xy ≥3+22(当且仅当y =2x 时取等号),∴当x =2+1,y =2+2时,(x +y )min =3+2 2. (2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2(-2x )·3-x=1+26,当且仅当x =-62时取等号,故函数y =1-2x -3x (x <0)的值域为[1+26,+∞). 答案 (1)3+22 (2)[1+26,+∞)纠错心得 利用基本不等式求最值时要注意条件:一正二定三相等;多次使用基本不等式要验证等号成立的条件.1.(教材改编)已知a ,b ∈R ,且ab >0,则下列不等式中,恒成立的序号是________. ①a 2+b 2>2ab ; ②a +b ≥2ab ; ③1a +1b >2ab ; ④b a +a b ≥2. 答案 ④解析 因为a 2+b 2≥2ab ,当且仅当a =b 时,等号成立,所以①错误;对于④,因为ab >0,所以b a +a b≥2b a ·ab=2.对于②,③,当a <0,b <0时,明显错误. 2.(教材改编)用长为16 cm 的铁丝围成一个矩形,则所围成的矩形的最大面积是_____ cm 2. 答案 16解析 设矩形长为x cm(0<x <8),则宽为(8-x )cm ,面积S =x (8-x ).由于x >0,8-x >0,可得S ≤(x +8-x 2)2=16,当且仅当x =8-x ,即x =4时,S max =16.所以矩形的最大面积是16 cm 2.3.(3-a )(a +6)(-6≤a ≤3)的最大值为________. 答案 92解析(3-a )(a +6)≤(3-a )+(a +6)2=92,当且仅当3-a =a +6即a =-32时,等号成立.4.(2016·盐城模拟)函数y =x 2+2x 2+1的最小值为______.答案 2解析 y =x 2+1+1x 2+1=x 2+1+1x 2+1≥2,当且仅当x 2+1=1x 2+1,即x =0时,y 取到最小值2.5.设正数a ,使a 2+a -2>0成立,若t >0,则12log a t ____log a t +12(填“>”“≥”“≤”或“<”).答案 ≤解析 因为a 2+a -2>0,所以a <-2或a >1, 又a >0,所以a >1,因为t >0,所以t +12≥t ,所以log a t +12≥log a t =12log a t .6.设f (x )=x 2+x +1,g (x )=x 2+1,则f (x )g (x )的取值范围是________.答案 [12,32]解析 f (x )g (x )=x 2+x +1x 2+1=1+xx 2+1,当x =0时,f (x )g (x )=1;当x >0时,f (x )g (x )=1+1x +1x ≤1+12=32;当x <0时,x +1x =-[(-x )+(-1x )]≤-2,则f (x )g (x )=1+1x +1x ≥1-12=12.∴f (x )g (x )∈[12,32]. 7.设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是________.答案 4解析 2a 2+1ab +1a (a -b )-10ac +25c 2=(a -5c )2+a 2-ab +ab +1ab +1a (a -b )=(a -5c )2+ab +1ab +a (a -b )+1a (a -b )≥0+2+2=4,当且仅当a -5c =0,ab =1,a (a -b )=1时,等号成立, 即取a =2,b =22,c =25时满足条件. 8.(2016·南京一模)已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为_____. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22,∴6-(x 2+4y 2)≤x 2+4y 22,∴x 2+4y 2≥4(当且仅当x =2y 时取等号). 又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12 (当且仅当x =-2y 时取等号). 综上可知4≤x 2+4y 2≤12.9.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b )2cd 的最小值为_____.答案 4解析 由题意,知⎩⎪⎨⎪⎧a +b =x +y ,cd =xy ,所以(a +b )2cd =(x +y )2xy =x 2+y 2+2xy xy =x 2+y 2xy +2≥2+2=4,当且仅当x =y 时,等号成立.10.某民营企业的一种电子产品,2015年的年产量在2014年基础上增长率为a ;2016年计划在2015年的基础上增长率为b (a ,b >0),若这两年的平均增长率为q ,则q 与a +b2的大小关系是________. 答案 q ≤a +b 2解析 设2014年的年产量为1,则2016年的年产量为(1+a )(1+b ), ∴(1+q )2=(1+a )(1+b ), ∴1+q =(1+a )(1+b )≤1+a +1+b 2=1+a +b2, ∴q ≤a +b2,当且仅当a =b 时,取“=”.11.(2016·泰州模拟)已知a >b >1且2log a b +3log b a =7,则a +1b 2-1的最小值为______.答案 3解析 因为2log a b +3log b a =7,所以2(log a b )2-7log a b +3=0,解得log a b =12或log a b =3,因为a >b >1,所以log a b ∈(0,1),故log a b =12,从而b =a ,因此a +1b 2-1=a +1a -1=(a -1)+1a -1+1≥3,当且仅当a =2时等号成立.12.(2016·南通模拟)设实数x ,y 满足x 24-y 2=1,则3x 2-2xy 的最小值是________.答案 6+4 2解析 方法一 因为x 24-y 2=1,所以3x 2-2xy =3x 2-2xy x 24-y 2=3-2y x 14-(y x)2,令k =y x ∈(-12,12),则3x 2-2xy =3-2k 14-k 2=4(3-2k )1-4k 2,再令t =3-2k ∈(2,4),则k =3-t 2,故3x 2-2xy =4t-t 2+6t -8=4-(t +8t)+6≥46-28=6+42,当且仅当t =22时等号成立. 方法二 令t =3x 2-2xy ,则y =3x 2-t 2x ,代入方程x 24-y 2=1并化简得8x 4+(4-6t )x 2+t 2=0,令u =x 2≥4,则8u 2+(4-6t )u +t 2=0在[4,+∞)上有解,从而由⎩⎪⎨⎪⎧Δ=(4-6t )2-32t 2≥0,6t -416>0,得t 2-12t +4≥0,解得t ≥6+42,当取得最小值时,u =2+322满足题意.方法三 因为x 24-y 2=1=(x 2+y )(x2-y ),所以令x 2+y =t ,则x 2-y =1t,从而⎩⎨⎧x =t +1t,y =12(t -1t ),则3x 2-2xy =6+2t 2+4t2≥6+42,当且仅当t 2=2时等号成立.13.(2016·江苏)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是____. 答案 8解析 在△ABC 中,A +B +C =π, sin A =sin[π-(B +C )]=sin(B +C ), 由已知,sin A =2sin B sin C , ∴sin(B +C )=2sin B sin C .∴sin B cos C +cos B sin C =2sin B sin C ,A ,B ,C 全为锐角,两边同时除以cos B cos C 得: tan B +tan C =2tan B tan C .又tan A =-tan(B +C )=-tan B +tan C 1-tan B tan C=tan B +tan Ctan B tan C -1.∴tan A (tan B tan C -1)=tan B +tan C . 则tan A tan B tan C -tan A =tan B +tan C , ∴tan A tan B tan C =tan A +tan B +tan C =tan A + 2tan B tan C ≥22tan A tan B tan C , ∴tan A tan B tan C ≥22, ∴tan A tan B tan C ≥8.14.已知函数f (x )=x 2+3x -a (x ≠a ,a 为非零常数).(1)解不等式f (x )<x ;(2)设x >a 时,f (x )有最小值为6,求a 的值. 解 (1)f (x )<x ,即x 2+3x -a <x ,整理为(ax +3)(x -a )<0. 当a >0时,(x +3a)(x -a )<0,∴解集为{x |-3a <x <a };当a <0时,(x +3a )(x -a )>0,解集为{x |x >-3a 或x <a }.(2)设t =x -a ,则x =t +a (t >0). ∴f (x )=t 2+2at +a 2+3t=t +a 2+3t +2a≥2t ·a 2+3t+2a=2a 2+3+2a . 当且仅当t =a 2+3t ,即t =a 2+3时,等号成立, 即f (x )有最小值2a 2+3+2a . 依题意有:2a 2+3+2a =6, 解得a =1.。
(江苏专用)2018版高考数学专题复习 专题7 不等式 第45练 基本不等式练习 文1.(2016·泰州模拟)定义运算“⊗”:x ⊗y =xy (x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.2.若2x+2y=1,则x +y 的取值范围是____________.3.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则a +b2cd的最小值是________.4.(2016·长春调研)若两个正实数x ,y 满足2x +1y=1,且x +2y >m 2+2m 恒成立,则实数m的取值范围是________.5.设正实数a ,b 满足a +b =2,则1a +a8b的最小值为________.6.(2016·盐城模拟)已知关于x 的一元二次不等式ax 2+2x +b >0的解集为{x |x ≠-1a},则a 2+b 2+7a -b(其中a >b )的最小值为________.7.(2016·深圳模拟)已知正实数a ,b 满足1a +2b=3,则(a +1)(b +2)的最小值是________________.8.若实数x ,y ,z 满足x 2+y 2+z 2=2,则xy +yz +xz 的取值范围是____________. 9.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m ·a n =4a 1,则1m +4n的最小值为________.10.(2016·苏州模拟)若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b的最小值为__________.11.(2016·苏州、无锡、常州三模)已知常数a>0,函数f(x)=x+ax-1(x>1)的最小值为3,则a的值为______.12.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则PA·PB的最大值是________.13.已知函数y=x-4+9x+1(x>-1),当x=a时,y取得最小值b,则a+b=________.14.(2016·南京盐城联考)已知正实数x,y满足等式x+y+8=xy,若对任意满足条件的x,y,不等式(x+y)2-a(x+y)+1≥0恒成立,则实数a的取值范围是______________.答案精析1. 22.(-∞,-2]3.44.(-4,2) 5.1解析 依题意得1a +a 8b =a +b 2a +a 8b =12+b 2a +a 8b ≥12+2b 2a ×a8b=1,当且仅当⎩⎪⎨⎪⎧b 2a =a 8b ,a +b =2,即a =2b =43时取等号,因此1a +a8b的最小值是1.6.6解析 由不等式ax 2+2x +b >0的解集为{x |x ≠-1a }可得⎩⎪⎨⎪⎧a >0,Δ=4-4ab =0,即ab =1,a >0,所以a 2+b 2+7a -b =a -b 2+2ab +7a -b=a -b +9a -b≥6, 当且仅当a -b =3时等号成立. 7.509解析 1a +2b =3⇒2a +b =3ab ⇒3ab =2a +b ≥22ab ⇒ab ≥89,因此(a +1)(b +2)=ab +2a +b +2=4ab +2≥4×89+2=509,当且仅当2a =b =43时,等号成立.8.[-1,2]解析 因为x 2+y 2+z 2=2,所以2x 2+2y 2+2z 2=4, 所以4≥2xy +2yz +2xz ,即xy +yz +xz ≤2. 又因为(x +y +z )2=x 2+y 2+z 2+2xy +2xz +2yz ≥0, 所以xy +yz +xz ≥-1,所以xy +yz +xz 的取值范围是[-1,2]. 9.32解析 ∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,又∵{a n }是正项等比数列, ∴a 5≠0,且q >0, ∴q 2-q -2=0,∴q =2或q =-1(舍去). 又a m ·a n =4a 1, ∴a m ·a n =16a 21,a 21qm +n -2=16a 21,又a 21≠0,∴m +n -2=4,∴m +n =6, 1m +4n =16(1m +4n )(m +n ) =16(5+4m n +n m ) ≥16(5+2 4m n ·n m )=32. 当且仅当4m n =nm,即m =2,n =4时取等号.10.3+2 2解析 画出y =1+sin πx (0<x <2)的图象(图略), 知此曲线的对称中心为(1,1), 则直线ax +by -1=0过点(1,1), 所以a +b =1, 又a >0,b >0, 所以1a +2b =(1a +2b)(a +b )=1+b a+2ab+2≥3+22,当且仅当b a =2ab时取等号. 即(1a +2b)min =3+2 2.11.1解析 ∵x >1,∴x -1>0,又a >0, ∴f (x )=x +a x -1=x -1+ax -1+1≥2a +1,∴2a +1=3,∴a =1, 此时,x -1=1x -1,即x =2. 12.5解析 ∵直线x +my =0与mx -y -m +3=0分别过定点A ,B , ∴A (0,0),B (1,3).当点P 与点A (或B )重合时,PA ·PB 为零;当点P 与点A ,B 均不重合时,∵P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直,∴△APB 为直角三角形, ∴AP 2+BP 2=AB 2=10, ∴PA ·PB ≤PA 2+PB 22=102=5,当且仅当PA =PB 时,上式等号成立. 13.3解析 y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0,所以由基本不等式,得y =x +1+9x +1-5≥2x +9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3. 14.(-∞,658]解析 因为x +y +8=xy ≤(x +y2)2,即4(x +y )+32≤(x +y )2, 解得x +y ≥8或x +y ≤-4(舍去).不等式(x +y )2-a (x +y )+1≥0恒成立可等价转化为a ≤x +y 2+1x +y恒成立,令x +y =t (t ≥8),且f (t )=t 2+1t =t +1t.函数f (t )在[8,+∞)上单调递增, 所以f (t )min =f (8)=8+18=658.所以实数a 的取值范围为(-∞,658].。
(江苏专用)2018版高考数学专题复习 专题7 不等式 第47练 不
等式综合练练习 文
1.(2016·泰州模拟)已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =____________.
2.若点P (x ,y )在函数y =|x |的图象上,且x ,y 满足x -2y +2≥0,则点P 到坐标原点距离的取值范围是________________. 3.(2016·南京一模)若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2
x -y 的最小值为________.
4.(2016·徐州质检)若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是______________.
5.(2016·潍坊联考)已知不等式x +2x +1
<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n
的最小值为________. 6.(2016·山西大学附中检测)已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2
a -
b 的最小值等于________.
7.(2016·宁德质检)设P 是不等式组⎩⎪⎨⎪⎧ y ≥0,x -2y ≥-1,
x +y ≤3表示的平面区域内的任意一点,
向量m =(1,1),n =(2,1).若OP →=λm +μn (λ,μ∈R ),则μ的最大值为________.
8.(2016·青岛质检)在实数集R 中定义一种运算“*”,对任意a ,b ∈R ,a *b 为唯一确定的实数,且具有性质:
(1)对任意a ∈R ,a *0=a ;
(2)对任意a ,b ∈R ,a *b =ab +(a *0)+(b *0).
则函数f (x )=(e x )*1e x 的最小值为________. 9.(2016·福建长乐二中等五校期中联考)某厂生产某种产品的年固定成本为250万元,每
生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13
x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x
-1 450(万元).通过市场分析,若每件售价为500元时,该厂一年内生产的商品能全部销售完.
(1)写出年利润L (万元)关于年产量x (千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
10.已知f (x )=lg(x +1),g (x )=2lg(2x +t )(t ∈R ,t 是参数).
(1)当t =-1时,解不等式f (x )≤g (x );
(2)如果当x ∈[0,1]时,f (x )≤g (x )恒成立,求参数t 的取值范围.
答案精析
1.(2,3]
2.[0,22]
解析 因为点P 在y =|x |的图象上,且x ,y 满足x -2y +2≥0,由图象可知点P 位于线段OC ,OB 上(如图所示),显然点P 到坐标原点的距离最小值为0,当点P 位于B 点时,距离最大,此时由⎩⎪⎨⎪
⎧ y =x ,x -2y +2=0,得⎩⎪⎨⎪
⎧ x =2,y =2,即B (2,2),所以OB =22,所以最大值为2 2.
所以点P 到坐标原点距离的取值范围是[0,22].
3.4
4.(-∞,-8]
解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8.当且仅当x =log 32时取等号. 5.9
解析 易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n
=(2m +n )(2m +1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n
的最小值为9.
6.2 2
解析 由函数f (x )=|lg x |,a >b >0,f (a )=f (b ),可知a >1>b >0,所以lg a =-lg b ,b =1a ,a -b =a -1a >0,则a 2+b 2a -b
=a 2+ 1a 2a -1a =a -1a +2a -1a ≥22(当且仅当a -1a =2a -1a ,即a =
2+62时,等号成立). 7.3
解析
设P 的坐标为(x ,y ),因为OP →=λm +μn ,
所以⎩⎪⎨⎪⎧ x =λ+2μ,y =λ+μ,
解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分,由图可知,当目标函数μ=x -y 过点G (3,0)时,μ取得最大值3-0=3.
8.3
解析 依题意可得f (x )=(e x )*1e =e x +1e +1≥2e x ·1e
x +1=3,当且仅当x =0时“=”成立,所以函数f (x )=(e x )*1e
x 的最小值为3. 9.解 (1)当0<x <80,x ∈N *时, L (x )=500×1 000x 10 000-13
x 2-10x -250 =-13
x 2+40x -250; 当x ≥80,x ∈N *
时, L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x
), ∴L (x )=⎩⎪⎨⎪⎧ -13x 2+40x -250 0<x <80,x ∈N * ,1 200- x +10 000x x ≥80,x ∈N * .
(2)当0<x <80,x ∈N *
时, L (x )=-13
(x -60)2+950,
∴当x =60时, L (x )取得最大值L (60)=950.
当x ≥80,x ∈N *
时,
L (x )=1 200-(x +10 000x )
≤1 200-2 x ·10 000
x
=1 200-200=1 000, ∴当x =10 000
x ,即x =100时,
L (x )取得最大值L (100)=1 000>950.
综上所述,当x =100时,L (x )取得最大值1 000,
即年产量为100千件时,该厂在这一商品的生产中所获利润最大.
10.解 (1)当t =-1时,f (x )≤g (x ),
即lg(x +1)≤2lg(2x -1),
此不等式等价于⎩⎪⎨⎪⎧ x +1>0,
2x -1>0,
x +1≤ 2x -1 2, 解得x ≥5
4.
所以原不等式的解集为{x |x ≥5
4}.
(2)因为当x ∈[0,1]时,
f (x )≤
g (x )恒成立,
所以x ∈[0,1]时,⎩⎪⎨⎪⎧
x +1>0,2x +t >0,
x +1≤ 2x +t 2恒成立,
所以x ∈[0,1]时,⎩⎨⎧ x +1>0,t >-2x ,
t ≥-2x +x +1恒成立,
即x ∈[0,1]时,t ≥-2x +x +1恒成立,
于是转化为求-2x +x +1(x ∈[0,1])的最大值问题. 令u =x +1,则x =u 2-1,
由x ∈[0,1],知u ∈[1, 2 ],
所以-2x +x +1=-2(u 2-1)+u
=-2(u -14)2+17
8,
当u=1,即x=0时,-2x+x+1有最大值1. 所以t的取值范围是[1,+∞).。