不等式-高考数学解题方法归纳总结专题训练
- 格式:doc
- 大小:694.00 KB
- 文档页数:12
1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。
2025年高考数学一轮复习讲义及高频考点归纳与方法总结(新高考通用)第04练基本不等式及其应用(精练)1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最值问题.3.理解基本不等式在生活实际问题中的应用.一、单选题1.(2022·全国·高考真题)已知910,1011,89m m m a b ==-=-,则()A .0a b >>B .0a b >>C .0b a >>D .0b a>>二、多选题2.(2022·全国·高考真题)若x ,y 满足221+-=x y xy ,则()A .1x y +≤B .2x y +≥-C .222x y +≤D .221x y +≥三、填空题3.(2023·天津·高考真题)在ABC 中,160BC A =∠= ,,11,22AD AB CE CD == ,记,AB a AC b ==,用,a b表示AE =;若13BF BC = ,则AE AF ⋅ 的最大值为.四、解答题4.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.【A 级基础巩固练】一、单选题1.(23-24高二下·福建三明·阶段练习)若0x >,则22y x x=+的最小值是()A .B C .4D .22.(2024高二下·湖南株洲·学业考试)已知04x <<)A .12B .1C D .33.(23-24高一下·贵州贵阳·阶段练习)已知02x <<,则()32x x -的最大值是()A .3-B .3C .1D .6【答案】B【分析】利用基本不等式,直接计算即可.取得等号,满足题意4.(23-24高一下·河南周口·阶段练习)已知正数,a b 满足1ab =,则22(1)(1)T a b =+++的最小值为()A .4B .6C .8D .165.(2023·湖南岳阳·模拟预测)若0,0a b >>且1a mb +=,若ab 的最大值为8,则正常数m =()A .1B .2C .3D .46.(23-24高一下·云南丽江·开学考试)已知a ,b 为正数,41a b +=,则114a b+的最小值为()A .1B .2C .4D .87.(23-24高一下·福建南平·期中)已知0a >,0b >,230a b +-=,则21a b++的最小值为()A .2B .1C .32D .348.(23-24高一下·湖南衡阳·阶段练习)已知向量()2,1a m m =+,(),12b n =,若向量a ,b 共线且0m >,则n 的最大值为()A .6B .4C .8D .39.(23-24高一下·浙江·期中)已知实数a ,b ,满足310ab +=(1b >),则31b a ++的取值范围是()A .()(),04,-∞⋃+∞B .()4,+∞C .(][),04,-∞+∞U D .[)4,+∞10.(2024·辽宁葫芦岛·一模)已知0a >,0b >,2a b +=,则()A .01a <≤B .01ab <≤C .222a b +>D .12b <<11.(2024·山东枣庄·一模)已知0,0a b >>,则“2a b +>”是“222a b +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(23-24高一下·辽宁抚顺·阶段练习)已知,a b 均为正实数,240a b -+≤,则23a ba b++的最小值为()A .135B .145C .3D .513二、多选题13.(2024高三·全国·专题练习)已知x ≥1,则下列函数的最小值为2的有()A .22xy x =+B .2y =C .13y xx=-D .411y x x =-+14.(23-24高三上·云南楚雄·期末)已知正数a ,b 满足5a b ab +=,则()A .151a b+=B .a 与b 可能相等C 6≥D .a b +的最小值为6+【答案】BD15.(23-24高二下·浙江·期中)已知正数,a b 满足()()111a b --=,则下列选项正确的是()A .111a b+=B .25ab b+³C .4a b +≥D .228a b +≤三、填空题16.(23-24高一上·北京·期中)已知()8233y x x x =+>,则当x =时,y 取最小值为.17.(2024·上海徐汇·二模)若正数a b 、满足1a b+=,则2a b +的最小值为.18.(2024·河南商丘·模拟预测)若正数,a b 满足232a b a b =+,则a 的最小值是.19.(23-24高二下·云南·阶段练习)设0,0m n >>,若直线:22l mx y +=过曲线11x y a -=+(0a >,且1a ≠)的定点,则11m n+的最小值为.20.(23-24高一上·广西百色·期末)若1x >,则2161x x x -+-的最小值为.21.(2023·湖南岳阳·模拟预测)如图,某人沿围墙CD 修建一个直角梯形花坛ABCD ,设直角边AD x =米,2BC x =米,若12AD AB BC ++=米,问当x =米时,直角梯形花坛ABCD 的面积最大.22.(23-24高二下·湖南长沙·阶段练习)已知02a <<,则2a a+-的最小值为.四、解答题23.(23-24高二下·全国·期中)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用32年的隔热层,每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位;cm )满足关系:()()161102C x x x =≤≤+,设()f x 为隔热层建造费用与32年的能源消耗费用之和.(1)求()f x 的表达式;(2)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.24.(23-24高一上·陕西渭南·阶段练习)已知0a >,0b >,0c >,求证:(1)6b c a c a ba b c+++++≥;(2)()()()2222226a b c b a c c a b abc +++++≥.25.(23-24高一上·浙江·期末)为了进一步增强市场竞争力,某公司计划在2024年利用新技术生产某款运动手表,经过市场调研,生产此款运动手表全年需投入固定成本100万,每生产x (单位:千只)手表,需另投入可变成本()R x 万元,且()228020,05064002015200,50x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.2万元,且全年生产的手机当年能全部销售完.(利润=销售额-固定成本-可变成本)(1)求2024年的利润()W x (单位:万元)关于年产量x (单位:千只)的函数关系式.(2)2024年的年产量为多少(单位:千只)时,企业所获利润最大?最大利润是多少?26.(23-24高一上·黑龙江哈尔滨·阶段练习)完成下列不等式的证明:(1)对任意的正实数a ,b ,c,证明:a b c ++(2)设a ,b ,c 为正实数,且1a b c ++=,证明:13ab ac bc ++≤.【B 级能力提升练】一、单选题1.(23-24高一下·辽宁葫芦岛·开学考试)已知0,0x y >>,且41x y +=,则2y xxy+的最小值为()A .5B .C .4D .2.(2023·河南信阳·模拟预测)若51x -<<-,则函数()22f x x ++=+有()A .最小值1B .最大值1C .最小值1-D .最大值1-所以函数()f x 有最大值1-.故选:D.3.(23-24高三下·浙江·阶段练习)已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A .1+B .8C .D .1+4.(2024·辽宁·一模)已知20m n >>,则2m mm n n+-的最小值为()A .3+B .3-C .2+D .25.(2024·全国·模拟预测)已知,则下列不等式中不成立...的是()A .01ab <<B .122a b ->C >D .114a b+>【答案】C【分析】对于AB ,利用对数函数的性质即可判断;对于CD ,利用对数的运算得到1a b +=,结合基本不等式即可判断.【详解】因为lg 2,lg5a b ==,所以lg 2lg 5lg101a b +=+==,6.(2024·辽宁大连·一模)若()()ln 0,01f x m n n x+=>>--奇函数,则41m n ++的最小值为().A .65B .95C .4D .57.(23-24高一下·贵州贵阳·阶段练习)故宫博物院收藏着一幅《梧桐双兔图》.该绢本设色画纵约176cm ,横约95cm ,挂在墙上最低点B 离地面194cm ,小兰身高160cm (头顶距眼睛的距离为10cm).为使观测视角θ最大,小兰离墙距离S 应为()A.B .94cm C.D .76cm8.(2024·全国·模拟预测)已知0x >,0y >且1x y +=,则222211x y x y +++的最小值为()A .15B .25C .35D .459.(23-24高二下·江苏苏州·阶段练习)为提高市民的健康水平,拟在半径为200米的半圆形区域内修建一个健身广场,该健身广场(如图所示的阴影部分)分休闲健身和儿童活动两个功能区,图中ABCD 区域是休闲健身区,以CD 为底边的等腰三角形区域PCD 是儿童活动区,P ,C ,D 三点在圆弧上,AB 中点恰好在圆心O ,则当健身广场的面积最大时,OB 的长度为()A .100米B .150米C.米D.由于2AD BC OC ==-都是上底为21R t -,下底为所以,健身广场的面积S 从而,健身广场的面积最大的时候,恰好就是()22111tt t t t -+=-+=()223323223t t t +-+-≤=二、多选题10.(2023·浙江绍兴·二模)已知0a >,0b >,a b ab +=,则()A .1a >且1b >B .4ab ≥C .49a b +≤D .11b ab+>11.(2024·全国·模拟预测)已知0a >,0b >且2a b+=,则下列说法正确的是()A .ab 有最小值4B .a b +有最小值92C .2ab a +有最小值D的最小值为12.(23-24高二下·江西宜春·期中)已知0,1a b a b >>+=.则下列结论正确的有()A .a 32B .22122a b ++的最小值为C .1422a b a b+的最小值为3D .sin 1a b +<三、填空题13.(23-24高一下·河北保定·开学考试)若正数,m n 满足2212516m n +=,则mn 的最大值为.14.(23-24高一上·江苏扬州·期末)若1x >,1y >,10xy =,则lg lg x y 的最大值为.15.(2024·全国·模拟预测)已知1x >,0y >,且2x y +=,则11y x +-的最小值是.17.(2024·上海普陀·二模)若实数a ,b 满足20a b -≥,则24ab+的最小值为.18.(23-24高一上·浙江·期末)已知22321(,R)x xy y x y -+=∈,则222x y +的最小值为.四、解答题19.(2024·全国·二模)已知实数0,0a b >>,满足a b +=(1)求证:2224a b +≥;(2)求()()2211ab ab++的最小值.【答案】(1)证明见解析(2)1220.(23-24高一上·湖北武汉·阶段练习)已知0a >,0b >,且2a b +=.(1)求证:11413a b +≥+;(2)求证:42aab b+≥.21.(23-24高一下·甘肃白银·期中)养鱼是现在非常热门的养殖项目,为了提高养殖效益,养鱼户们会在市场上购买优质的鱼苗,分种类、分区域进行集中养殖.如图,某养鱼户承包了一个边长为100米的菱形鱼塘(记为菱形ABCD )进行鱼类养殖,为了方便计算,将该鱼塘的所有区域的深度统一视为2米.某养鱼户计划购买草鱼苗、鲤鱼苗和鲫鱼苗这三种鱼苗进行分区域养殖,用不锈钢网将该鱼塘隔离成ABD ,DEFB ,CEF 三块区域,图中,BD EF 是不锈钢网露出水面的分界网边,E 在鱼塘岸边DC 上(点E 与D ,C 均不重合),F 在鱼塘岸边BC .上(点F 与B ,C 均不重合).其中△ECF 的面积与四边形DEFB 的面积相等,△DAB 为等边三角形.(1)若测得EC 的长为80米,求CF 的长.(2)已知不锈钢网每平方米的价格是20元,为了节约成本,试问点E ,F 应如何设置,才能使得购买不锈钢1.414=)22.(2023·贵州黔西·一模)设a,b,c均为正数,且1a b c++=,证明:(1)2221 3a b c++≥;(2)333a cb ac b abc++≥.23.(23-24高一上·山东·阶段练习)已知0a >,0b >.(1)若4a b -=,证明:471a b +≥+.(2)若8a b ab ++=,求a b +的最小值.(3)若229327a b ab ++=,求3a b +的最大值.【C 级拓广探索练】一、单选题1.(22-23高一上·江苏徐州·阶段练习)设正实数,,x y z 满足22-3+4-=0x xy y z ,则当xyz取得最大值时,212+-x y z 的最大值为()A .9B .1C .94D .32.(23-24高三上·浙江绍兴·期末)已知x 为正实数,y 为非负实数,且22x y +=,则1x y +++的最小值为()A .34B .94C .32D .923.(2024·全国·模拟预测)设{}max ,,x y z 为,,x y z 中最大的数.已知正实数,a b ,记max 8,2M a b⎧=⎨⎩,则M 的最小值为()A .1B C .2D .44.(22-23高一上·河南·阶段练习)已知22321x xy y -+=(),R x y ∈,则22x y +的最小值为()A 6B 6C .6D .6二、多选题5.(23-24高一上·福建泉州·期末)已知0,0,21x y x y >>+=,则()A .42x y +的最小值为B .22log log x y +的最大值为3-C .y x xy --的最小值为1-D .22221x y x y +++的最小值为16正确;三、填空题6.(2023·山西·模拟预测)已知0,0a b >>,且122a b +=,则161211a b +--的最小值是.7.(23-24高三上·湖北荆州·阶段练习)已知实数,x y 满足22221x xy y -+=,则22x y -的最大值为.四、解答题8.(2023·全国·模拟预测)已知(),,0,x y z ∈+∞,且1x y z ++=.(1)1z>-;(2)求222544x y z xy yz xz +++++的最大值.,三式相加,可得:9.(23-24高一上·山东青岛·期末)某药品可用于治疗某种疾病,经检测知每注射t ml药品,从注射时间起血药浓度y(单位:ug/ml)与药品在体内时间x(单位:小时)的关系如下:162,06,89,618.2t xxyx t x⎧⎛⎫-≤≤⎪⎪-⎪⎝⎭=⎨⎛⎫⎪-<≤⎪⎪⎝⎭⎩当血药浓度不低于2ug/ml时才能起到有效治疗的作用,每次注射药品不超过2ml.(1)若注射1ml药品,求药品的有效治疗时间;(2)若多次注射,则某一时刻体内血药浓度为每次注射后相应时刻血药浓度之和.已知病人第一次注射1ml 药品,12小时之后又注射a ml药品,要使随后的6小时内药品能够持续有效消疗,求a的最小值.。
专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。
专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3B .()3,1--C .()(),31,-∞-⋃+∞D .()3,1-例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x ⎫<⎬D .1|x x ⎧⎫<⎨⎬ 8002222A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m > C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<例9.(2022·全国·高三专题练习)在关于x 的不等式2(1)0x a x a -++<的解集中至多包含2个整数,则a 的取值范围是 A .(3,5)-B .(2,4)-C .[3,5]-D .[2,4]-例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围【方法技巧与总结】 1.数形结合处理. 2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2-B .1C .2D .8例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. (多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >0|6 0201132例16.(2022·全国·高三专题练习)若不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,则不等式303x ax -<-的解集为___________.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【方法技巧与总结】1.一定要牢记二次函数的基本性质.2.含参的注意利用根与系数的关系找关系进行代换. 题型四:其他不等式解法例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________.例21.(2022·上海·高三专题练习)关于x 230≥的解集为_________.例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围24321131上为减函数,则实数a 的取值范围为( ) A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫-- ⎪⎝⎭例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( )A .196B .3C .103 D .92例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤D .{}34x x -<≤2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3234|0{}2| 1114.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1-B .(-C .()0,1D .(5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的取值范围为( )A .[1,3]-B .75,22⎡⎤-⎢⎥⎣⎦C .[1,-D .[1,7.(2022·江苏无锡·模拟预测)已知实数a ,b 满足如下两个条件:(1)关于x 的方程2320x x ab --=有两个异号的实根;(2)211a b+=,若对于上述的一切实数a ,b ,不等式222a b m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2-B .()2,4-C .][(),42,-∞-⋃+∞D .][(),24,-∞-⋃+∞8.(2022·全国·高三专题练习)已知[1a ∈-,1],不等式2(4)420x a x a +-+->恒成立,则x 的取值范围为()A .(-∞,2)(3⋃,)∞+B .(-∞,1)(2⋃,)∞+C .(-∞,1)(3⋃,)∞+D .(1,3)二、多选题9.(2022·全国·高三专题练习)若不等式2sin sin 20x a x -+≥对任意的0,2x π⎛⎤∈ ⎥⎝⎦恒成立,则实数a 可能是A .1B .2C .3D .410.(2022·江苏·高三专题练习)已知不等式20ax bx c ++>的解集为{}x m x n <<,其中0m >,则以下选项正确的有( ) A .0a <B .0c >2011201111222A .当0m ≠时,()0f x <的解集为2mx x m ⎧⎫-<<⎨⎬⎩⎭B .当1m =时,[)12,1,x x ∀∈+∞时,()()()12120x x f x f x -->⎡⎤⎣⎦C .121,,4x x m ⎛⎤∀∈-∞ ⎥⎝⎦且12x x ≠时,()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭D .当0m <时,若120x x <<,则()()2112>x f x x f x12.(2022·重庆巴蜀中学高三阶段练习)已知两个变量x ,y 的关系式(,)(1)f x y x y =-,则以下说法正确的是( )A .(1,3)(3,1)0f f ==B .对任意实数a ,都有1(,)4f a a ≤成立 C .若对任意实数x ,不等式(,)4f x a x a -≤-+恒成立,则实数a 的取值范围是[5,3]- D .若对任意正实数a ,不等式(,)4f x a x a -≤-+恒成立,则实数x 的取值范围是(,0)-∞ 三、填空题13.(2022·全国·高三专题练习)不等式210ax x c a++>的解集为{|21}x x -<<,则函数y =递增区间是_______14.(2022·浙江·高三专题练习)若不等式2(3)16x b -<的解集中的整数有且仅有1,2,3,则实数b 的取值范围是___________.15.(2022·全国·高三专题练习)若关于x 的不等式()2220x a x a -++->恰有1个正整数解,则a 的取值范围是___________.16.(2022·全国·高三专题练习)设a ,b ,c R ∈,对任意满足1x 的实数x ,都有21ax bx c ++,则a b c++的最大可能值为__. 四、解答题17.(2022·北京·高三学业考试)已知函数2()1f x x mx =++(m 是常数)的图象过点(1,2). (1)求()f x 的解析式;(2)求不等式()21f x x <+的解集.18.(2022·江西·高三期末(文))已知()|2||1|f x x x =++-. (1)解不等式()8f x x ≤+;(2)若关于x 的不等式2()2f x m m ≥-在R 上恒成立,求实数m 的取值范围.192320010 0 21(3)设1x ,2x 是方程()0f x =123||2x x -<.20.(2022·浙江·高三专题练习)若不等式2(1)460a x x 的解集是{31}x x -<<. (1)解不等式22(2)0x a x a ;(2)b 为何值时,230ax bx ++≥的解集为R .21.(2022·全国·高三专题练习)解关于x 的不等式:()()21100ax a x a +--<<. 22.(2022·全国·高三专题练习)已知二次函数()2f x ax bx c =++.(1)若()10f -=,试判断函数()f x 零点个数; (2)是否存在,,a b c ∈R ,使()f x 同时满足以下条件: ①对任意,(4)(2)x R f x f x ∈-=-,且()0f x ≥; ②对任意x ∈R ,都有210()(1)2f x x x ≤-≤-.若存在,求出,,a b c 的值,若不存在,请说明理由.专题05 一元二次不等式与其他常见不等式解法【考点预测】 1、一元二次不等式一元二次不等式20(0)ax bx c a ++>≠,其中24b ac ∆=-,12,x x 是方程20(0)ax bx c a ++>≠的两个根,且12x x <(1)当0a >时,二次函数图象开口向上. (2)①若0∆>,解集为{}21|x x x x x ><或. ②若0∆=,解集为|2b x x R x a ⎧⎫∈≠-⎨⎬⎩⎭且. ③若0∆<,解集为R .(2) 当0a <时,二次函数图象开口向下. ①若0∆>,解集为{}12|x x x x << ②若0∆≤,解集为∅ 2、分式不等式 (1)()0()()0()f x f xg x g x >⇔> (2)()0()()0()f x f xg x g x <⇔< (3)()()0()0()0()f x g x f x g x g x ≥⎧≥⇔⎨≠⎩ (4)()()0()0()0()f x g x f x g x g x ≤⎧≤⇔⎨≠⎩ 3、绝对值不等式(1)22()()[()][()]f x g x f x g x >⇔>(2)()()(()0)()()()()f x g x g x f x g x f x g x >>⇔><-或;()()(()0)()()()f x g x g x g x f x g x <>⇔-<<;(3)含有两个或两个以上绝对值符号的不等式,可用零点分段法和图象法求解1.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>mn ),解关于x 的不等式02>++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>++c x b x a 的解集为)11(m n ,,即关于x 的不等式02>++a bx cx 的解集为)11(mn ,.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤++a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤++c x b x a 的解集为)1[]1(∞+-∞,,m n 即关于x 的不等式02≤++a bx cx 的解集为)1[]1(∞+-∞,,mn .2.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,(其中0>>m n ),解关于x 的不等式02>+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2>+-c x b x a 的解集为)11(n m --,即关于x 的不等式02>+-a bx cx 的解集为)11(nm --,. 3.已知关于x 的不等式02>++c bx ax 的解集为)(n m ,,解关于x 的不等式02≤+-a bx cx .由02>++c bx ax 的解集为)(n m ,,得:01)1(2≤+-c x b x a 的解集为)1[]1(∞+---∞,,n m 即关于x 的不等式02≤+-a bx cx 的解集为)1[]1(∞+---∞,,nm ,以此类推. 4.已知关于x 的一元二次不等式02>++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆>00a ;5.已知关于x 的一元二次不等式02>++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆<00a ;6.已知关于x 的一元二次不等式02<++c bx ax 的解集为R ,则一定满足⎩⎨⎧<∆<00a ;7.已知关于x 的一元二次不等式02<++c bx ax 的解集为φ,则一定满足⎩⎨⎧≤∆>00a .【题型归纳目录】题型一:不含参数一元二次不等式的解法 题型二:含参数一元二次不等式的解法例1.(2022·新疆乌鲁木齐·二模(理))不等式(2)(1)0x x +->的解集为( ) A .{2}xx <-∣ B .{1}x x >∣ C .{21}x x -<<∣ D .{2∣<-xx 或1}x > 【答案】D 【解析】 【分析】结合一元二次不等式的解法求得正确答案即可. 【详解】由(2)(1)0x x +->解得2x <-,或1x >,所以不等式(2)(1)0x x +->的解集为{2∣<-x x 或1}x >, 故选:D.例2.(2022·全国·高三专题练习(文))已知函数()25x f x a -=-(0a >且1a ≠)的图象过定点(),m n ,则不等式210x mx n +++<的解集为( ) A .()1,3 B .()3,1-- C .()(),31,-∞-⋃+∞ D .()3,1-【答案】D 【解析】 【分析】根据指数型函数的定点求解,m n ,代入后再求解一元二次不等式. 【详解】当2x =时,()220255154f aa -=-=-=-=-,故2,4m n ==-,所以不等式为2230x x +-<,解得31x -<<,所以不等式的解集为()3,1-. 故选:D例3.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)【答案】C 【解析】 【分析】根据()f x 解析式,可得()f x 的单调性,根据条件,可得x +2<x 2+2x ,根据一元二次不等式的解法,即可得21020 0所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∪(1,+∞). 故选:C例4.(2022·全国·高三专题练习)关于x 的不等式()2210m m x m x -+++>的解集为R ,则实数m 的范围是( )A .m <B .m >C .0m >D .m >m <【答案】B 【解析】 【分析】根据该不等式是否为二次不等式,分情况讨论. 【详解】当0m =时,该不等式为210x -+>,解集为12x <,不成立; 当0m ≠时,由不等式的解集为R ,得()()2Δ2410m m m m >⎧⎪⎨=+-+<⎪⎩,解得m >故选:B.例5.(2022·全国·高三专题练习)若函数()23x f x x =+,则不等式()()124f x f x +≥-的解集为( )A .[)3,+∞B .(],2-∞C .[]2,3D .[]1,5【答案】D 【解析】 【分析】根据奇偶性定义可知()f x 为偶函数,并根据指数函数和二次函数单调性确定()f x 的单调性,从而将所求不等式转化为124x x +≥-,解不等式可求得结果.【详解】223302332()f x ∴在[)0,∞+上为增函数,则()f x 在(],0-∞上为减函数;由()()124f x f x +≥-可得:124x x +≥-,即()()22124x x +≥-,解得:15x ≤≤,即不等式()()124f x f x +≥-的解集为[]1,5. 故选:D.【方法技巧与总结】解一元二次不等式不等式的思路是:先求出其相应方程根,将根标在x 轴上,结合图象,写出其解集 题型二:含参数一元二次不等式的解法例6.(2022·浙江·高三专题练习)不等式()()22200ax a x a -++≥<的解集为( )A .2,1a ⎡⎤⎢⎥⎣⎦B .11,a ⎡⎤⎢⎥⎣⎦C .2,[1,)a ⎛⎤-∞⋃+∞ ⎥⎝⎦D .2(,1],a ⎫⎡-∞⋃+∞⎪⎢⎣⎭【答案】A 【解析】 【分析】根据一元二次不等式的解法即可求解. 【详解】解:原不等式可以转化为:()()120x ax --≥,当0a <时,可知2()(1)0x x a --≤,对应的方程的两根为1,2a,根据一元二次不等式的解集的特点,可知不等式的解集为:2[,1]a. 故选:A.例7.(2022·全国·高三专题练习)设1a <-,则关于x 的不等式1()0a x a x a ⎛⎫--< ⎪⎝⎭的解集为( )A .{|x x a <或1x a ⎫>⎬⎭B .{x |x >a }C .{x x a 或1x a ⎫<⎬⎭D .1|x x a ⎧⎫<⎨⎬⎩⎭【答案】A 【解析】 【分析】111010又因为当1a <-时,1a a >,所以不等式1()0x a x a ⎛⎫--> ⎪⎝⎭的解集为:{|x x a <或1x a ⎫>⎬⎭. 故选:A . 【点睛】本题考查含参一元二次不等式的解法,较简单,解答时,注意根的大小关系比较.例8.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()()f x y f x f y -=-,且当0x <时,()0f x >,则关于x 的不等式()()()()2222f mx f m f m x f x +>+(其中0m < )A .2x m x m ⎧⎫<<⎨⎬⎩⎭B .{|x x m <或2}x m >C .2x x m m ⎧⎫<<⎨⎬⎩⎭D .{|x x m >或2}x m<【答案】A 【解析】 【分析】先判断函数()f x 单调递减,再利用已知条件和函数的单调性得()()20mx x m --<,解不等式即得解. 【详解】任取12x x <,由已知得()120f x x ->,即()()120f x f x ->,所以函数()f x 单调递减.由()()()()2222f mx f m f m x f x +>+可得()()()()2222f mx f x f m x f m ->-,即()22f mx x f ->()22m x m -,所以2222mx x m x m -<-,即()22220mx m x m -++<,即()()20mx x m --<,又因为0m << 所以2m m >,此时原不等式解集为2x m x m ⎧⎫<<⎨⎬⎩⎭.故选:A 【点睛】方法点睛:解抽象函数不等式一般先要判断函数的单调性,再利用单调性化抽象函数不等式为具体的函数不等式解答.9202【解析】 【详解】因为关于x 的不等式2(1)0x a x a -++<可化为(1)()0x x a --<, 当1a >时,不等式的解集为1x a <<, 当1a <时,不等式的解集为1<<a x ,要使得解集中至多包含2个整数,则4a ≤且2a ≥-,所以实数a 的取值范围是[2,4]a ∈-,故选D.点睛:本题主要考查了不等式解集中整数解的存在性问题,其中解答中涉及到一元二次不等式的求解,元素与集合的关系等知识点的综合应用,试题比较基础,属于基础题,同时着重考查了分类讨论思想的应用,解答中正确求解不等式的解集是解答的关键.例10.(2022·浙江·高三专题练习)设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围. 【答案】()(),22,∞∞--⋃+ 【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==由此可知120,0x x <>, 当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x<,即12a ,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a>,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.例11.(2022·全国·高三专题练习)已知关于x 的不等式(kx -k 2-4)(x -4)>0,其中k ∈R. (1)当k 变化时,试求不等式的解集A ;(2)对于不等式的解集A ,若满足A ∩Z =B (其中Z 为整数集).试探究集合B 能否为有限集?若能,求出使得2321012(1)对k 进行分类讨论,结合一元二次不等式的解法求得不等式的解集A . (2)结合(1)的结论进行分类讨论,结合基本不等式求得和正确答案. (1)当k =0时,A ={x |x <4};当k >0且k ≠2时,A ={x |x <4或4x k k>+}; 当k =2时,A ={x |x ≠4};当k <0时,A ={x |4k k+<x <4}. (2)由(1)知:当k ≥0时,集合B 中的元素的个数有无限个;当k <0时,集合B 中的元素的个数有限,此时集合B 为有限集. 因为4k k+=-[(-k )+()4k -]≤-4,当且仅当k =-2时取等号, 所以当k =-2时,集合B 中的元素个数最少,此时A ={x |-4<x <4},故集合B ={-3,-2,-1,0,1,2,3}.例12.(2022·全国·高三专题练习)已知关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >,若该不等式在(,)a b 中有且只有一个整数解,求实数m 的取值范围 【答案】12ln2(,]43-【解析】 【分析】将不等式转化为22ln 2(1)x x m x ->+,构造函数22ln ()=2(1)x xf x x -+,利用导数判断单调性,结合题意即可求解.【详解】关于x 的不等式21ln 02x mx x m ---<化为:22ln 2(1)x x m x ->+,令22ln ()=2(1)x xf x x -+,0x >,则3222222ln ()2(1)x x x x xf x x x +--+'=+.令32()2222ln u x x x x x x =+--+,2()342ln u x x x x '=++在(0,)+∞上单调递增,因此存在0(0,1)x ∈,使得20000()342ln 0u x x x x '=++=,20002ln 34x x x =--, 3232232200000000000000000()2222ln 222(34)22222(1)(1)0u x x x x x x x x x x x x x x x x x =+--+=+--+--=----=-++<,110210011011f (1)14=,f (2)2ln23-=.关于x 的不等式21ln 02x mx x m ---<的解集为(,)a b ,其中0a >, 该不等式在(,)a b 中有且只有一个整数解,∴实数m 的取值范围是12ln2(,]43-.【方法技巧与总结】 1.数形结合处理.2.含参时注意分类讨论.题型三:一元二次不等式与韦达定理及判别式例13.(2022·湖南岳阳·二模)已知关于x 的不等式2240ax bx ++<的解集为4,m m ⎛⎫⎪⎝⎭,其中0m <,则44b a b +的最小值为( ) A .2- B .1 C .2 D .8【答案】C 【解析】 【分析】由一元二次不等式的解与方程根的关系求出系数1a =,确定2b ≥,然后结合基本不等式得最小值. 【详解】2240ax bx ++<的解集为4,m m ⎛⎫ ⎪⎝⎭,则2240ax bx ++=的两根为m ,4m ,∴44m m a ⋅=,∴1a =,42m b m +=-,则424b m m=-+≥-,即2b ≥,44244b b a b b +=+≥,当且仅当4b =时取“=”, 故选:C.例14.(2022·江苏南京·模拟预测)已知关于x 的不等式22430(0)x ax a a -+<<的解集为()12x x ,,则1212ax x x x ++的最大值是( ) AB.CD. 【答案】D 【解析】124212322430(0)x ax a a -+<<的解集为()12x x ,,则12x x ,是方程22430-+=x ax a 的两个根,故124x x a +=,2123x x a =,故1212143a x x a x x a++=+ 因为0a <,所以有基本不等式得:114433a a a a ⎡⎤⎛⎫+=--+-≤-= ⎪⎢⎥⎝⎭⎣⎦,当且仅当143a a -=-即a =1212a x x x x ++的最大值为 故选:D(多选题)例15.(2022·全国·高三专题练习)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( ) A .0a >B .不等式0bx c +>的解集是{}|6x x <-C .0a b c ++>D .不等式20cx bx a -+<的解集为11(,)(,)32-∞-⋃+∞【答案】ABD 【解析】 【分析】根据不等式20ax bx c ++>的解集判断出0a >,结合根与系数关系、一元二次不等式的解法判断BCD 选项的正确性.【详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确; 且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误; 不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确. 故选:ABD .1625101123⎧⎫303 23【分析】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭可得参数a 的值,则不等式303x ax -<-也具体化了,按分式不等式解之即可. 【详解】由不等式2510ax x ++≤的解集为1123x x ⎧⎫-≤≤-⎨⎬⎩⎭,可知方程251=0ax x ++有两根121123x x =-=-,,故6a =,则不等式303x ax -<-即3603x x -<-等价于3(2)(3)0x x --<, 不等式3(2)(3)0x x --<的解集为{}23x x <<, 则不等式303x ax -<-的解集为{}23x x <<, 故答案为:{}23x x <<.例17.(2022·全国·高三专题练习)已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x << 【解析】【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答. 【详解】依题意,12-,13-是方程210ax bx --=的两个根,且0a <,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<12例18.(2022·上海市青浦高级中学高三阶段练习)不等式是12x>的解集为______. 【答案】10,2⎛⎫ ⎪⎝⎭【解析】 【分析】 由12x>可得120x ->,结合分式不等式的解法即可求解.【详解】 由12x >可得120x ->,整理可得:120xx ->,则()210x x -<,解可得:102x <<. 所以不等式是12x >的解集为: 10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫⎪⎝⎭.例19.(2022·全国·高三专题练习)不等式111x >+的解集为___________. 【答案】()1,0- 【解析】【分析】根据分式不等式的解法进行求解. 【详解】1111000101111x x x x x x x ->⇒->⇒>⇒<⇒-<<++++, 故答案为:()1,0-.例20.(2022·全国·高三专题练习)写出一个解集为()0,2的分式不等式___________. 【答案】02xx <- 【解析】 【分析】由题意根据分式不等式的解法,得出结论. 【详解】一个解集为()0,2的分式不等式可以是02xx <-, 022123【答案】[4,5) 【解析】 【分析】通过2330x x -+>0≥恒成立,将不等式最终转化为405010x x x -≥⎧⎪->⎨⎪+≠⎩,解出即可.【详解】解:对于233x x -+,有23340∆=-⨯<,则2330x x -+>恒成立,0≥恒成立,2323(34)00150x x x x ⎧--≥⎪≥⇔+⎨⎪->⎩又2333(34)(4)(1)11x x x x x x ---+=++, 23(34)0150x x x x ⎧--≥⎪∴+⎨⎪->⎩, 2333(34)(4)(1)x x x x --=-+405010x x x -≥⎧⎪∴->⎨⎪+≠⎩解得不等式的解集为[4,5).故答案为:[4,5). 【点睛】本题考查分式不等式的求解,发现部分因式恒大于零,以及分母不为零是解题的关键,是中档题. 例22.(2022·四川德阳·三模(文))对于问题:“已知关于x 的不等式20ax bx c ++>的解集为()1,2-,解关于x 的不等式20ax bx c -+>”,给出如下一种解法: 解析:由20ax bx c ++>的解集()1,2-,得()()20a x b x c -+-+>的解集为()2,1-,即关于x 的不等式20ax bx c -+>的解集为()2,1-. 参考上述解法,若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭关于x 的不等式1011kx bx ax cx ++<++的解集为____. 【答案】()()3,11,2--.101111011【详解】 若关于x 的不等式0k x b x a x c ++<++的解集为111,,1,32⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭则关于x 的不等式1011kx bx ax cx ++<++可看成前者不等式中的x 用1x 代入可得,则1111,,132x ⎛⎫⎛⎫∈--⋃ ⎪ ⎪⎝⎭⎝⎭,则()()3,11,2x ∈--⋃. 故解集为:()()3,11,2--.【点睛】本题考查不等式的解法,考查方法的类比,正确理解题意是关键.【方法技巧与总结】1.分式不等式化为二次或高次不等式处理. 2.根式不等式绝对值不等式平方处理. 题型五:二次函数根的分布问题例23.(2022·浙江·高三专题练习)若关于x 的方程2210ax ax -+=有两个不同的正根,则实数a 的取值范围是( ) A .()0,1 B .()0,∞+C .()1,+∞D .(),0-∞【答案】C 【解析】 【分析】由0a ≠,判别式0∆>及根与系数关系列出不等式组,即可求出实数a 的取值范围. 【详解】因为关于x 的方程2210ax ax -+=有两个不同的正根,所以2044010a a a a ⎧⎪≠⎪∆=->⎨⎪⎪>⎩,解得1a >,故实数a 的取值范围是()1,+∞.故选:C例24.(2022·全国·高三专题练习)已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( ) 55345135534求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解. 【详解】已知函数321()13f x x ax x =+++,则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.例25.(2022·全国·高三专题练习)若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【答案】A 【解析】化简函数f (x ),根据f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,f ′(x )≤0恒成立,由此解不等式求出a 的取值范围.【详解】1232122∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A . 【点睛】本题考查三角函数的公式及导数的应用,解题的关键是利用换元将不等式恒成立问题转化为一元二次不等式恒成立问题,属于较难题.例26.(2022·全国·高三专题练习)已知曲线322()13f x x x ax =-+-上存在两条斜率为3的不同切线,且切点的横坐标都大于零,则实数a 可能的取值( ) A .196B .3C .103 D .92【答案】AC 【解析】 【分析】本题先求导函数并根据题意建立关于m 的方程,再根据根的分布求a 的取值范围,最后判断得到答案即可. 【详解】 解:∵ 322()13f x x x ax =-+-, 22222232223022230且可知1210m m +=>,则1200m m ∆>⎧⎨⋅>⎩,即2242(3)0302a a ⎧-⨯⨯->⎪⎨->⎪⎩, 解得:732a <<,所以a 的取值可能为196,103. 故选:AC. 【点睛】本题考查求导函数,导数的几何意义,根的分布,是中档题.例27.(2022·全国·高三专题练习)若一元二次方程2(1)30mx m x -++=的两个实根都大于1-,则m 的取值范围____【答案】2m <-或5m ≥+ 【解析】根据一元二次方程根的分布建立不等式组,解之可得答案. 【详解】由题意得应满足0,11,20,(1)0m m m mf ≠⎧⎪+⎪>-⎪⎨⎪∆≥⎪->⎪⎩解得:2m <-或5m ≥+.故答案为:2m <-或5m ≥+.例28.(2022·全国·高三专题练习)设2()32f x ax bx c =++,若0,(0)0,(1)0a b c f f ++=>>,求证: (Ⅰ) 0a >且21ba-<<-; (Ⅰ)方程()0f x =在(0,1)内有两个实根. 【答案】(Ⅰ)见解析;(Ⅰ)见解析. 【解析】 【分析】(Ⅰ)先由条件求得,a c 的符号,结合条件可得; (Ⅰ)根据(0),(1)()3bf f f a-的符号可得. 【详解】020 000020故21ba-<<-. (Ⅰ)函数2()32f x ax bx c =++的顶点坐标为23(,)33b ac b a a--,在21b a -<<-的两边乘以13-,得12333b a <-<.又因为(0)0,(1)0,f f >>而22()0,33b a c acf a a+--=-<又因为2()32f x ax bx c =++在(0,)3ba -上单调递减,在(,1)3b a-上单调递增, 所以方程()0f x =在区间(0,)3ba -与(,1)3b a-内分别各有一实根. 【方法技巧与总结】解决一元二次方程的根的分布时,常常需考虑:判别式,对称轴,特殊点的函数值的正负,所对应的二次函数图象的开口方向.【过关测试】 一、单选题1.(2022·河南·南阳中学高三阶段练习(文))已知集合{}2280A x x x =--≤,203x B xx ⎧⎫-=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}22x x -≤≤ B .{}42,3x x x -≤≤≠- C .{}34x x ≤≤ D .{}34x x -<≤【答案】D 【解析】 【分析】由一元二次不等式的解法和简单分式不等式的解法求出集合,A B ,然后根据并集的定义即可求解. 【详解】解:因为集合{}{}228024A x x x x x =--≤=-≤≤,()(){}2302032330x x x B x x x x x x ⎧⎫⎧-+≤⎧⎫-⎪⎪=≤==-<≤⎨⎬⎨⎨⎬++≠⎩⎭⎩⎪⎪⎩⎭,所以{}34A B x x ⋃=-<≤, 故选:D.2.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件22012,20x x x a ∃∈-+<R ,则要满足440a ∆=->,解得:1a <,因为11a <⇒1a <,但111a a <⇒<故“11a <”是“2,20x x x a ∃∈-+<R ”的必要不充分条件. 故选:B3.(2022·陕西·模拟预测(理))已知集合234|0A x x x ,{}2|B x a x a =<<,若A B =∅,则实数a 的取值范围是( ) A .(],1-∞- B .[)4,+∞ C .()(),12,4-∞-⋃ D .[][)1,24,-⋃+∞【答案】D 【解析】 【分析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可. 【详解】解:由题知{}{}2|3401,4A x x x =--==-,因为A B =∅, 所以,当{}2|B x a x a=<<=∅时,2a a≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞,综上,实数a 的取值范围是[][)1,24,-⋃+∞. 故选:D4.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x π=---,则关于t 的不等式()()20f t f t +<的解集为( )A .()2,1- B.(-C .()0,1D.(【答案】C 【解析】 【分析】根据函数解析式判断函数关于点(1,0)成中心对称,再由基本初等函数判断函数单调性,转化原不等式后求 22022又()()ln ln 2cos2f x x x x π=---的定义域为(0,2),由πln ,ln(2),cos 2y x y x y x ==--=-在(0,2)上单调递增知, ()()ln ln 2cos2f x x x x π=---在(0,2)上递增,()()20f t f t +<,()20(2)f f t t ∴+-<-,即()2(2)f t f t <-,22t t ∴<-,解得21t -<<,又20202t t <<⎧⎨<<⎩,解得0t << 所以01t <<. 故选:C5.(2022·山西·二模(理))已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是( ) A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】 【分析】由题知{}1,0,1A =-,进而根据题意求解即可. 【详解】解:因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<, 所以,实数a 的取值范围是31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .6.(2022·重庆·高三阶段练习)若关于x 的不等式sin |sin |2x x k -≤对任意5,66x ππ⎡⎤∈⎢⎥⎣⎦恒成立,则实数k 的7522。
A .x +1x(x >0)的最小值是2B .2254x x ++的最小值是2C .2222x x ++的最小值是2D .若x >0,则2-3x -4x的最大值是2-43【变式1-2】(2023·全国·高三专题练习)下列不等式证明过程正确的是( )A .若,R a b Î,则22b a b a a b a b+³×=B .若x >0,y >0,则lg lg 2lg lg x y x y +³×C .若x <0,则4x x+424x x³-×=-D .若x <0,则222222x x x x --+>×=【变式1-3】(2022秋·广东·高三深圳市宝安中学(集团)校考)在下列函数中,最小值是22的是( )A .()20y x x x =+¹B .()10y x x x=+>C .22233y x x =+++D .2xxy e e =+题型02 基础模型:倒数型【解题攻略】倒数型:1t t +,或者b at t+容易出问题的地方,在于能否“取等”,如2sin sin ,其中锐角q q q +,22155x x +++【典例1-1】(2022·浙江杭州·杭州高级中学校考模拟预测)已知,,a b c R Î且0,++=>>a b c a b c ,则22a c ac+的取值范围是( )A .[)2,+¥B .(],2-¥-C .5,22æù--çúèûD .52,2æùçúèû【典例1-2】(2020下·浙江衢州·高三统考)已知ABC V 的面积为23,3A p=,则4sin 2sin sin sin 2sin sin C B BC B C+++的最小值为( )A .162-B .162+C .61-D .61+【变式1-1】(2021上·全国·高三校联考阶段练习)已知1,,,12a b c éùÎêúëû,则2222a b c ab bc+++的取值范围是( ).A .[]2,3B .5,32éùêúëûC .52,2éùêúëûD .[]1,3【变式1-2】(2020上·河南·高三校联考阶段练习)函数22621x y x -=-的最小值为( )A .2B .4C .6D .8【变式1-3】(2022上·上海徐汇·高三上海市第二中学校考阶段练习)若()2sin 3sin f x x t x=+++(x,t R Î)最大值记为()g t ,则()g t 的最小值为A .0B .14C .23D .34题型03 常数代换型【解题攻略】利用常数11m m⨯=代换法,可以代通过“分子分母相约和相乘”,相约去或者构造出“倒数”关系。
高中数学求不等式解题技巧及题型练习(含答案解析)
放缩法证明不等式
干货全汇总
数列型不等式是高中数学绝对难点,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;
其放缩技巧主要有以下几种:
放缩法证明不等式的常见题型与基本策略1、添加或舍弃一些正项(或负项)
2、先放缩再求和(或先求和再放缩)
3、逐项放大或缩小
4、固定一部分项,放缩另外的项
5、函数放缩
6、裂项放缩
7、均值不等式放缩
8、二项放缩
常见题型练习与总结。
高考数学不等式压轴问题归纳总结一、不等式恒成立1.已知函数()()2ln R 1mf x x m m x =+-∈+. (1)试讨论函数()f x 的极值点情况;(2)当m 为何值时,不等式()()21ln 101x x m x x+--<-(0x >且1x ≠)恒成立?2.已知函数()21ln 2f x x ax x =-+,其中a R ∈. (1)讨论函数()f x 极值点的个数;(2)若函数()f x 有两个极值点,m n ,其中m n <且2m >,是否存在整数k 使得不等式 ()()()35ln2f n k f m f n k +<<++恒成立?若存在,求整数k 的值;若不存在,请说明理由.(参考数据: ln20.7,ln3 1.1≈≈) 2.设函数()21ln 2f x x ax bx =--. (1)当0a =, 1b =-时,方程()f x mx =在区间21,e ⎡⎤⎣⎦内有唯一实数解,求实数m 的取值范围.(2)令()()212a F x f x ax bx x =+++ (03)x <≤,其图象上任意一点()00,P x y 处切线的斜率12k ≤恒成立,求实数a 的取值范围. 3.已知函数()ex x af x +=,其中e 为自然对数的底数,若当[]1,1x ∈-时, ()f x 的最大值为()g a . (1)求函数()g a 的解析式; (2)若对任意的R a ∈,1e ek <<,不等式()g a ka t ≥+恒成立,求kt 的最大值. 4.已知函数()()()2ln 1f x x a x a R =--∈. (1)讨论函数()f x 的单调性;(2)当1x ≥时,不等式()0f x ≥恒成立,试求实数a 的取值范围. 5.已知函数()ln x mf x ex +=-.(1)设1x =是函数()f x 的极值点,求证: ln xe e x e -≥;(2)设0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围.(其中正 6.已知函数()()ln 1f x x x k x =--, k R ∈ (1)当1k =时,求函数()f x 的单调区间;(2)若函数()y f x =在区间()1,+∞上有1个零点,求实数k 的取值范围;(3)是否存在正整数k ,使得()0f x x +>在()1,x ∈+∞上恒成立?若存在,求出k 的最大值;若不存在,说明理由.7.已知函数()2ln f x ax bx x =-+,( a , b R ∈).(1)若1a =, 3b =,求函数()f x 的单调减区间;(2)若0b =时,不等式()0f x ≤在[1,+∞)上恒成立,求实数a 的取值范围; (3)当1a =, 92b >时,记函数()f x 的导函数()'f x 的两个零点是1x 和2x (12x x <),求证: ()()12633ln216f x f x ->-. 8.已知函数()()12ln 2(0)f x a x ax a x=-++<. ()1 讨论()f x 的单调性;()2 若对任意的()[]123213a x x ∈--∈,,,,,恒有()()()12ln32ln3m a f x f x +->- 成立,求实数m 的取值范围.9.已知()()ln xf x e a x a R =-∈.(1)求函数()f x 在点()()1,1f 处的切线方程;(2)当1a =-时,若不等式()()1f x e m x >+-对任意()1,x ∈+∞恒成立,求实数m 的取值范围. 10.已知函数()1ex f x x +=, ()()ln 1g x k x k x =++.(1)求()f x 的单调区间.(2)证明:当0k >时,方程()f x k =在区间()0,+∞上只有一个零点. (3)设()()()h x f x g x =-,其中0k >若()0h x ≥恒成立,求k 的取值范围. 11.已知0a ≥,函数()()22x f x x ax e =-+.(1)当x 为何值时, ()f x 取得最大值?证明你的结论; (2) 设()f x 在[]1,1-上是单调函数,求a 的取值范围;(3)设()()21xg x x e =-,当1x ≥时, ()()f x g x ≤恒成立,求a 的取值范围.12.已知函数()32xf x xe ax bx c =+++(其中e 为自然对数的底, ,,a b c R ∈)的导函数为()'y f x =.(1)当0a c ==时,讨论函数()f x 在区间()0,+∞上零点的个数;(2)设点()()0,0A f , ()(),B m f m 是函数()f x 图象上两点,若对任意的0m >,割线AB 的斜率都大于'2m f ⎛⎫⎪⎝⎭,求实数a 的取值范围.. 13.已知函数()()()ln 1ln 1f x x x =+--. (1)证明:直线2y x =与曲线()y f x =相切;(2)若()()33f x k x x >-对()0,1x ∈恒成立,求k 的取值范围. 14.设函数.若曲线()y f x =在点()(),P e f e 处的切线方程为2y x e =-(e 为自然对数的底数). (1)求函数()f x 的单调区间; (2)若关于x 的不等式在上恒成立,求实数λ的取值范围.15.已知函数()ln b f x a x b x x ⎛⎫=++ ⎪⎝⎭(其中a , b R ∈). (1)当4b =-时,若()f x 在其定义域内为单调函数,求a 的取值范围;(2)当1a =-时,是否存在实数b ,使得当2,x e e ⎡⎤∈⎣⎦时,不等式()0f x >恒成立,如果存在,求b 的取值范围,如果不存在,说明理由. 16.已知函数()()21ln 12f x x x =+-. (1)判断()f x 的零点个数;(2)若函数()g x ax a =-,当1x >时, ()g x 的图象总在()f x 的图象的下方,求a 的取值范围. 17.设函数()ln mf x x x=+, m R ∈.(1)当m e =时,求函数()f x 的极小值; (2)讨论函数()()3xg x f x -'=零点的个数; (3)若对任意的0b a >>,()()1f b f a b a-<-恒成立,求实数m 的取值范围.18.已知函数()f x 是偶函数,且满足()()220f x f x +--=,当(]0,2x ∈时, ()(1)x f x e ax a =+>,当(]4,2x ∈--时, ()f x 的最大值为2416e +. (1)求实数a 的值; (2)函数()()344203g x bx bx b =-+≠,若对任意的()11,2x ∈,总存在()21,2x ∈,使不等式()()12f x g x <恒成立,求实数b 的取值范围.19.已知函数()()1xf x e ax a R =--∈.(1)求函数()y f x =的单调区间;(2)试探究函数()()F ln x f x x x =-在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由;(3)若()()ln 1ln x g x e x =--,且()()()f g x f x <在()0,x ∈+∞上恒成立,求实数a 的取值范围. 20.()()12ln f x x mx m R x=+-∈. (1)当1m =-时,求曲线()y f x =在点()()1,1f 处的切线方程. (2)若()f x 在()0,+∞上为单调递减,求m 的取值范围. (3)设0a b <<,求证:ln ln b ab a -<-21.已知函数()()()2ln ,.2a f x x x g x x x a a R ==+-∈ (1)若直线()()(0),,x t t y f x y g x A B =>==与曲线和分别交于两点且曲线()y f x =在A 处的切线与()y g x =在B 处的切线相互平行,求a 的取值范围;(2)设()()()h x f x g x =-在其定义域内有两个不同的极值点12,,x x 且12.0,x x λ已知若不等式112e x x λλ+<⋅恒成立,求λ的取值范围.22.已知函数()1,xf x e x x R =--∈(1)求函数()f x 的极值; (2)求证: *21111112,333n n N ⎛⎫⎛⎫⎛⎫+++<∈ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)()()()112(0)a F x a f x x a x+=+-+->,若对于任意的()0,x ∈+∞,恒有()0F x ≥成立,求a 的取值范围.23.已知各项都是正数的数列{}n a 的前n 项和为n S , 212n n n S a a =+, *n N ∈. (1)求数列{}n a 的通项公式;设数列{}n b 满足: 11b =, ()122n n n b b a n --=≥,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ;(2)若()4n T n λ≤+对任意*n N ∈恒成立,求λ的取值范围. 24.设()2-1f x x a x =-+.(1)当a=2时,求不等式()1f x ≤的解集;(2)若a>0,b>0,c>0且ab+bc+ac=1,求证:当x ∈R 时,f(x) 222b 2c a ≤++二、不等式能成立1.设f (x )=2x 2+bx+c ,已知不等式f (x )<0的解集是(1,5). (1)求f (x )的解析式;(2)若对于任意x ∈ []1,3,不等式f (x )≦2+t 有解,求实数t 的取值范围。
高考数学复习考点题型专题讲解专题31 不等式高考定位 1.对不等式的性质及不等式的解法的考查一般不单独命题,常与集合、函数图象与性质相结合,也常渗透在三角函数、数列、解析几何、导数等题目中;2.基本不等式主要渗透在其他知识中求最值;3.题型多以选择题、填空题的形式呈现,中等难度.1.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}答案 B解析法一因为A={x|(x-2)(x+1)>0}={x|x<-1或x>2},A={x|-1≤x≤2},故选B.所以∁R法二因为A={x|x2-x-2>0},A={x|x2-x-2≤0}={x|-1≤x≤2},故选B.所以∁R2.(2019·全国Ⅱ卷)若a>b,则( )A.ln(a-b)>0B.3a<3bC.a3-b3>0D.|a|>|b|答案 C解析由函数y=ln x的图像(图略)知,当0<a-b<1时,ln(a-b)<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.3.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则() A.x +y ≤1 B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1答案 BC解析 因为ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ),由x 2+y 2-xy =1可变形为(x +y )2-1=3xy ≤3⎝ ⎛⎭⎪⎫x +y 22,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为(x 2+y 2)-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1可变形为⎝⎛⎭⎪⎫x -y 22+34y 2=1, 设x -y 2=cos θ,32y =sin θ, 所以x =cos θ+33sin θ,y =233sin θ, 因此x 2+y 2=cos 2θ+53sin 2θ+233sin θcos θ=1+33sin 2θ-13cos 2θ+13=43+23sin ⎝⎛⎭⎪⎫2θ-π6∈⎣⎢⎡⎦⎥⎤23,2, 所以当x =33,y =-33时满足等式, 但是x 2+y 2≥1不成立,所以D 错误.4.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________.答案 45解析 法一 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2, 所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45, 当且仅当1y 2=4y 2,即y =±22时取等号. 所以x 2+y 2的最小值为45. 法二 设x 2+y 2=t >0,则x 2=t -y 2.因为5x 2y 2+y 4=1,所以5(t-y2)y2+y4=1,所以4y4-5ty2+1=0. 由Δ=25t2-16≥0,解得t≥45⎝⎛⎭⎪⎫t≤-45舍去.故x2+y2的最小值为4 5 .热点一不等式的性质及应用不等式的常用性质(1)a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd>0.(3)a>b>0⇒a n>b n,na>nb(n∈N,n≥2).(4)a>b,ab>0⇒1a<1b.例1 (1)(多选)(2022·苏州模拟)若a>b>0>c,则( )A.ca>cbB.b-ca-c>baC.a c>b cD.a-c>2-bc(2)(2022·长沙模拟)已知a,b,c满足a>b>c,且ac>0,则下列选项中一定能成立的是( )A.ab>acB.c(b-a)>0C.ab(a-c)>0D.cb2>ca2答案(1)ABD (2)C解析(1)由于a>b>0>c,对于A:ca-cb=c⎝⎛⎭⎪⎫1a-1b=c⎝⎛⎭⎪⎫b-aab>0,故ca-cb>0,∴ca>cb,故A正确;对于B:由于a>b>0,所以b-ca-c>ba,故B正确;对于C:当a>b>1时,a c<b c,故C错误;对于D:由于a>b>0>c,所以a-c>b-c>2b(-c)=2-bc,故D正确. (2)取a=-1,b=-2,c=-3,则ab=2<ac=3,cb2=-12<ca2=-3,排除A,D;取a=3,b=2,c=1,则c(b-a)=-1<0,排除B;因为a>b>c,且ac>0,所以a,b,c同号,且a>c,所以ab(a-c)>0.规律方法判断关于不等式命题真假的常用方法(1)作差法、作商法.(2)利用不等式的性质推理判断.(3)利用函数的单调性.(4)特殊值验证法,特殊值法只能排除错误的命题,不能判断正确的命题.训练1 (1)(多选)(2022·广州模拟)设a,b,c为实数且a>b,则下列不等式一定成立的是( )A.1a >1bB.2 023a -b >1C.ln a >ln bD.a (c 2+1)>b (c 2+1)(2)设12<a <1,m =log a (a 2+1),n =log a (1-a ),p =log a 12a,则m ,n ,p 的大小关系是( )A.n >m >pB.m >p >nC.p >n >mD.n >p >m答案 (1)BD (2)D解析 (1)对于A ,若a >b >0,则1a <1b,所以A 错误; 对于B ,因为a -b >0,所以2 023a -b >1,所以B 正确;对于C ,函数y =ln x 的定义域为(0,+∞),而a ,b 不一定是正数,所以C 错误; 对于D ,因为c 2+1>0,所以a (c 2+1)>b (c 2+1),所以D 正确.故选BD.(2)因为12<a <1, 所以a 2+1-12a =2a 3+2a -12a >0, 12a -(1-a )=1-2a +2a 22a =2⎝ ⎛⎭⎪⎫a -122+122a>0,y =log a x 为减函数, 所以m <p ,p <n .可得n >p >m .热点二 不等式的解法不等式恒成立问题的解题方法(1)f (x )>a 对一切x ∈I 恒成立⇔f (x )min >a ,x ∈I ;f (x )<a 对一切x ∈I 恒成立⇔f (x )max <a ,x ∈I .(2)f (x )>g (x )对一切x ∈I 恒成立⇔当x ∈I 时,f (x )的图象在g (x )的图象的上方.(3)解决恒成立问题还可以利用分离参数法.例2 (1)已知关于x 的不等式ax -b ≤0的解集是[2,+∞),则关于x 的不等式ax 2+(3a -b )x -3b <0的解集是( )A.(-∞,-3)∪(2,+∞)B.(-3,2)C.(-∞,-2)∪(3,+∞)D.(-2,3)(2)若不等式x 2-ax ≥16-3x -4a 对任意a ∈[-2,4]都成立,则x 的取值范围为() A.(-∞,-8]∪[3,+∞)B.(-∞,0)∪[1,+∞)C.[-8,6]D.(0,3]答案 (1)A (2)A解析 (1)由关于x 的不等式ax -b ≤0的解集是[2,+∞),得b =2a 且a <0,则关于x 的不等式ax 2+(3a -b )x -3b <0可化为x 2+x -6>0,即(x +3)(x -2)>0,解得x <-3或x >2,所以不等式的解集为(-∞,-3)∪(2,+∞).(2)由题意得不等式(x -4)a -x 2-3x +16≤0对任意a ∈[-2,4]都成立,则⎩⎨⎧(x -4)×(-2)-x 2-3x +16≤0,(x -4)×4-x 2-3x +16≤0,即⎩⎨⎧-x 2-5x +24≤0,-x 2+x ≤0,解得x≥3或x≤-8.故选A.易错提醒求解含参不等式ax2+bx+c<0恒成立问题的易错点(1)对参数进行讨论时分类不完整,易忽略a=0时的情况.(2)不会通过转换把参数作为主元进行求解.(3)不考虑a的符号.训练2 (1)已知函数f(x)在R上为增函数,若不等式f(-4x+a)≥f(-3-x2)对任意x∈(0,3]恒成立,则a的取值范围为( )A.[-1,+∞)B.(3,+∞)C.[0,+∞)D.[1,+∞)(2)若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是( )A.(-∞,-2)B.(-2,+∞)C.(-6,+∞)D.(-∞,-6)答案(1)D (2)A解析(1)由题意得,不等式-4x+a≥-3-x2对任意x∈(0,3]恒成立,所以a≥-x2+4x-3对任意x∈(0,3]恒成立,令g(x)=-x2+4x-3=-(x-2)2+1,当x∈(0,3]时,g(x)∈(-3,1],所以a≥1,即a的取值范围为[1,+∞).故选D.(2)不等式x2-4x-2-a>0在区间(1,4)内有解等价于a<(x2-4x-2)max,x∈(1,4). 令g(x)=x2-4x-2,x∈(1,4),所以g(x)<g(4)=-2,所以a<-2.热点三基本不等式及其应用基本不等式求最值的三种解题技巧(1)凑项:通过调整项的符号,配凑出符合基本不等式条件的项,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开,即化为y=m+Ag(x)+Bg(x)(AB>0),g(x)恒正或恒负的形式,然后运用基本不等式来求最值.例3 (1)(多选)(2022·青岛模拟)设正实数a,b满足a+b=1,则( )A.log2a+log2b≥-2 B.ab+1ab≥174C.2a+1b≤3+22D.2a-b>12(2)(2022·湖北九师联盟质检)已知a>0,b≠0,且a+|b|=3,则9a+b+3|b|的最小值为________.答案(1)BD (2)3+2 3解析(1)log2a+log2b=log2(ab)≤log2⎝⎛⎭⎪⎫a+b22=-2,A错误;因为a>0,b>0,a+b=1,所以ab ≤a +b 2=12(当且仅当a =b 时取等号), 所以0<ab ≤14, 因为函数y =x +1x 在⎝ ⎛⎦⎥⎤0,14上单调递减, 所以ab +1ab ≥14+4=174,B 正确; 因为⎝ ⎛⎭⎪⎫2a +1b (a +b )=3+2b a +a b ≥3+22(当且仅当2b a =a b 时取等号), 所以2a +1b≥3+22,C 错误; 易知0<a <1,0<b <1,所以-1<a -b <1,所以2a -b >2-1=12,D 正确.选BD. (2)9a +b +3|b |=9a +3|b |+b |b |, 当b >0时,b |b |=1, 当b <0时,b|b |=-1. 9a +3|b |=13⎝ ⎛⎭⎪⎫9a +3|b |(a +|b |)=13⎝ ⎛⎭⎪⎫12+9|b |a +3a |b |≥13(12+63) =4+23,当且仅当9|b |a =3a |b |,3+13+1所以当a =333+1,b =-33+1时, 9a +b +3|b |取得最小值,且最小值为3+2 3.易错提醒 利用基本不等式求最值时,要注意其必须满足的条件: (1)一正二定三相等,三者缺一不可;(2)若连续两次使用基本不等式求最值,必须使两次等号成立的条件一致,否则最值取不到.训练3 (1)(2022·湖州质检)若x >0,y >0且x +y =xy ,则x x -1+2yy -1的最小值为( ) A.3 B.52+ 6C.3+6D.3+2 2(2)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.2 2 C.4 D.92答案 (1)D (2)B 解析 (1)∵x +y =xy , ∴(x -1)(y -1)=1, ∴x x -1+2y y -1=(x -1)+1x -1+2(y -1)+2y -1=3+1x -1+2y -1≥3+21x -1·2y -1=3+22,x -1y -1(2)∵对任意m ,n ∈(0,+∞), 都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n+2nm≥2m n ·2nm=22, 当且仅当m n=2nm即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.一、基本技能练1.若a ,b ,c 为实数,且a <b <0,则下列说法正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2 答案 D解析 当c =0时,A 不成立; 1a -1b =b -a ab >0,即1a >1b,B 错误;b a -a b =b 2-a 2ab =(b +a )(b -a )ab <0,C 错误; 由a <b <0,得a 2>ab >b 2,D 正确.2.不等式4x -2≤x -2的解集是( ) A.(-∞,0]∪(2,4]B.[0,2)∪[4,+∞) C.[2,4)D.(-∞,2)∪(4,+∞) 答案 B解析 当x -2>0,即x >2时,(x -2)2≥4, 即x -2≥2,则x ≥4,当x -2<0,即x <2时,(x -2)2≤4, 即-2≤x -2<0,∴0≤x <2, 综上,0≤x <2或x ≥4.3.(2022·泰安质检)若不等式ax 2-x -c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12,则函数y =cx 2-x -a的图象可以为( )答案 C解析由题意可得-1和12是方程ax 2-x -c =0的两个根,且a <0,∴⎩⎪⎨⎪⎧-1+12=1a ,-1×12=-ca ,解得a =-2,c =-1,则y =cx 2-x -a =-x 2-x +2=-(x +2)(x -1),其图象开口向下,与x 轴交于 (-2,0),(1,0).故选C.4.已知关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为(-∞,x 1)∪(x 2,+∞),且x 2-x 1=52,则a 等于( ) A.-5B.-32C.-2D.-52答案 C解析 x 2-ax -6a 2=(x -3a )(x +2a )>0, ∵a <0,∴x >-2a 或x <3a , ∴x 2=-2a ,x 1=3a ,∴x 2-x 1=-5a =52,∴a =- 2.5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A.f (x )有最大值114B.f (x )有最大值-114 C.f (x )有最小值132D.f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14= -⎝⎛⎭⎪⎫1-x4+91-x +14≤-21-x 4·91-x +14=-114,当且仅当x =-5时等号成立. 6.原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是( )A.第一种方案更划算B.第二种方案更划算C.两种方案一样D.无法确定 答案 B解析 设小李这两次加油的油价分别为x 元/升、y 元/升,则 方案一:两次加油平均价格为40x +40y 80=x +y2≥xy ,方案二:两次加油平均价格为400200x +200y=2xyx +y ≤xy ,故无论油价如何起伏,方案二比方案一更划算. 7.设x >y >z ,n ∈N *,且1x -y +1y -z ≥n x -z恒成立,则n 的最大值为( ) A.2 B.3 C.4 D.5 答案 C解析 因为x >y >z ,n ∈N *, 所以x -y >0,y -z >0,x -z >0,由1x -y +1y -z ≥n x -z, 可得n ≤(x -z )⎝⎛⎭⎪⎫1x -y +1y -z =[(x -y )+(y -z )]⎝ ⎛⎭⎪⎫1x -y +1y -z =1+1+y -z x -y +x -yy -z≥2+2y -z x -y ·x -yy -z=4, 当且仅当x -y =y -z 时,上式取得等号, 由题意可得n ≤4,即n 的最大值为4.8.已知关于x 的不等式ax 2-2x +3a <0在(0,2]上有解,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-∞,33 B.⎝⎛⎭⎪⎫-∞,47 C.⎝ ⎛⎭⎪⎫33,+∞D.⎝ ⎛⎭⎪⎫47,+∞答案 A解析x ∈(0,2]时, 不等式可化为ax +3a x<2;当a =0时,不等式为0<2,满足题意; 当a >0时,不等式化为x +3x <2a,则2a>2x ·3x=23,当且仅当x =3时取等号, 所以a <33,即0<a <33;当a <0时,x +3x >2a恒成立.综上所述,实数a 的取值范围是⎝⎛⎭⎪⎫-∞,33.选A.9.(多选)(2022·泰州模拟)下列函数中最小值为6的是( ) A.y =ln x +9ln x B.y =6|sin x |+32|sin x |C.y =3x +32-xD.y =x 2+25x 2+16答案 BC解析 对于A 选项,当x ∈(0,1)时,ln x <0, 此时ln x +9ln x<0,故A 不正确.对于B 选项,y =6|sin x |+32|sin x |≥29=6,当且仅当6|sin x |=32|sin x |,即|sin x |=12时取“=”,故B 正确.对于C 选项,y =3x +32-x ≥232=6, 当且仅当3x =32-x ,即x =1时取“=”,故C 正确.对于D 选项,y =x 2+16+9x 2+16=x 2+16+9x 2+16≥29=6, 当且仅当x 2+16=9x 2+16,即x 2=-7无解,故D 不正确.故选BC.10.(多选)已知a >0,b >0,且a +b =1,则( ) A.a 2+b 2≥12B.2a -b >12C.log 2a +log 2b ≥-2D.a +b ≤ 2 答案 ABD解析 因为a >0,b >0,a +b =1,所以a +b ≥2ab ,当且仅当a =b =12时,等号成立,即有ab ≤14.对于A ,a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=12,故A 正确;对于B ,2a -b =22a -1=12×22a ,因为a >0,所以22a >1,即2a -b >12,故B 正确;对于C ,log 2a +log 2b =log 2(ab )≤log 214=-2,故C 错误;对于D ,由(a +b )2=a +b +2ab =1+2ab ≤2,得a +b ≤2,故D 正确. 综上可知,正确的选项为ABD.11.函数y =lg(c +2x -x 2)的定义域是(m ,m +4),则实数c 的值为________. 答案 3解析 依题意得,一元二次不等式-x 2+2x +c >0, 即x 2-2x -c <0的解集为(m ,m +4), 所以m ,m +4是方程x 2-2x -c =0的两个根, 所以⎩⎨⎧m +m +4=2,m (m +4)=-c ,解得⎩⎨⎧m =-1,c =3.12.若命题“∃x ∈R ,x 2-2x +m <0”为真命题,则实数m 的取值范围为________. 答案 (-∞,1)解析由题意可知,不等式x2-2x+m<0有解,∴Δ=4-4m>0,m<1,∴实数m的取值范围为(-∞,1).二、创新拓展练13.(多选)(2022·苏锡常镇调研)已知正实数a,b满足a+2b=ab,则以下不等式正确的是( )A.2a+1b≥2 B.a+2b≥8C.log2a+log2b<3 D.2a+b≥9答案BD解析对于A,因为正实数a,b满足a+2b=ab,所以a+2bab=1,即2a+1b=1,所以A错误,对于B,因为a>0,b>0,a+2b=ab,所以a+2b≥22ab=22(a+2b),当且仅当a=2b时取等号,所以(a+2b)2≥8(a+2b),因为a+2b>0,所以a+2b≥8,当且仅当a=2b时取等号,所以B正确,对于C,若log2a+log2b<3,则log2a+log2b=log2(ab)<3=log28,所以ab <8,所以a +2b <8,而由选项B 可知a +2b ≥8, 所以log 2a +log 2b <3不成立,所以C 错误, 对于D ,因为正实数a ,b 满足a +2b =ab , 由选项A 知,2a +1b=1,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫2a +1b =5+2a b +2b a ≥5+22ab·2ba=9,当且仅当2ba=2ab,即a=b =3时取等号, 所以D 正确,故选BD.14.(多选)(2022·镇海中学模拟)已知函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,下列选项正确的是( )A.函数f (x )在(-2,1)上单调递增B.函数f (x )的值域为⎣⎢⎡⎭⎪⎫-1e 2,+∞C.若关于x 的方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,则实数a 的取值范围是⎝ ⎛⎭⎪⎫1e 2,4e D.不等式f (x )-ax -a >0在(-1,+∞)恰有两个整数解,则实数a 的取值范围是⎣⎢⎡⎭⎪⎫3e 2,2e答案 ACD解析函数f (x )=⎩⎨⎧(x +1)e x ,x <0,(x +1)2e x,x ≥0,所以函数f ′(x )=⎩⎨⎧(x +2)e x (x <0),-(x +1)(x -1)e x (x ≥0), 故函数f (x )的大致图象如图1所示,故A 正确,B 错误;对于D ,不等式f (x )>a (x +1),在(-1,+∞)上恰有两个整数解,必为x =0,x =1, 故⎩⎨⎧f (1)>a (1+1),f (2)≤a (2+1),解得a ∈⎣⎢⎡⎭⎪⎫3e 2,2e ,故D 正确;对于C ,如图2,函数y =|f (x )|的图象,原方程可化为|f (x )|=0或|f (x )|=a ,由于方程[f (x )]2-a |f (x )|=0有3个不相等的实数根,所以只需|f (x )|=a 有两个不等实根,所以a ∈⎝ ⎛⎭⎪⎫1e 2,4e ,C 正确,故选ACD. 15.(多选)(2022·全国名校大联考)若实数x ,y 满足2x +2y +1=1,m =x +y ,n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1,则( )A.x <0且y <-1B.m 的最大值为-3C.n 的最小值为7D.n ·2m <2答案 ABD解析 由2x +2y +1=1,得2y +1=1-2x >0,2x =1-2y +1>0,所以x <0且y <-1,故A 正确;由2x +2y +1=1≥22x ·2y +1=22x +y +1,得m =x +y ≤-3,当且仅当x =y +1=-1,即x =-1,y =-2时,等号成立,所以m 的最大值为-3,故B 正确;n =⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1(2x +2y +1) =5+2×2y 2x +2×2x2y ≥5+22×2y 2x ·2×2x 2y =9, 当且仅当2×2y 2x =2×2x2y ,即x =y =-log 23时,等号成立, 所以n 的最小值为9,故C 错误;n ·2m=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫12y -1·2x +y =2y +2x +1=2-3×2y <2,故D 正确.故选ABD. 16.(2022·湖南三湘名校联考)若两个正实数x ,y 满足x +2y -xy =0,且不等式x +2y ≥m 2-7m 恒成立,则实数m 的取值范围为________.答案 [-1,8]解析 由x +2y -xy =0,得2x +1y=1, 所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+x y +4y x ≥8,当且仅当x =4,y =2时等号成立, 所以m 2-7m ≤8,解得-1≤m ≤8.17.已知关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4},则c 2+5a +b 的取值范围为________.答案 [45,+∞)解析 关于x 的不等式ax 2+bx +c >0(a ,b ,c ∈R )的解集为{x |3<x <4}, 所以a <0,且3和4是关于x 的方程ax 2+bx +c =0的两实数根,由根与系数的关系知:⎩⎪⎨⎪⎧3+4=-b a ,3×4=c a ,解得⎩⎨⎧b =-7a ,c =12a (a <0). 所以c 2+5a +b =144a 2+5a -7a =-24a -56a≥ 2(-24a )·5-6a =45(当且仅当-24a =-56a ,即a =-512时等号成立), 所以c 2+5a +b的取值范围是[45,+∞). 18.(2022·温州测试)已知函数f (x )=x 2+|x -a |+b ,若存在实数b ,使得对任意的|x |≤1都有|f (x )|≤109,则实数a 的最大值是________. 答案 13解析 由题可得,因为存在实数b 对任意的|x |≤1都有|x 2+|x -a |+b |≤109, 所以-109≤x 2+|x -a |+b ≤109, 即存在实数b 对任意的|x |≤1都有-x 2-109-b ≤|x -a |≤109-x 2-b , 由对称性可知,当实数a 取得最大值时,a ≥0,令g (x )=-x 2-109-b ,h (x )=-x 2+109-b ,则g ′(x )=h ′(x )=-2x .因为y =-x +a 的斜率为-1,所以-2x =-1,解得x =12, 所以g ⎝ ⎛⎭⎪⎫12=-14-109-b =-4936-b . 又因为h (-1)=-1+109-b =19-b , 即当a ≥12时,切线斜率k =h (-1)-g ⎝ ⎛⎭⎪⎫12-1-12=-5354>-1,不能满足条件; 故当0≤a <12时,g (x )的零点为a ,此时a 最大,满足⎩⎪⎨⎪⎧g (a )=-a 2-109-b =0,k =-1+109-b -1-a =-1,即⎝⎛⎭⎪⎫a -23⎝ ⎛⎭⎪⎫a -13=0, 由0≤a <12可得a =13.。
基本不等式求最值的常用方法一、常数代换法1、直接“1”代换例1. 已知正数x 、y 满足12=+y x ,求yx 11+的最小值. 解析:223221)11)(2(+≥+++=++yxx y y x y x当且仅当yxx y =2 即12-=x ,222-=y 时取“=” 变式. 已知正数x 、y 满足32=+y x ,求yx 11+的最小值. 解析:3221)223(31)221(31)11)(2(31+=+≥+++=++y x x y y x y x当且仅当y x x y =2 即)12(3-=x ,2)22(3-=y 时取“=”2、间接“1”代换例1. 若x 、y 为正实数且082=-+xy y x ,求y x +的最小值.解析:082=-+xy xy y x 即182=+x y ,188********)82)((=⨯+≥+++=++xyy x x y y x当且仅当xyy x 82= 即12=x ,6=y 时取“=”例2.若正数x 、y 满足xy y x 53=+,求y x 43+的最小值.解析:553==+xy xy xy y x 即531=+xy5)123213(51)12349(51)31)(43(51=⨯+≥+++=++x y y x x y y x当且仅当x y y x 123=即1=x ,21=y 时取“=” 例3.已知x 、y 均为正数,且111=+y x ,求1914-+-y yx x 的最小值. 解析:25362139413)11)(94(1914119114=+≥++=++=+=-+-y x x y y x x y xy yx当且仅当y x x y 94= 即35=x ,25=y 时取“=”例4. 已知函数x a y -=1的图像恒过定点A ,若点A 在直线1=+ny mx (0,0>>n m )上,求nm 11+的最小值. 解析:由题意可得A 的坐标为(1,1) 则有1=+n m41222))(11(11=+≥++=++=+nmm n n m n m n m当且仅当n m m n = 即21==n m 时取“=”例5. 已知函数xm y log 1+= (0>m 且1≠m )的图像恒过点M ,若直线1=+bya x (0,0>>b a )经过点M ,则b a +的最小值是多少?解析:由题意得M (1,1) 则111=+ba 41222))(11(=+≥++=++=+b aa b b a b a b a当且仅当baa b = 即2==b a 时取“=”3.部分“1”代换例. 若正数x 、y 满足1=+y x ,求yx y 4+的最小值.解析:844244)(44=+≥++=++=+yx x y y x y x y y x y 当且仅当y x x y 4= 即31=x ,32=y 时取“=”二、双换元法1.有两项分母较长例1. 已知正数x 、y 满足1=+y x ,求1124+++y x 的最小值. 解析:令2+=x m ,1+=y n 则412=+=+++n m y x49)425(41)414(41)14)((411124=+≥+++=++=+++n m m n n m n m y x 当且仅当n m m n =4 即31=y ,32=x 时取“=”变式1. 若0,0>>b a ,且11121=+++b b a ,则b a 2+的最小值为多少? 解析:令b a m +=2, 1+=b n 可得21+-=n m a ,1-=n b ,111=+nm23)232)(11(2323222212-++=-+=-++-=+n m n m n m n n m b a321232122123221+=⨯+≥++=m n n m 当且仅当nmm n 223=即n m 3=,213+-=b b a 时取“=”变式2. 已知0>>y x ,且2≤+y x ,求yx y x -++132的最小值. 解析:令⎩⎨⎧=-=+n y x m y x 3 可得 ⎪⎩⎪⎨⎧-=+=443n m y m n x 由0>>y x 得443n m m n ->+ 即0>>n m ∴22422443≤+=+=-++=+n m n m n m n m y x得4≤+n m )0(>>n m ∴nm y x y x 12132+=-++ ∴223212))(12(+≥+++=++nmm n n m n m ∴n m n m ++≥+223124≤+n m ∴422322312+≥++≥+n m n m 当且仅当nmm n =2 即n m 2= 即248-=m ,424-=n 时取“=”2.有一项分母较长例. 已知y x 、为正实数,求yx xx y ++216的最小值. 解析:令⎩⎨⎧=+=n y x m x 2 可得⎩⎨⎧-==m n y mx 2∴62162216162216=-≥-+=+-=++nm m n n m m m n y x x x y 当且仅当nmm n 16=即m n 4= 即x y 2=时取“=”三、主元思想法:当要求的元素在条件里出现的时候例1. 已知0>x ,0>y ,y x xy 2+=,若2-≥m xy 恒成立,求实数m 的最大值.解析:xy y x y x xy 22222=⋅≥+= 两边平方得xy xy 8)(2≥,8≥xy2-≥m xy 恒成立 即82≤-m ∴10≤m (本题将xy 作为主元) 当且仅当y x 2=即4=x ,2=y 时取“=”例2. 若正实数y x 、满足xy y x =++62,则xy 的最小值是多少?解析: 62262262+⋅=+⋅≥++=xy y x y x xy 令0>=xy t可得6222+≥t t 解得2-≤t (舍去) 23≥t 18≥∴xy 得xy 的最小值是18 当且仅当x y 2=即3=x ,6=y 时取“=”例3. 已知0>x ,0>y ,822=++xy y x ,求y x 2+的最小值.解析:822=++xy y x 4)2(222y x y x xy +≤⋅=由上面两式得4)2()2(822y x y x xy +≤+-= 令02>=+t y x得482t t ≤- 解得4≥t 即y x 2+的最小值为4当且仅当x y 2=即3=x ,6=y 时取“=”例4.已知y x 、均为正数,且1)(=+-y x xy ,求y x +的范围解析:4)(1)(2y x y x xy +≤++=,令0>=+t y x ,可得412t t ≤+解得222222+≤≤-t 0>t ∴2220+≤+<y x 当且仅当x y =即21+==y x ,时取“=”例5.已知0>x ,0>y ,且12)1)(3(=++y x ,求y x 3+的最小值.解析:1233)1)(3(=+++=++x y xy y x ,即93=++y x xy4)3(31)3(93312y x y x y x xy +⋅≤+-=⋅⋅= ,令03>=+t y x得1292t t ≤- 解得6≥t 即y x 3+的最小值为6当且仅当x y =3即3=x ,1=y 时取“=”四、拼凑法1.项数拼凑例1.求函数222163x x y ++=的最小值. 解析:63816326216)2(322-=⨯≥-+++=x x y当且仅当216)2(322+=+x x 即3634-=x ,时取“=”变式1. 求函数2162++=x x y 在),2(+∞-∈x 上的最小值. 解析:428416224216)2(2-=-⨯≥-+++=x x y当且仅当216)2(2+=+x x 即222-=x ,时取“=”变式2. 已知关于x 的不等式722≥-+ax x 在),(+∞∈a x 上恒成立,求a 的最小值.解析:a a a a x a x 2424222)(2+=+≥+-+-,∴只需724≥+a 即可,23≥a例2. 求函数1216++=x x y (),21(+∞-∈x )的最小值.解析:21242182211216212-=-≥-+++=x x y当且仅当1216212+=+x x 即2124-=x ,时取“=”变式. 已知0>x ,a 为大于x 2的常数,求x xa y --=21的最小值.解析:22221222221aa a x a x a y -=-≥--+-=当且仅当xa x a 2122-=-即22-=a x ,时取“=”2.系数拼凑例1. 当210<<x 时,求)21(21x x y -=的最大值. 解析:1614)212(41)21(241)21(212=-+⋅≤-⋅⋅=-=x x x x x x y当且仅当x x 212-=即41=x ,时取“=”例2. 已知0>a ,0>b ,且3222=+b a ,求212b a +的最大值.解析:224)12(2)1(22)1(41222222222=++⋅≤+⋅=+=+b a b a b a b a 当且仅当2212b a +=即1=a ,1=b 时取“=”五、分子分母不齐次1.低次换元法例1. 求313)(2-+-=x x x x f )3(>x 的最小值.解析:令3-=x t ,则3+=t x则 531231131)3(3)3()(22=+≥++=++=++-+=t t t t t t t t t f当且仅当tt 1=即1=t ,4=x 时取“=”例2.求2122+++=x x x y )2(->x 的值域.解析:令2+=x t ,则2-=t x 0211)2(2)2(2≥-+=+-+-=∴tt t t t y当且仅当tt 1=即1=t ,1-=x 时取“=”2.分子常数法例1. 求函数4342+=x x y 的最大值.解析:4342343432242=≤+=+=x x x x y (将分子化成常数)当且仅当224xx =即22=x 时取“=”例2.若对任意0>x ,a x x x≤++132恒成立,则a 的取值范围是多少?解析:513121311132=+≤++=++x x x x x 51≥∴a当且仅当xx 1=即1=x 时取“=”六、两元消参法例1. 若x ,),0(+∞∈y ,302=++xy y x ,求y x +的最小值. 解析:30)2(2=++=++y x x xy y x 2321232)2(230++-=+-+-=+-=∴x x x x x y 则328323221232-≥-+++=-++=+x x x x y x 当且仅当2322+=+x x 即224-=x 时取“=”例2. 已知41=ab ,a ,)1,0(∈b ,则b a -+-1211的最小值是多少? 解析:41=ab )1,0(∈a )1,0(41∈=∴a b ,),1(4+∞∈a ,则 ),41(+∞∈a)1,41(∈∴a 142281114811411211-+-+-=-+-=-+-a a a a a a a a 214211142)14(211+-+-=-+-+-=a a a a a令)43,0(1∈-=a m )3,0(14∈-=a n 则34=+n m 原式可化为:2)824(312)4)(21(31221++++=+++=++nmm n n m n m n m324482314)8(314+=⨯+≥++=n m m n 当且仅当nmm n 8=即m n 22=,4)22(3-=m ,323-=n 时取“=”例3. 已知正实数b a 、满足042≤+-b a ,则ba ba u ++=32的最小值为多少?解析:由042≤+-b a 得42+≥a b141343333322++-=++-≥+-=+-+=++=aa a a ab a a b a a b a b a b a u 51414213=+-≥ 当且仅当2=a 即时取“=”例4. 若正数x ,y 满足0162=-+xy x ,则y x 2+的最小值是多少?解析:由0162=-+xy x 得 661612xx x x y -=-=32292231323312=≥+=-+=+x x x x x y x 当且仅当xx 3132=即22=x ,122=y 时取“=”例5. 已知0>>b a ,求)(12b a b a -+的最小值.解析:44)()(22a b a b b a b =-+≤- 442441)(122222=≥+=+≥-+∴aa a ab a b a 当且仅当224a a = 即2=a 时取“=”七、三元消参法(“相等”、“不相等”)1.“相等”关系例1. 正数a ,b ,c 满足)(4b a abc +=,求c b a ++的最值.解析:由)(4b a abc +=⇒ab ab b ac 44)(4+=+=842424444=+≥+++=+++=++b b a a a b b a c b a当且仅当a a 4= ,bb 4=即2=a ,2=b ,4=c 时取“=”例2. 设正实数x ,y ,z 满足04322=-+-z y xy x ,求zxy的最大值.解析:由04322=-+-z y xy x ⇒ 2243y xy x z +-=134213414322=-≤-+=+-=xy y x y xy x xy z xy 当且仅当xy y x 4=,即y x 2=时取“=”例3.设正实数x ,y ,z 满足 032=+-z y x ,求xzy 2的最小值.解析:由032=+-z y x ⇒ 23223zx z x y +=+=3234941223494)232(22=+⨯≥++=+=x z z x xz z x xz y 当且仅当 xzz x 494=,即z x 3=时取“=”例4.设正实数x ,y ,z 满足12=++z y x ,求zy y x y x ++++)(91的最小值. 解析:由 12=++z y x ⇒ y x z 21--=1191)(1)(91)(91-+++=+-+++=++++∴yx y x y x y x y x z y y x y x1119)11(+-++-+=yx yx 令t yx =-+11上式可写成 719219=+≥++t t 当且仅当 t t 1=,即21=+y x 时取“=”2.“不相等”关系例1.正数a 、b 、c 满足a c b ≥+,求ba cc b ++的最小值. 解析:由a c b ≥+ ⇒ c b a +≤ cb cc b b a c c b ++≥++∴2 令⎩⎨⎧=+=y c b x c 2 ⇒ ⎪⎩⎪⎨⎧-==2x y b x c 2122121221222-=-≥-+=+-≥++≥++∴y x x y y x x x y c b c c b b a c c b 当且仅当 y x x y =2,即c b 2)12(-=时取“=”例2.正数x ,y ,z 满足1222=++z y x ,求xyzz S 21+=的最小值. 解析:由题意,xy z y x 21222≥-=+ 即212z xy -≤ 44)1(1)1(1)1(12122=+-≥⋅-=⋅-+≥⋅+=z z z z z z z z xy z S 当且仅当 z z =-1,即21=z 时取“=” 例3.二次函数0)(2≥++=c bx ax x f (b a <)对任意x 恒成立,求ab c b a -++4的最小值. 解析:由题意得:0>a ,042≤-=∆ac b ⇒ a b c 42≥ 11444222-++=-⋅++≥-++ab a b a b a b a b b a a bc b a 令1-=a b t 则1+=t a b 上式33233331)1()1(22+≥++=++=++++=tt t t t t t t 当且仅当 t t 3=,即13+=ab 时取“=”八、不能直接用均值不等式(一负二定三不等)1.为负值时(负)例1.已知10<<x ,求xx y lg 4lg +=的最大值. 解析:10<<x ,0lg <∴x 4)42()lg (4)lg (-=-≤⎥⎦⎤⎢⎣⎡-+--=∴x x y 当且仅当 x x lg 4lg -=-,即1001=x 时取“=”例2.当23<x 时,求函数328-+=x x y 的最大值.解析:23<x ⇒ 032<-x 2523821223))32(8(2)32(328-=+⨯-≤+⎥⎦⎤⎢⎣⎡--+---=-+=x x x x y 当且仅当328232-=-x x ,即21-=x 时取“=”例3.已知45<x ,求函数54124-+-=x x y 的最大值. 解析:45<x ⇒054<-x 354154+-+-=x x y 3)54(1)54(+⎥⎦⎤⎢⎣⎡--+---=x x 1312=+-≤ 当且仅当 54154-=-x x ,即1=x 时取“=”2.取不到等号(不等)例. 求函数4522++=x x y (R x ∈)的最小值.解析:令242≥=+t x ⇒ 422-=t x则tt t t t t y 115422+=+=+-=,2≥t 取不到1 2=∴t 时y 最小 即25212=+≥y九、调几算平2211222b a b a ab b a +≤+≤≤+例1.设a ,0>b ,5=+b a ,求31+++b a 的最大值.解析:223292)31(231==+++≤+++b a b a 即2331≤+++b a 当且仅当 31+=+b a ,即27=a ,23=b 时取“=”例2.已知x 、y 均为正数,且y x a y x +≤+恒成立,求a 的最小值.解析:由y x a y x +≤+ ⇒ y x yx a ++≥ y x y x y x +=+≤+2222 ⇒ y x y x +⋅≤+2可得2≤++y x yx 2≥∴a例3.设实数a ,x ,y 满足⎩⎨⎧-+=+-=+3212222a a y x a y x ,求a 的取值范围. 解析:2222y x y x +≤+ 当且仅当y x =时“=”成立 2322122-+≤-∴a a a 即232414422-+≤+-a a a a 得07822≤+-a a ⇒ 222222+≤≤-a 例4.设实数a ,b ,c 满足122≤≤+c b a ,求c b a ++的最大值.解析:2222b a b a +≤+ 2122222=⋅≤+≤+∴b a b a 1≤c 12+≤++∴c b a 当且仅当b a =时“=”成立十、柯西不等式:①222122212211y y x x y x y x +⋅+≤+②232221232221332211y y y x x x y x y x y x ++⋅++≤++ 例1.设a ,b ,m ,R n ∈,且522=+b a ,5=+nb ma ,求22n m +的最小值. 解析:22225b a n m nb ma +⋅+≤+= 522≥+∴n m例2.设a ,b ,),0(+∞∈c ,且1=++c b a ,求c b a ++的最大值.解析:3111111222=++⋅++≤⋅+⋅+⋅=++c b a c b a c b a例3.已知a ,b ,c 均为正数,若632=++c b a ,求222c b a ++的最小值. 解析:222222321326c b a c b a ++⋅++≤++= 718222≥++∴c b a十一、拆分法求最值例1.已知x ,y ,+∈R z ,求222z y x yz xy U +++=的最大值. 解析:22)(2212212212122222222=++=++≤++++=yz xy yz xy z y y x yz xy z y y x yz xy U 当且仅当y z x 22==时“=”成立变式 .已知x ,y ,+∈R z ,(1)求222zy x zx yz xy U ++++=的最大值 (2)求2222z y x yz xy U +++=的最大值解析:(1))(21)222(21222222222z z y y x x zx yz xy z y x zxyz xy U +++++++=++++= 1)222(21=++++≤xz yz xy zxyz xy 当且仅当z y x ==时“=”成立(2)2554522545122222=++≤++++=yz xy yz xy z y y x yz xy U 当且仅当z y x ==5522时“=”成立例2.已知0>x ,求221xx +的最小值. 解析:23212232122213222=⋅⋅⋅≥++=+xx x x x x x x ,当且仅当1=x 时“=”成立十二、元素整体代换法:一般先分解因式,研究条件与问题关系,整体代换例1.若a ,b ,0>c ,且324)(-=+++bc c b a a ,求c b a ++2的最小值.解析:324))(()()()(-=++=+++=+++c a b a c b a b a a bc c b a a令⎩⎨⎧+=+=c a y b a x ⇒ 324-=xy 232324222-=-=≥+=++xy y x c b a当且仅当c b =时“=”成立例2.若a ,b ,0>c ,且124222=+++bc ac ab a ,求c b a ++的最小值.解析:12)2)(2()2(2)2(4222=++=+++=+++c a b a b a c b a a bc ac ab a令⎩⎨⎧+=+=c a y b a x 22 ⇒ 12=xy , 3212222==≥+=++xy y x c b a 当且仅当c b =时“=”成立例3.已知c b a >>,N n ∈,且ca n cb b a -≥-+-11恒成立,求n 的最大值. 解析:令⎩⎨⎧-=-=c b y b a x ⇒y x c a +=-,由c a n c b b a -≥-+-11 得y x n y x +≥+11,即42))(11(≥++=++≤yx x y y x y x n 当且仅当b c a 2=+时“=”成立十三、不等式证明例1.已知c b a >>,求证ca cb b a ->-+-111. 证明:令m b a =-,nc b =- ⇒c a n m -=+ 12))(11(>++=++n m m n n m n m ,1))(11(>--+-∴c a cb b a ca cb b a ->-+-∴111得证例2.设a ,b ,+∈R c ,求证4)11)((≥++++cb ac b a . 证明:令m a =,n c b =+,)11)(()11)((nm n m c b a c b a ++=++++ 42≥++=n m m n 4)11)((≥++++∴cb ac b a 当且仅当c b a +=时“=”成立例3.已知a ,b ,+∈R c ,求证c b a ac c b b a ++≥++222. 证明:c b a c b a a ac c c b b b a 222222222222++=++≥+++++ 当且仅当c b a ==时“=”成立c b a ac c b b a ++≥++∴222 得证。
完整版)高考数学不等式解题方法技巧不等式应试技巧总结1.不等式的性质:1) 同向不等式可以相加;异向不等式可以相减。
例如,若a>b。
c>d,则a+c>b+d(若a>b。
cb-d)。
2) 左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘。
例如,若ab>cd,则a/c>b/d。
3) 左右同正不等式:两边可以同时乘方或开方。
例如,若a>b>c>0,则a>b或a^n。
b^n。
4) 若ab>0,则a>b时,a^m>b^m;a<b时,a^m<b^m。
例】对于实数a,b,c中,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若aab>b^2;④若a>b>0,则a^(1/2)>b^(1/2);⑤若a<b<0,则a^3<b^3;⑥若a b;⑦若c>a>b>0,则(c-a)/(c-b)>(a-b)/(c-b);⑧若a>b>0.c>d>0,则ac>bd。
其中正确的命题是②③⑥⑦⑧。
2) 已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是1≤3x-y≤7.3) 已知a>b>c,且a+b+c=1,则(c-2a)/2a的取值范围是-2≤(c-2a)/2a≤-1/2.2.不等式大小比较的常用方法:1) 作差:作差后通过分解因式、配方等手段判断差的符号得出结果。
2) 作商:常用于分数指数幂的代数式。
3) 分析法。
4) 平方法。
5) 分子(或分母)有理化。
6) 利用函数的单调性。
7) 寻找中间量或放缩法。
8) 图象法。
其中比较法(作差、作商)是最基本的方法。
例】1) 比较log_a(t+1)/log_a(t+2)和1的大小。
当a>1时,log_a(t+1)≤log_a(t+2)(当t=1时取等号);当0<a<1时,log_a(t+1)≥log_a(t+2)(当t=1时取等号)。
专题20 不等式训练
【训练目标】
1、掌握不等式的性质,能利用不等式的性质,特殊值法等判断不等式的正误;
2、熟练的解一元二次不等式,分式不等式,绝对值不等式,对数不等式,指数不等式,含根式的不等式;
3、掌握分类讨论的思想解含参数的不等式;
4、掌握恒成立问题,存在性问题;
5、掌握利用基本不等式求最值的方法;
6、掌握线性规划解决最优化问题;
7、掌握利用线性规划,基本不等式解决实际问题。
【温馨小提示】
在高考中,不等式无处不在,不论是不等式解法还是线性规划,基本不等式,一般单独出现的是线性规划或基本不等式,而不等式的解法则与集合、函数、数列相结合。
【名校试题荟萃】
1、若实数且,则下列不等式恒成立的是()
A. B. C. D.
【答案】C
【解析】根据函数的图象与不等式的性质可知:当时,为正确选项,故选C.
2、已知,,则()
A. B. C. D.
【答案】A
3、,设,则下列判断中正确的是()
A. B. C. D.
【答案】B
【解析】令,则,故选B
4、若,且,则下列不等式成立的是()
A. B.
C. D.
【答案】B
【解析】
.
5、袋子里有大小、形状相同的红球个,黑球个().从中任取个球是红球的概率记为.若将红球、黑球个数各增加个,此时从中任取个球是红球的概率记为;若将红球、黑球个数各减少个,此时从中任取个球是红球的概率记为,则()
A. B. C. D.
【答案】D
6、若,,则下列不等式错误的是()
A. B. C. D.
【答案】C
【解析】
因为,,所以,,故A、B正确;由已知得,
,所以,所以C错误;由,得,,所以
成立,所以D正确.故选C.
7、已知直线恒过定点A,点A也在直线上,其中、均为正数,
则的最小值为()
A.2
B.4
C.6
D.8
【答案】D
8、已知,直线与直线互相垂直,则的最小值等于()
A. B. C. D.
【答案】C
【解析】
,因为直线与直线互相垂直,
所以,,当时,等号成立.
9、若“”是“”的充分不必要条件,则实数的取值范围为()
A. B. C. D.
【答案】C
【解析】
若,则,符合题意,若,则,于是
.所以.
10、点在单位圆上,、是两个给定的夹角为的向量,为单位圆上动点,设
,且设的最大值为,最小值为,则的值为( )
A. B. C. F.
【答案】C
11、在约束条件:下,目标函数的最大值为,则的最大值等于( )
A. B. C. D.
【答案】D
【解析】
在直角坐标系中作出可行域如下图所示,又,由线性规划知识可知,当目标函数
经过可行域中的点时有最大值,所以有,,当且仅当时成立,故选D.
12、若的内角满足,则的最小值是()
A. B. C. D.
【答案】D
13、对一切实数,不等式恒成立, 则实数的取值范围是()
A. B. C. D.
【答案】D
【解析】
1、当时,所以取任何实数皆可
2、当时,分离变量,所以,故本题的正确选项为D
14、设均为正数,且,则的最小值为()
A. B. C. D.
【答案】D
【解析】
因为均为正数,且,所以,整理可得:,由基本不等式可得,整理可得,解得或
(舍去),所以,当且仅当时取等号,故的最小值为,故选D.
15、设实数满足,则的最大值为( )
A. B. C. D.
【答案】A
可知当曲线与线段相切时取得最大值.此时,故
,当且仅当时取等号,
对应点落在线段上,故的最大值为,选A.
16、已知正数满足,则的最大值为________.
【答案】
【解析】
由,得,所以,从而
,解得.
17、设为实数,若,则的最大值是_______.
【答案】
18、已知正数满足,则的最小值是_______.
【答案】
【解析】
因为,,所以,所以,当且仅当,即时,
取得最小值.
19、在中,角的对边分别是,若,则_________.
【答案】
【解析】
因为,所以,即.
20、给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.
【答案】
【解析】
由题意得:只需...
21、已知实数满足,且数列为等差数列,则实数的最大值是________. 【答案】3
【解析】
因为数列为等差数列,即,即目标函数为,画出可行域如图所示,
由图可知,当目标函数过点时取到最大值,最大值为...
22、设实数满足,则的取值范围是________.
【答案】
【解析】
作出可行域,令,则由的几何意义可知取点时,取得最大值,取点时,取得最小值,则
,又,由及单调递增,可知单调递增,故
,,所以的取值范围是.
23、设变量满足约束条件,则的取值范围是_________.
【答案】
24、已知满足约束条件,求的最小值是________.
【答案】
【解析】
可行域表示一个三角形及其内部,其中,而目标函数表示可行域内的点到点距离平方,因此所求最小值为点直线:距离的平方:
.
25、在上定义运算:,若不等式对任意实数恒成立,则实数的最大值为_________.
【答案】
26、若不等式对一切恒成立,则的取值范围是_______.
【答案】
【解析】
由题意得,,设则只要由于函数在在
上单调递增,所以,故.
27、若关于的不等式对任意在上恒成立,则实常数的取值范围
是_________.
【答案】
【解析】
不等式可化为,由,得的最大值为,则,解得或,又,故实常数的取值范围是.
28、设则不等式的解集为_________.
【答案】
29.关于的不等式在区间上有解,则实数的取值范围为()
A. B. C. D.
【答案】A
【解析】
要满足题意即在区间有解,设,则的最大值.因为在区间为减函数,所以的最大值为,所以,选A.
30、若不等式组的解集中所含的整数解只有,则的取值范围是_______.【答案】
【解析】
的解集为
当时,的解集为
又此时若不等式组的解集中所含整数解只有
则,即
又当时,的解集为,不满足要求
当时,的解集为,不满足要求综上的取值范围为,故答案为.。