八上数学第一次月考试卷
- 格式:doc
- 大小:290.50 KB
- 文档页数:3
江苏省南京市秦淮区钟英中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD 的是( )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD 3.如图,已知ABC A BC ''≌V V ,A C BC ''∥,∠C =25°,则ABA '∠的度数是( )A .15°B .20°C .25°D .30°4.如图,是一块三角形的草坪,现要在草坪上建一凉亭,要使凉亭到草坪三个顶点的距离相等,凉亭应选的位置是( )A .ABC V 的三条中线的交点B .ABC V 三条角平分线的交点 C .ABC V 三边的垂直平分线的交点D .ABC V 三条高所在直线的交点5.如图,ABC V 中,AB AC BC <<,使PA PB BC +=,那么符合要求的作图痕迹是( ) A . B .C .D .6.如图,在△ABC 中,AB=BC ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△BCE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( )A .90°B .120°C .135°D .150°二、填空题7.角是轴对称图形,是它的对称轴.8.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.9.如图,射线AE 平分DAC ∠,点B 在射线AE 上,若使ABD ABC V V ≌,则需添加的一个条件是.(只填一个即可)10.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边,AC AB于点M 、N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4,25CD AB ==,则ABD △的面积为.11.如图,把一张长方形纸片按如图方式折叠,使点B 和点D 重合,若70DFC ∠=︒,则DEF ∠=°.12.如图,在Rt ABC V 中,90ABC ∠=︒,D 是CB 延长线上的点,BD BA DE AC =⊥,于E ,若7.8DC =,3BF =,则AF 的长为.13.如图,BE AE ⊥,CF BE ⊥,垂足分别为E ,F ,D 是线段EF 的中点,CF BF =,若4AE =,3DE =,则ABC V 的面积是.14.如图,在22⨯的正方形网格中,有一个格点ABC V (阴影部分),则网格中所有与ABC V 成轴对称的格点三角形的个数是.15.两组邻边分别相等的四边形叫做“筝形”. 四边形ABCD 是一个筝形,其中AD CD =,AB CB =,AC 、BD 交于点O ,探究筝形的性质时,得到如下结论:①AC BD ⊥; ②12AO CO AC ==; ③ABD CBD ≌△△;④四边形ABCD 的面积AC BD =⋅.其中正确的结论有.16.如图,在V ABC 中,AB =AC =10,AD =8,AD 、BE 分别是V ABC 边BC 、AC 上的高,P 是AD 上的动点,则V CPE 周长的最小值是.三、解答题17.把一个大正方形分成9个相同的小方格,给图中的1个白色小方格画上斜线,使画斜线的部分成为一个轴对称图形18.已知图①、图②都是轴对称图形.仅用无刻度直尺.....,按要求完成下列作图(保留作图痕迹,不写作法):(1)在图①中,作出该图形的对称轴l;(2)在图②中,作出点P的对称点P .19.如图,正方形网格中每个小正方形边长都是1.A B C;(1)画出△ABC关于直线1对称的图形△111(2)在直线l上找一点P,使PB=PC;(要求在直线1上标出点P的位置)(3)在直线l上找一点Q,使点Q到点B与点C的距离之和最小.20.如图,电信部门要在S区修建一座发射塔.按照设计要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等,发射塔应建在什么位置?在图上标出它的位置.(尺规作图)21.如图,在ABC V 中,点D 在边BC 上,CD AB =,DE AB P ,DCE A ∠=∠.若10DE =,8AB =,求BD 的长.22.如图,在ABC V 中,AB AC =,AD AE =,BD 、CE 相交于点O .连接AO ,求证AO BC ⊥23.将两个三角形纸板ABC V 和DBE V 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.24.如图,在ABC V 中,AB 边的垂直平分线1l 交BC 于D ,AC 边的垂直平分线2l 交BC 于E ,1l 与2l 相交于点O ,ADE V 的周长为6cm .(1)求BC 的长;(2)若40DAE ∠=︒,DOE ∠= °,若DAE n ∠=︒,DOE ∠= .°25.如图,点D 是△ABC 中∠BAC 的平分线和边BC 的垂直平分线DE 的交点,DG ⊥AB 于点G ,DH ⊥AC 交AC 的延长线于点H ,求证:BG=CH .26.已知:ABC V 和A B C '''V ,D 、D ¢分别为BC 、B C ''中点,且AD A D ''=,AB A B ''=.(1)当BD B D ''=时,求证:ABC A B C '''△△≌.(2)当AC AC ''=时,求证:ABC A B C '''△△≌.。
山西省太原市晋源区晋祠镇多校2024—2025学年上学期第一次月考八年级数学试卷一、单选题1.下列各组线段能构成直角三角形的一组是()A .30,40,50B .7,12,13C .5,9,12D .3,4,62.在3.14,227π这四个数中,无理数有()A .1个B .2个C .3个D .4个3.下列各式中正确的是()A7=-B 3=±C .2(4=D =4.满足下列条件的,不是直角三角形的为()A .ABC ∠=∠-∠B .::1:1:2A B C ∠∠∠=C .222b ac =-D .::2:3:4a b c =5.如图,阴影部分是一个长方形,它的面积是()A .3cm 2B .4cm 2C .5cm 2D .6cm 26.如图,在Rt ABC △中,90C ∠=︒,若15AB =,则正方形ADEC 和正方形BCFG 的面积和为()A .150B .200C .225D .无法计算7a ,小数部分为b ,则a ﹣b 的值为()AB .6C .8D 68.如图,在ABC V 中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于()A .1013B .1513C .6013D .75139.设n 为正整数,且nn+1,则n 的值为()A .5B .6C .7D .810.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于()A .5cmB .4cmC .3cmD .2cm二、填空题11.=.12.的绝对值是.116的算术平方根是,的立方根是13.比较大小,填>或<,-14.已知a ,b ,c 是ABC V 的三边长,且满足关系式()22220a c b c b --+-=,则ABC V 的形状为.15.如图,是一种饮料的包装盒,长、宽、高分别为4cm ,3cm ,12cm ,现有一长为16cm 的吸管插入盒的底部,则吸管露在盒外部分的长度h 的取值范围为.三、解答题16.计算:3-(4)+(5)2+17.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12m,如图,即AD=BC=12m,此时建筑物中距地面12.8m 高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8m,问此消防车的云梯至少应伸长多少米?V,若每个小方格的边长为1,请你根据所学的知识解18.如图,已知正方形网格中的ABC答下列问题.V的面积;(1)求ABC(2)判断ABC V 是什么形状?并说明理由.19.如图,四边形ABCD 是边长为a 的正方形,点E 在CD 上,DE b =,AE c =,延长CB 至点F ,使BF b =,连接AF ,试利用此图说明勾股定理.20.甲同学用如图所示的方法作出C在OAB △中,90,2,3OAB OA AB ∠=︒==,且点,,O A C 在同一数轴上,OB OC =.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如图所示的数轴上描出表示F .21.阅读下面内容:111⨯=;1⨯=122⨯=.试求:;(n 为正整数)+。
陕西省咸阳市秦都区咸阳彩虹中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列各数中,绝对值最小的数是( )A .5-B .12C .1-D 2.若6、8、a 为勾股数,则a 的值为( )A.B .10 C .12 D .3.下列各二次根式中,为最简二次根式的是( )A B C D 4.下列运算正确的是( )A 2=±B 5=C .(23=-D 5=±5.如图,数轴上A ,B 6.8,则在点A 和点B 之间表示整数的点共有( )A .7个B .6个C .5个D .4个 6.如图,在Rt ABC V 中,906ACB AB ∠=︒=,,若以AC 边和BC 边向外作等腰直角三角形AFC 和等腰直角三角形BEC .若BEC V 的面积为1S ,AFC V 的面积为2S ,则12S S +=( )A .4B .9C .18D .367.如图,将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度为cm h ,则h 的取值范围是( )A .12cm 19cm h ≤≤B .12cm 17cm h ≤≤C .11cm 12cm h ≤≤D .5cm 12cm h ≤≤8.在证明勾股定理时,甲、乙两位同学分别设计了如下方案:如图,用四个全等的直角三角形拼成,其中四边形ABDE 和四边形CF 均是正方形,通过用两种方法表示正方形ABDE 的面积来进行证明.如图是两个全等的直角三角板ABC 和直角三角板DEF ,顶点F 在BC 边上,顶点C ,D 重合,通过用两种方法表示四边形ACBE 的面积来进行证明.对于甲、乙分别设计的两种方案,下列判断正确的是( )A .甲、乙均对B .甲对、乙不对C .甲不对,乙对D .甲、乙均不对二、填空题9.在下列实数中1-,2π,0 3.1415-227,)01.其中是无理数的有个. 10a 的取值范围是.11.如图,在四边形ABCD 中,连接AC ,DE AC ⊥于E ,15AB =,9BC DE ==,54DAC S =△,则ACB ∠的度数等于︒.12.如图,有一圆柱形油罐,底面周长为24m ,高为10m .从A 处环绕油罐建梯子,梯子的顶端点B 正好在点A 的正上方,梯子最短需要m .13.对角线互相垂直的四边形叫做“垂美”四边形,如图,“垂美”四边形ABCD ,对角线AC 、BD 交于点O .若3AD =,5BC =,22AB CD +=.三、解答题14.求下列各式中的x :(1)21431x -=;(2)()24181x +=15.一支铅笔斜放在圆柱体的笔筒中,如图所示,笔筒的内部底面直径是6cm ,内壁高8cm .若这支铅笔在笔筒外面部分长度是5cm ,求这支铅笔的长度是多少cm ?1617.计算:2.18.已知31a +的算术平方根是2,23a b -+的立方根是3-,(1)求a ,b 的值;(2)求8b a -的平方根.19.已知a ,b ,c 满足(a 2|c -=0.(1)求a ,b ,c 的值;(2)试判断以a ,b ,c 为边长能否构成直角三角形,并说明理由.20.如图,在ABC V 中,17AB AC ==,8BD =,求ABC V 的角平线AD 的长.21.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,ef 的算术平方根是8,求12ab +5c d ++e 2 22.如图,正方形ABCD 的边长为a ,点E 在AB 边上,四边形EFGB 也是正方形,它的边长为b (a >b )连结AF 、CF 、AC ,若a +b =10,ab =20,求阴影部分的面积.23.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .此时BE DE =,若4AB =,8AD =,求BDE V 的面积.24.某村有如图所示的一笔直公路AB ,水源C 处与公路之间有小片沼泽地,为方便公路上的人用水,拟从C 处铺设水管到公路上.已知200AB =米,160AC =米,120BC =米.(1)求ACB ∠的大小;(2)求铺设水管的最小长度.25.如图是放在地面上的一个长方体盒子,其中9cm AB =,6cm BC =,5cm BF =,点M 在棱AB 上,且3cm AM =,点N 是FG 的中点,一只蚂蚁要沿着长方体盒子的外表面从点M 爬行到点N ,它需要爬行的最短路程是多少?(盒子底面蚂蚁无法到达)26.已知:如图所示,四边形ABCD 中,AD BC ∥,O 是CD 上一点,且AO 平分BAD ∠,BO 平分ABC ∠,(1)求证:AO BO⊥;(2)若3AO=,5AB=,求四边形ABCD的面积.。
广东省佛山市南海区平洲第二初级中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.在5π,3.14,2,6-+ 这些数中,无理数的个数为()A .2B .3C .4D .52.下列计算正确的是()A4=±B 2=-C 1=D .3=-3.在平面直角坐标系中,点()2,3P -关于x 轴对称点P '的坐标是()A .()2,3--B .()3,2--C .()3,2-D .()23,4.下列二次根式是最简二次根式的是()AB CD 5的运算结果应在()A .4到5之间B .5到6之间C .6到7之间D .7到8之间6.在下列函数解析式中,①y kx b =+;②3y x =;③23y x =;④2(2)y x x x =-+;⑤4y x =-+,一定是一次函数的有()A .4个B .3个C .2个D .1个7.下面平面直角坐标系中的曲线不表示y 是x 的函数的是()A .B .C .D .8.两个函数y kx b =+和y bx k =+,它们在同一个坐标系中的图像不可能是()A .B .C .D .9.如图,一个无盖的半圆柱形容器,它的高为6cm ,底面半圆直径AC 为4cm ,点A 处有一只蚂蚁沿如图所示路线爬行,它想吃到上底面圆心B 处的食物,则爬行的最短路程是多少(π取3)()A .B .8C .D .1010.如图,在Rt ABC △中,AB AC =,90BAC ∠=︒,点D 、E 为BC 上两点,45DAE =︒∠,点F 为ABC V 外一点,且FB BC ⊥,FA AE ⊥,则下列结论:①CE BF =;②222BD CE DE +=;③14ADE S AD EF =⋅△;④2222CE BE EF +=,其中正确的是()A .①②③B .①②③④C .①③④D .②③二、填空题11的平方根是.12.比较大小:(填“>,<或=”).13.点(),3P a -在直线23y x =上,则a =.14.在平面直角坐标系xOy 中,若点A 的坐标为()3,3-,点B 的坐标为()2,1,存在x 轴一点P ,使AP BP +最小,则AP BP +最小值是.15.如图,某数学兴趣小组在课后一起复习数学知识,首先他们在纸上画出Rt ABC △,然后分别以这个三角形的三边为直角边画出三个等腰直角三角形,最后把这个图形剪下来,并折成下图的样子,DF 分别与AE EC 、交于G 、H ,若,,ADG EGH CFH △△△的面积分别为4,9,16,则ABC S = .三、解答题16117.现有一张利用平面直角坐标系画出来的某公园景区地图,如图所示,已知游乐园D 的坐标为()2,1-,体育馆的坐标为0,1.(1)请按题意建立平面直角坐标系;(2)写出其他各景点对应的点的坐标.18.如图所示,已知2OA OB BC ==,.(1)说出数轴上点A 所表示的数为______;(2)比较点A 所表示的数与 3.5-的大小:______;(3)对应的点.(保留作图痕迹)19.科学家实验发现,声音在不同气温下传播的速度不同,声音在空气中的传播速度随气温的变化而有规律的变化.某科学社团通过查阅资料发现,声音在空气中传播的速度和气温的变化存在如下的关系:(1)在这个变化过程中,______是自变量;(填汉字)(2)声音在空气中的传播速度()m /s v 与气温℃的关系式可以表示为______;(不要求写t 的取值范围)(3)某日的气温为20℃,小乐看到烟花燃放4s 后才听到声响,那么小乐与燃放烟花所在地大约相距多远?20.在“欢乐周末·非遗市集”活动现场,诸多非遗项目集中亮相,让过往游客市民看花了眼、“迷”住了心.小明买了一个年画风筝,并进行了试放,为了解决一些问题,他设计了如下的方案:先测得放飞点与风筝的水平距离BD 为15m ;根据手中余线长度,计算出AC 的长度为17m ;牵线放风筝的手到地面的距离AB 为1.5m .已知点A ,B ,C ,D 在同一平面内.(1)求风筝离地面的垂直高度CD ;(2)在余线仅剩9m 的情况下,若想要风筝沿射线DC 方向再上升12m ,请问能否成功?请运用数学知识说明.21.已知:如图,已知ABC V ,ABC V 的顶点(0,2)A -,(2,4)-B ,(4,1)C -均在正方形网格的格点上.(1)画出与ABC V 关于x 轴对称的图形111A B C △并写出点1A 的坐标;(2)求ABC V 的面积;(3)求点B 到AC 的距离.22.在Rt ABC △中,90C ∠=︒,点M 为边AB 的中点,点D 在边BC 上.(1)如图1,若6AC =,8BC =,则BM =__________;(2)在(1)的条件下,若MD AB ⊥,求MD 的长;(3)如图2,过点M 作ME MD ⊥与边AC 交于点E ,试探究:线段AE 、ED 、DB 三者之间的数量关系,并说明理由.23.如图,在平面直角坐标系中,点B 坐标为(-3,0),点A 是y 轴正半轴上一点,且AB=5,点P 是x 轴上位于点B 右侧的一个动点,设点P 的坐标为(m ,0)(1)点A 的坐标为()(2)当△ABP是等腰三角形时,求P点的坐标;(3)如图2,过点P作PE⊥AB交线段AB于点E,连接OE.若点A关于直线OE的对称点为A',当点A'恰好落在直线PE上时,BE=________(直接写出答案)。
2023-2024学年陕西省西安市铁一中学八年级(上)第一次月考数学试卷一、选择题(共10小题)1.在实数﹣、、、中,是无理数的是( )A.B.C.D.解析:解:,=2,是整数,属于有理数;是分数,属于有理数;故在实数﹣、、、中,是无理数的是.故选:D.2.如图,分别以直角三角形的三边为直径向三角形外作三个半圆,图中的字母是它们的面积其中S2=6π,S3=10π,则S1为( )A.8πB.4πC.16πD.4解析:解:∵S1=AC2,S2=BC2,S3=AB2,又BC2+AC2=AB2,∴S1=S2﹣S3=10π﹣6π=4π.故选:B.3.若△ABC中,AB=c,AC=b,BC=a,下列不能判定△ABC为直角三角形的是( )A.a=32,b=42,c=52B.a:b:c=5:12:13C.(c+b)(c﹣b)=a2D.∠A+∠B=∠C解析:解:a=32,b=42,c=52,则a2+b2≠c2,故选项A符合题意;当a:b:c=5:12:13时,设a=5x,b=12x,c=13x,则a2+b2=(5x)2+(12x)2=c2,故选项B不符合题意;由(c+b)(c﹣b)=a2整理得:a2+b2=c2,故选项C不符合题意;由∠A+∠B=∠C,可知∠C=90°,故选项D不符合题意;故选:A.4.勾股定理被誉为“几何明珠”.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图所示,把一个边长分别为3,4,5的三角形和三个正方形放置在大长方形ABCD中,则该长方形中空白部分的面积为( )A.54B.60C.100D.110解析:解:如图延长EG交BC于M,其他字母标注如图示:根据题意,EF=3,EG=4,FG=5,在Rt△EFG和Rt△MGQ中,∵∠FEG=∠GMQ=90°,∠EFG=∠MGQ,FG=QG,∴Rt△EFG≌Rt△MGQ(AAS),∴GM=EF=3,MQ=EG=4∴AB=3+4+3=10,同理可证△GMQ≌△QCH,∴CQ=GM=3,∴BC=4+4+3=11.空白部分的面积=长方形面积﹣三个正方形的面积和=11×10﹣(32+42+52)=60.故选:B.5.一个正数a的平方根是2x﹣3与5﹣x,则a的值是( )A.﹣2B.7C.﹣7D.49解析:解:∵2x﹣3与5﹣x是正数a的平方根,∴2x﹣3+5﹣x=0.解得x=﹣2.∴2x﹣3=﹣7,5﹣x=7.∵(±7)2=49.∴a的值为49.故选:D.6.下列说法:①实数和数轴上的点是一一对应的;②实数分为正实数和负实数;③立方根等于它本身的数是±1和0;④无理数都是无限小数;⑤平方根等于本身的数是1和0.正确的个数是( )A.1B.2C.3D.4解析:解:①实数和数轴上的点是一一对应的,故说法正确;②实数分为正实数、负实数和零,故说法错误;③立方根等于它本身的数有﹣1,0和1,故说法正确;④无理数是开方开不尽的数,即无理数是无限不循环小数,也是无限小数,故说法正确;⑤算术平方根等于本身的数是1和0,故说法错误;故选:C.7.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是( )A.5B.25C.10+5D.35解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选:B.8.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC的高是( )A.B.C.D.解析:解:根据图形可得:AB=AC==,BC==,∠BAC=90°,设△ABC中BC的高是x,则AC•AB=BC•x,×=•x,x=.故选:A.9.已知实数a满足|2022﹣a|+=a,则a﹣20222的值为( )A.2022B.2023C.20222D.20232解析:解:由题意得:a﹣2023≥0,解得:a≥2023,则a﹣2022+=a,∴=2022,∴a﹣2023=20222,∴a﹣20222=2023,故选:B.10.如图,在△ABC中,AD⊥BC于点D,BF平分∠ABC交AD于点E,交AC于点F.AC=17,AD=15,BC=28,则AE的长等于( )A.5B.20C.D.解析:解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵AD=15,AC=17,∴DC===8,∵BC=28,∴BD=28﹣8=20,由勾股定理得:AB==25,过点E作EG⊥AB于G,∵BF平分∠ABC,AD⊥BC,∴EG=ED,在Rt△BDE和Rt△BGE中,∵,∴Rt△BDE≌Rt△BGE(HL),∴BG=BD=20,∴AG=25﹣20=5,设AE=x,则ED=15﹣x,∴EG=15﹣x,Rt△AGE中,x2=52+(15﹣x)2,x=,∴AE=.故选:D.二、填空题(共6小题)11.81的算术平方根的平方根是 ±3 .解析:解:81的算术平方根的平方根是±3,故答案为:±3.12.比较大小: < .(填“>”,“<”或“=”)解析:解:﹣==∵,∴4,∴,∴﹣<0,∴<.故答案为:<.13.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是 32或42 .解析:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.14.已知实数a、b在数轴上的对应点如图所示,化简:|a﹣b|= a .解析:解:由数轴可知,b<0<a,|b|>|a|,∴a﹣b>0,∴|a﹣b|=a+a﹣b﹣(a﹣b)=a,故答案为:a.15.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6米,AB=5米,该木块的较长边与AD平行,横截面是边长为2米的正方形,一只蚂蚁从点A爬过木块到达C处需要走的最短路程是 3 米.解析:解:由题意可知,将木块展开,相当于是AB﹣2+3个正方形的宽,∴长为5﹣2+3×2=9米;宽为6米.于是最短路径为:=3米.故答案为:3.16.如图,等边△ABC,边长是8.点M、N分别是边AB、BC上的动点,且BM=BN,点P是边AC上的动点,连接PM、PN.若PM+PN=4,则线段PC的长为 4 .解析:解:如图,过点P分别作PD⊥AB于点D,PE⊥BC于点E,AG⊥BC于点G,连接BP,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABG=60°,∴∠BAG=30°,∴BG=AB=4,∴AG=BG=4,∴S△ABC=BC•AG=8×4=16,∵S△ABC=S△ABP+S△BCP=AB•PD=BC•PE,∴8(PD+PE)=16,∴PD+PE=4,∵PM≥PD,PN≥PE,∴PM+PN≥PD+PE=4,∵PM+PN=4,∴PM+PN=4=PD+PE,∴此时M,D重合,N、E重合,即BD=BE,在Rt△BPD和Rt△BPE中,BP=BP,BD=BE,∴Rt△BPD≌Rt△BPE(HL),∴∠DBP=∠CBP=30°,∵AB=BC=AC=8,∴PC=BC=4,故答案为:4.三、解答题17.化简:(1);(2);(3);(4).解析:解:(1)原式=2﹣3+5=4;(2)原式=﹣+2=4﹣+2=4+;(3)原式=2+﹣﹣=2+﹣﹣=+;(4)原式=4+4+3﹣(9﹣2)+4﹣2=4+2.18.实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,(1)如图1,点A表示的数是 ;(2)如图2,直线l垂直数轴于原点在数轴上,请用尺规作出表示1﹣的点(不写作法,保留作图痕迹).解析:解:(1)如图:∵OA=OB==,∴点A表示的数是,故答案为:;(2)如图所示:点P即为所求.19.求下列各式中x的值:(1)25x2﹣64=0;(2)343(x+3)3+27=0.解析:解:(1)∵25x2﹣64=0∴25x2=64∴x2=,解得,x1=,x2=﹣;(2)∵343(x+3)3+27=0∴343(x+3)3=﹣27∴(x+3)3=∴x+3=﹣,解得,x=﹣3.20.(1)在如图中画出边长为、、的三角形.(2)该三角形的面积为 .解析:解:(1)如图,△ABC即为所求.(2)△ABC的面积为=.故答案为:.21.已知5a+2的立方根是3,b+1是9的平方根,c是的整数部分,求a+b+c的值.解析:解:由已知得:5a+2=27,b+1=±3,c=4,解得:a=5,b=2或b=﹣4,c=4,当b=2时,a+b+c=5+2+4=11;当b=﹣4时,a+b+c=5+(﹣4)+4=5;综上所述,a+b+c等于5或11.22.我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?解析:解:连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC==25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=×15×20+×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.23.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB=500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?解析:解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.24.在解决问题“已知a=,求3a2﹣6a﹣1的值”时,小明是这样分析与解答的:∵a=+1,∴a﹣1=,∴(a﹣1)2=2,a2﹣2a+1=2,∴a2﹣2a=1,∴3a2﹣6a=3,3a2﹣6a﹣1=2.请你根据小明的分析过程,解决如下问题:(1)化简:.(2)若a=,求3a2﹣18a+1的值.解析:解:(1)===3+;(2)∵a====3﹣2,∴a﹣3=﹣2,∴(a﹣3)2=8,即a2﹣6a+9=8,∴a2﹣6a=﹣1,∴3a2﹣18a=﹣3,则3a2﹣18a+1=﹣3+1=﹣2.25.如图,长方形纸片ABCD,AB=6,BC=8,点E、F分别是边AB、BC上的点,将△BEF沿着EF翻折得到△B′EF.(1)如图1,点B'落在边AD上,若AE=2,则AB'= 2 ,FB'= 4 ;(2)如图2,若BE=2,点F是BC边中点,连接B'D、FD,求△B'DF的面积;(3)如图3,点F是边BC上一动点,过点F作EF⊥DF交AB于点E,将△BEF沿着EF翻折得到△B'EF,连接DB',当△DB'F是以DF为腰的等腰三角形时,请直接写出CF的长.解析:解:(1)∵AE=2,AB=6,∴BE=4,∵将△BEF沿着EF翻折得到△B′EF,∴BE=B'E=4,BF=B'F,∴AB'===2,如图1,过点B'作BH⊥BC于H,∴四边形ABHB'是矩形,∴BA=B'H=6,AB'=BH=2,∴HF=BF﹣2,∵B'F2=B'H2+HF2=36+(B'F﹣2)2,∴B'F=4,故答案为:2,4;(2)如图2,连接BB',交EF于N,连接B'C,过点B'作B'M⊥于M,∵点F是BC边中点,∴BF=CF=4,∵将△BEF沿着EF翻折得到△B′EF,∴BF=B'F=BC,BN=B'N,BB'⊥EF,∵BE=2,BF=4,∴EF===2,∵S△BEF=×BE•BF=×EF•BN,∴2×4=2BN,∴BN=,∴FN==,BB'=,∴B'M==,∴MF==,∴△B'DF的面积=×(+6)×(4+)﹣×4×6﹣××=13.6;(3)若DF=B'F时,则BF=DF=B'F,∵DF2=DC2+CF2,∴(8﹣CF)2=36+CF2,∴CF=,若DF=B'D时,如图3,过点D作DQ⊥B'F于Q,∴B'Q=QF,∵EF⊥DF,∴∠EFB'+∠DFB'=90°=∠BFE+∠DFC,∴∠DFC=∠DFB',又∵∠DQF=∠C=90°,DF=DF,∴△DFC≌△DFQ(AAS),∴CF=QF=BF,∵BC=BF+CF,∴8=2CF+CF,∴CF=,综上所述:CF的长为或.。
江西省2025届八年级第一次阶段适应性评估数学上册11.1~12.1说明:共有六个大题,23个小题,满分120分,作答时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内.错选、多选或未选均不得分.1.下列长度的三条线段不能组成三角形的是( )A .2,3,4B .3,5,8C .6,8,10D .5,5,92.如图,将△ABC 沿直线AB 翻折,点C 与点D 重合,点E 在AB 上,则全等三角形有( )A .1组B .2组C .3组D .4组3.如图,人字梯中间一般会设计一根“拉杆”,以增加使用梯子时的安全性,其中蕴含的数学依据是( )A .两点确定一条直线B .两点之间,线段最短C .垂线段最短D .三角形具有稳定性4.王大爷要将一块如图所示的三角形土地平均分配给两个儿子,则图中他所作的线段AD 应该是△ABC 的( )A .角平分线B .高C .中线D .以上都不是5.如图,在△ABC 中,AD ,CE 是三角形的高,若,,,则线段CE 的长为( )5AB =6BC =4AD =A.B .4C .5D .66.如图,在四边形OAPE 中,点D ,B 分别在边OA ,OE 上,△APD ≌△BPE ,下列结论不一定正确的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)7.在△ABC 中,,,则的度数为________.8.“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框可抽象为正六边形(如图2),则该正六边形的内角和为________.图1 图29.若三角形三个内角的比为,则这个三角形是________三角形.10.如图,在△ABC 中,,,CD 是边AB 上的高,AE 是的平分线,则的度数是________.11.如图,,点D ,E 分别在边AB ,AC 上,若,,则________.245PB PA =OB PD =BPA DPE ∠=∠180OBP A ∠+∠=︒45B ∠=︒60C ∠=︒A ∠1:2:330BCD ∠=︒80ACB ∠=︒CAB ∠AEB ∠ABE ACD △△≌3AD =5AC =BD =12.有一张三角形纸片ABC ,其中,,,过三角形纸片的某个顶点将△ABC 剪成两个三角形,其中有一个为直角三角形,则剪完后得到的两个三角形的所有内角中,最大角的度数为________.三、解答题(本大题共5小题,每小题6分,共30分)13.(1)在△ABC 中,三角形各内角的度数如图所示,求的度数.(2)已知一个多边形的内角和是它的外角和的4倍,求该多边形的边数.14.已知一个三角形的两条边长分别为4cm ,8cm .设第三条边长为x cm .(1)求x 的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.15.现有一块如图所示的模板.为了加工成某种特定的形状,需要AB ,CD 的延长线的夹角为().由于交点M 不在模板上,不便测量,工人师傅测得,,,请通过计算判断该模板是否符合要求.16.如图,在△ABC 中,AD 为BC 边上的高,CE 平分交AD 于点E ,若,.100A ∠=︒60B ∠=︒20C ∠=︒B ∠80︒80M ∠=︒122A ∠=︒156C ∠=︒90E F ∠=∠=︒ACD ∠:3:2BAC CAD ∠∠=35DCE ∠=︒(1)求的度数;(2)求的度数.17.如图,在的网格中,每个小正方形的边长均为1,小正方形的每一个顶点称为格点.A ,B ,C 均在格点上,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).图1 图2(1)在图1中,过点C 作△ABC 的中线.(2)在图2中,在边BC 上找到点E ,使.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,已知,点B ,F ,C ,E 在同一条直线上.(1)若,,求线段BF 的长.(2)请判断AC 与DF 的位置关系,并说明理由.19.追本溯源我们知道,三角形三个内角的和等于,利用该定理我们可以得到推论:三角形的外角等于与它不相邻的两个内角的和.推论证明(1)已知:如图1,是△ABC 的一个外角.求证:.CAD ∠B ∠65⨯2ABE ACE S S =△△ABC DEF △△≌11BE =3CF =180︒ACD ∠ACD A B ∠=∠+∠图1知识应用(2)如图2,在△ABC 中,,点D 在边BC 上,交AC 于点F .若,求的度数.图220.定义:若三角形的两个内角与满足,则称该三角形为“准互余三角形”,与为“准互余角”.(1)下列各组给出了三角形的三个内角,其中能构成“准互余三角形”的是________(填序号).①,,;②,,;③,,.(2)若△ABC 为“准互余三角形”,,和是“准互余角”,求的度数.(3)如图,在Rt △ABC 中,,若AD 平分,求证:△ABD 是“准互余三角形”.五、解答题(本大题共2小题,每小题9分,共18分)21.问题情境:在探索多边形的内角与外角关系的活动中,同学们经历了观察、猜想、实验、计算、推理、验证等过程,提出了以下问题,请解答.(1)若六边形的一个内角的度数是.①与它相邻的外角的度数为________;②其他五个内角的和为________.(2)若n 边形的一个外角为,与它不相邻的个内角的和为,求,与n 之间满足的等量关系,并说明理由.22.【模型理解】(1)如图1,AB 和CD 交于点O ,求证:.50B ∠=︒DE AB ∥195∠=︒C ∠αβ90αβ-=︒αβ50︒60︒70︒20︒50︒110︒30︒30︒120︒100A ∠=︒A ∠B ∠C ∠90C ∠=︒BAC ∠50︒α()1n -βαβA C B D ∠+∠=∠+∠图1【模型应用】(2)如图2,AE ,CE 分别平分,,求证:.图2六、解答题(本大题共12分)23.特例感知(1)如图1,BP 是的平分线,CP 是△ABC 外角的角平分线.图1①若,则________;②判断与的数量关系,并说明理由.类比迁移(2)如图2,是的外角,的平分线与的平分线交于点,的平分线与的平分线交于点,,的平分线与的平分线交于点(n 为正整数).设,则________.图2拓展应用BAD ∠BCD ∠2B D E ∠+∠=∠ABC ∠50A ∠=︒P ∠=P ∠A ∠0A CD ∠0A BC △0A BC ∠0A CD ∠1A 1A BC ∠1A CD ∠2A 1n A BC -∠1n A CD -∠n A 0A α∠=n A ∠=(3)如图3,在△ABC 中,是△ABC 的外角,的三等分线与的三等分线交于点P .若,,请直接写出的度数.(用含、的式子表示)图3ACD ∠B ∠ACD ∠A α∠=()B βαβ∠=>P ∠αβ。
重庆市巴蜀中学2024-2025学年八年级上学期第一次月考数学试卷一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.如图,12350∠=∠=∠=︒,则4∠的度数为()A .100︒B .110︒C .120︒D .130︒3.下列计算正确的是()A .3412a a a ⋅=B .842a a a ÷=C .()437a a =D .()3236928a b a b =4.平面直角坐标系中,若点()21,3A x -与点()1,1B y --关于y 轴对称,则x y +的值为()A .3-B .3C .5D .5-5.如图,等腰Rt ABC △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,AD AC =,连接CD ,则BCD ∠等于()A .15︒B .20︒C .22.5︒D .30︒6.若3x a =,2y a =,则23x y a -的值为()A .1B .94C .98D .897.学校组织劳技社会实践活动,甲乙两班同时参加了陶艺制作项目.活动结束后,两个班统计了制作陶艺品的总数,结果发现甲乙两班陶艺品的总数比为5:4,甲班制作的陶艺品总数的2倍比乙班陶艺品的总数3倍少30个.设甲、乙两班的陶艺品的总数分别为x 个和y 个,根据题意所列的方程组应为()A .542330x y x y =⎧⎨=-⎩B .542330x y x y =⎧⎨=+⎩C .452303x y x y =⎧⎨+=⎩D .452330x y x y =⎧⎨=+⎩8.如图,在ABC V 中,CAB ∠的角平分线AD 与CBA ∠的角平分线BD 交于点D ,过D 点作AB 的平行线分别交AC 、BC 于点M 、N ,若ABC V 与CMN 的周长分别24、15,则AB的长为()A .7.5B .12C .10D .99.若多项式()224125x k xy y --+是关于x 、y 的完全平方式,则k 的值为()A .21B .19C .21或19-D .21-或1910.杨辉三角是中国古代数学杰出的研究成果之一.如图所示是一种变异的“杨辉三角”,按箭头方向依次记为:11a =,24a =,33a =,48a =,57a =,616a =,715a = ,则20262027a a +等于()A .101421-B .101421+C .101521-D .101521+11.在学习完《整式乘法》后,数学兴趣小组探究了这样一个问题:如图,现有甲、乙两张正方形纸片.小勇将甲正方形移至乙正方形的左上角按方式一摆放,小伟将甲、乙正方形并列放置在一个更大的正方形中按方式二摆放.若按方式一摆放时阴影小正方形部分的面积为2,按方式二摆放时阴影部分的面积为8,则甲、乙两张正方形纸片的面积之和为()A .12B .10C .8D .612.在整式224A m m =-+,2241B m m =+-,2415C m =+的前面添加“+”或“-”.先求和,再求和的绝对值的操作,称为“和绝对”操作,将操作后的化简结果记为Q .例如:()()()2222242414154814m m m m m m m --+-+--+=---,则24814Q m m =---,下列说法正确的个数为()①把A 、B 、C 进行“和绝对”操作所得结果化简,共有8种不同的结果;②把A 、B 、C 进行“和绝对”操作所得结果化简,将每次操作化简结果的最小值记为M ,则M 的最小值为10;③把A B 、、C 进行“和绝对”操作所得结果化简,将第一次操作得到的不同化简结果再次进行“和绝对”操作,此时至少存在一种操作使得化简的结果为0A .0B .1C .2D .3二、填空题13.计算:)01=.14.如图,将ABC V 沿BC 向右平移至DEF ,若14BF =,8EC =,则BC 的长为.15.如图,在ABC V 中,114BAC ∠=o ,点D 在BC 上,连接AD ,若BA BD =,DA DC =则B ∠的度数为.16.若()()23x a x x b ---的结果不含关于x 的一次项和二次项,则a b -的值为.17.如图,AD 是ABC V 的中线,且AB AD =,20BC =,E 为BD 的中点,P 为AD 的垂直平分线GF 上一点,若ABC V 的面积为100,则DEP 周长的最小值为.18.若关于x 的不等式组()311221x x x x a -⎧<+⎪⎨⎪+≥-+⎩有且仅有4个整数解,且关于x 、y 的方程组125x ay x y -=⎧⎨+=⎩的解为整数,则所有满足条件的整数a 的值之和为.19.如图,等边ABC V 中,12.6AB =,点D 、E 分别在BC 、AC 上,且CD AE =,连接AD 、BE 交于点F ,连接CF ,若90BFC ∠=︒,则BD 的长为.20.对于一个任意的四位数M ,若M 的千位数字和百位数字之和为4的倍数,十位数字和个位数字之和为8的倍数,我们称这样的四位数为“扩张数”.例如:四位数3197,因为314+=,9716+=,所以3197是“扩张数”;四位数6238,因为628+=,3811+=,11不是8的倍数,所以6238不是“扩张数”.若2000331310020N x y m n =++++是“扩张数”,其中13x ≤≤,05y ≤≤,09m ≤≤,06n ≤≤,且x 、y 、m 、n 都是整数,记()23P N m n =++,()2296Q N x y =--;若()()P N Q N 是5的倍数,则满足条件的N 的最大值为.三、解答题21.计算:(1)()232222x y xy x xy x y ⋅-+;(2)()()()225a b a b b a -++-.22.先化简,再求值:()()()22a b a b b a b a ⎡⎤+---÷⎣⎦,其中a 、b 满足方程组1329a b a b ⎧+=⎪⎨⎪-=⎩.23.如图,在平面直角坐标系中,()3,4A -,()4,3B -,()2,1C -.(1)将ABC V 向下平移4个单位,得到111A B C △,请在图中作出111A B C △关于y 轴对称的222A B C △,并写出点2A 、2B 、2C 的坐标;(2)请求出2ACA 的面积.24.今年夏天,重庆市持续高温,市场上各品牌空调销售火爆,某商场就A 、B 、C 三种品牌的空调在7、8月的销售情况做了统计,并绘制出以下统计图,若该商场8月的空调销售总量比7月销售总量增加了25%,其中B 品牌8月的销量比7月增加了15台,请回答下面的问题:(1)该商场8月份一共销售了________台空调;(2)请补全条形统计图;(3)若在7、8月期间,重庆市共销售了30000台空调,请你估计A 品牌空调在全市一共销售了多少台?25.如图,直角ACB △中,90ACB ∠= .(1)请在AC 边上截取线段CD ,使得CD BC =,过点D 作直线AB 的垂线,垂足为点E ,交BC 的延长线于点F (要求:使用尺规作图,保留作图痕迹,不写作法);(2)若 2.5cm BC =,3cm AD =,求BF 的长.26.暑假期间,小巴和小蜀同学参加社会实践活动,在某糕点店制作了一批甜点进行售卖,其中“花生酥”和“纸杯蛋糕”的制作成本分别是每个2.5元和4元,每个“纸杯蛋糕”的售价比“花生酥”多1.5元,某天上午,他们一共售卖出30个“花生酥”和50个“纸杯蛋糕”,共盈利120元.(1)求“花生酥”和“纸杯蛋糕”的售价单价:(2)当天下午,小巴和小蜀又将制作的“花生酥”和“纸杯蛋糕”两种甜点共200个进行售卖、为了促销,他们还用50元钱租借了一个棉花糖机,制作一个棉花糖需要0.5元钱的成本,每销售一个“纸杯蛋糕”就赠送一个棉花糖.由于天气炎热销售过程中“纸杯蛋糕”有15%的损坏(无法售卖),且两种甜点的售价都保持不变,当天下午除损坏的“纸杯蛋糕”外,其余的“花生酥”和“纸杯蛋糕”全部售完.若要保证全天的总利润不低于300元,则“花生酥”全天的销量最少为多少个?27.如图,ABC V 为等边三角形,直线BD 与AC 边交于点D ,ABD α∠=,E 为直线BD 上一动点,连接AE ,将线段AE 绕A 点逆时针旋转120︒得AF ,连接EF .(1)如图1,若30α=︒,EF 与AC 交于点G ,且EF AB ∥,6AB =,求GF 的长度;(2)如图2,若EF 与AC 交于点G ,且G 为AC 中点,猜想线段BE 、EG 、GF 之间存在的数量关系,并证明你的猜想;(3)如图3,若030α︒<<︒,连接CF ,当CF 最短时,在直线CF 和线段AC 上分别取点P 和点Q ,且CP AQ =,连接BP 、BQ ,直接写出(或者表示出)当BP BQ +取得最小值时PBQ ∠的度数.。
八年级上学期第一次月考综合测试卷时间:100分钟 满分:120分 考试范围:北师大版八年级上册第一章~第二章一、选择题(每小题3分,共30分)1.下列是无理数的是( )A.-13B.4C.3.141 592 6D.-π2.下列几组数中,是勾股数的是( )A.1,2,3B.0.3,0.4,0.5C.15,8,17D.35,45,13.下列各式中正确的是( )A.16=±4B.3-27=-9C.(-3)2=-3D.94=324.已知下列各式:23,0.1,35,12,6,其中不是最简二次根式的有( )A.2个B.3个C.4个D.5个5.在如图所示的数轴上,表示数3-7的点应在( )A.A ,O 之间B.O ,B 之间C.B ,C 之间D.C ,D 之间6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6km 处往东拐,仅走了1 km,就找到了宝藏,则门口A 到藏宝点B 的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.如图,一场暴雨过后,垂直于地面的一棵大树在距地面5米的C 处折断,树尖B 恰好碰到地面,经测量树尖B 与树桩A 相距12米,则大树折断前高为( )A.13米 B.17米 C.18米 D.22米8.如图,是一种筷子的收纳盒,长、宽、高分别为4 cm,3 cm,12 cm,现有一长为16 cm 的筷子插入到盒的底部,则筷子露在盒外的部分h (cm)的取值范围( )A.3<h<4 B.3≤h ≤4 C.2≤h ≤4 D.5≤h ≤69.把两块同样大小的含45°角的直角三角尺按如图所示放置,其中一块的锐角顶点与另一块的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上,若AC=22,则CD的长是( )A.3B.5C.25+2D.23+210.如图,有一根高为2.1 m的木柱,它的底面周长为40 cm,在准备元旦联欢晚会时,为了营造喜庆的氛围,小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止,小明需要准备的这根彩带的长至少为( ) A.1 400 cm B.350 cm C.840 cm D.300 cm二、填空题(每小题3分,共15分)11. 写出一个在3和4之间的无理数:12.如图,每个小正方形的边长为1,可通过“剪一剪”“拼一拼”,将五个小正方形拼成一个面积一样的大正方形,则这个大正方形的边长是 .13.若m,n为实数,且m=1―n+n-1+8,则mn的立方根为 .14 .如图,有一块一边长为24 m的长方形绿地,在绿地旁边B处有健身器材.由于居住在A处的居民践踏了绿地,小颖想在A处立一个标牌“少走 步,踏草何忍”,但小颖不知应填什么数,请你帮她填上.(假设2步为1 m)15.有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,且这3个正方形所围成的三角形是直角三角形.再经过一次“生长”后,变成了如图,如果继续“生长”下去,它将变得“枝繁叶茂”.请你算出“生长”了2 021次后形成的图形中所有的正方形的面积和是 .三、解答题(共8小题,共75分)16.(8分)把下列各数填入相应的集合内:227,π5,0,3.14,-5,0.313 131…,38,-64,7.151 551…(相邻两个1之间5的个数逐次加1).有理数集合{ …};无理数集合{ …};正数集合{ …};负数集合{ …}.17.(每小题3分,共12分)解答下列各题.(1)(x+5)2=16(2)8(x-1)3=-1258(3)48-27+13 (4)(-2+6)(-2-6)-(3-13)2.18.(8分)如图,一个梯子AB,顶端A 靠在墙AC 上,这时梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米到E 点,底端则水平滑动8米到D 点,求滑动前梯子底端与墙的距离CB 是多少.19.(8分)如图,在四边形ABDC中,∠A=90°,AB=6,AC=8,BD=5,CD2=125.(1)连接BC,求BC的长;(2)求△BCD的面积.20.(8分)已知a-2的平方根是±2,a-3b-3的立方根是3,整数c满足c<12<c+1.(1)求a,b,c的值;(2)求a2+b2+c3+17的算术平方根.21.(10分)为了积极响应国家新农村建设,某镇政府采用了移动宣讲的广播形式进行宣传.如图,笔直公路MN的一侧有一报亭A,报亭A到公路MN的距离AB 为600米,且宣讲车P周围1 000米以内能听到广播宣传,宣讲车P在公路MN 上沿PN方向行驶.(1)请问报亭的人能否听到广播宣传,并说明理由;(2)如果能听到广播宣传,已知宣讲车的速度是200米/分,那么报亭的人总共能听到多长时间的广播宣传?22.(10分)八年级某班开展了手工制作比赛,每个同学都在规定时间内完成一件手工作品.陈莉同学制作手工作品的前两个步骤如下:①如图,先裁下一张长20 cm,宽16 cm 的长方形纸片ABCD;②将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处.请你根据①②步骤分别计算FC,EC 的长.23.(11分)小明在解决问题:已知a=12+3,求2a 2-8a+1的值.他是这样分析与解答的:因为a=12+3=2―3(2+3)(2-3)=2-3,所以a-2=-3.所以(a-2)2=3,即a 2-4a+4=3.所以a 2-4a=-1.所以2a 2-8a+1=2(a 2-4a)+1=2×(-1)+1=-1.请你根据小明的分析过程,解决如下问题:(1)计算:12+1= .(2)计算:12+1+13+2+14+3+…+1100+99.(3)若a=12-1,求4a 2-8a+1的值.参考答案12345678910DCDBBDCB DB11.1112.513.214.1615.2022解析:6.D 如图,过点B 作BC⊥AC ,垂足为C,过点N 作NM⊥AC ,垂足为M.由题意可知AC=AF-MF+MC=8-3+1=6(km),BC=2+6=8(km),在Rt△ACB中,AB=AC 2+BC 2=62+82=10(km).解析:9.D 如图,作AF⊥BC 于点F,∵△AED 和△ACB 是一样的等腰直角三角形,AC=22,∴BC=AD=4,∴AF=12BC=2,BF=CF=2,∴DF=AD 2-AF 2=42-22=23,∴CD=DF+CF=23+2.三、解答题16.有理数集合{227,0,3.14,0.313 131…,38,-64,…};无理数集合{π5,-5,7.151 551…(相邻两个1之间5的个数逐次加1),…};正数集合{227,π5,3.14,0.313 131…,38,7.151 551…(相邻两个1之间5的个数逐次加1),…};负数集合{-5,-64,…}.17.(1)x=-1或x=-9.(2)因为8(x-1)3=-1258,所以(x-1)3=-12564,所以x-1=-54,所以x=1-54,所以x=-14(3)原式=43-33+33=433.(4)原式=4-6-(3-2+13)=-2-43=-103.18.∵AC⊥BC ,∴AC 2+CB 2=AB 2,CE 2+CD 2=DE 2,由题意知AB=DE ,AC=24米,AE=4米,BD=8米,∴CE=24-4=20(米),CD=CB+8,∴242+CB 2=202+(CB+8)2,解得CB=7(米).答:滑动前梯子底端与墙的距离CB 是7米.19.(1)∵在△ABC 中,∠A=90°,AB=6,AC=8,∴BC 2=AB 2+AC 2=100,∴BC=10.(2)在△BCD 中,BC=10,BD=5,CD 2=125,∵BC 2+BD 2=102+52=125=CD 2,∴△BCD 是直角三角形,且∠CBD=90°,∴△BCD 的面积为12BD·BC=12×5×10=25. 20.(1)根据题意,得a-2=4,a-3b-3=27,所以a=6,b=-8.12=23≈3.46,所以3<12<4,所以c=3.(2)由(1)知a=6,b=-8,c=3,所以a 2+b 2+c 3+17=62+(-8)2+33+17=144.因为122=144,所以a 2+b 2+c 3+17的算术平方根为12.21.(1)报亭的人能听到广播宣传.理由:∵600米<1 000米,∴报亭的人能听到广播宣传.(2)如图,假设当宣讲车P 行驶到P 1点时,报亭的人开始听到广播宣传,当宣讲车P 行驶过P 2点时,报亭的人开始听不到广播宣传,连接AP 1,AP 2.易知AP 1=AP 2=1 000米,AB=600米,AB ⊥MN ,∴BP 1=BP 2=1 0002-6002=800(米),∴P 1P 2=1 600米.∵1 600÷200=8(分),∴报亭的人总共能听到8分钟的广播宣传.22.∵ 将纸片沿着AE 所在的直线折叠,点D 恰好落在BC 边上的F 处,∴DE=FE ,AF=AD.在Rt△ABF 中,由勾股定理,得BF 2=AF 2-AB 2=202-162=144,∴BF=12 cm .∴FC=20-12=8(cm).设CE=x cm,则EF=DE=(16-x )cm .在Rt△CEF 中,由勾股定理,得EF 2=FC 2+CE 2,即(16-x )2=82+x 2,解得x=6,∴EC=6 cm .23.(1)2-1 解法提示:12+1=2-1(2+1)(2-1)=2-1.(2)原式=(2-1)+(3-2)+(4-3)+…+(100-99)=100-1=10-1=9.(3)因为a=12-1=2+1(2-1)(2+1)=2+1,所以a-1=2.所以(a-1)2=2,即a 2-2a +1=2.所以a 2-2a=1.所以4a 2-8a +1=4(a 2-2a )+1=4×1+1=5.。
八年级上册第一次月考数学试卷一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()A. 3,4,8.B. 5,6,11.C. 1,2,3.D. 5,6,10.2. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是()A. 14.B. 15.C. 16.D. 17.3. 三角形的一个外角小于与它相邻的内角,则这个三角形是()A. 直角三角形。
B. 锐角三角形。
C. 钝角三角形。
D. 无法确定。
4. 等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为()B. 8cm.C. 3cm或8cm。
D. 以上答案均不对。
5. 如图,在△ABC中,∠A = 50°,∠C = 70°,则外角∠ABD的度数是()A. 110°.B. 120°.C. 130°.D. 140°.6. 正多边形的一个内角是135°,则这个正多边形的边数是()A. 6.B. 7.C. 8.D. 9.7. 下列图形中具有稳定性的是()A. 正方形。
B. 长方形。
C. 直角三角形。
D. 平行四边形。
8. 若一个多边形的内角和是1080°,则这个多边形的边数是()B. 7.C. 8.D. 9.9. 在△ABC中,∠A=∠B = 2∠C,则∠C等于()A. 36°.B. 45°.C. 90°.D. 180°.10. 如图,已知AD是△ABC的中线,CE是△ACD的中线,若△ACE的面积是1,则△ABC的面积是()A. 2.B. 3.C. 4.D. 5.二、填空题(每题3分,共18分)11. 三角形的三个内角之比为1:3:5,则最大内角的度数为______。
12. 若等腰三角形的顶角为80°,则它的底角为______。
13. 一个多边形的每一个外角都等于36°,则这个多边形的边数是______。
云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。
答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。
第1页,共6页 第2页,共6页
班级 : 姓名 考号:_____________________
密 封 线 内 不 得 答 题
2016-2017学年度第一学期第一次月考试卷
初二数学
第I 卷 (选择题 共30分)
一、选择题(本大题共10小题,每小题3分,共30分)。
1.16的平方根是( ). A.4 B.±4 C.-4 D.8.
2.下列各组线段中,能构成直角三角形的是(
)
A .2,3,4
B .3,4,6
C .5,12,13
D .4,6,7 3.下列数中是无理数的是( )
A .∙
∙3212.0
B .2
π
C .0
D .7
22
4.满足下列条件的∆A B C
,不是直角三角形的是( ) A . ∠A : ∠
B : ∠
C =3:4:5 B . ∠A +∠B = ∠C C . a 2+b 2=c 2
D . a :b :c =7:24:25
A .不循环小数是无理数
B .分数不是有理数
C .有理数都是有限小数
D .3.1415926是有理数 7.下列说法中正确的是( )
A .-4没有立方根
B .1的立方根是±1
C .36
1
的立方根是61 D .-5的立方根是35-
8.下列说法中,正确的是( )
A .一个有理数的平方根有两个,它们互为相反数
B .一个有理数的立方根,不是正数就是负数
C .负数没有立方根
D .如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1
9.在实数中,有( )
A .最大的数
B .最小的数
C .绝对值最大的数
D .绝对值最小的数
10.如图,一只蚂蚁沿边长为1的正方体表面从点A 爬到点B ,则它走过的路程最短为( )
A. 3
B.5
C.3
D.5
第II 卷 (非选择题 共120分)
二、填空题(本大题共10小题,每小题4分,共40分)
11.36的算术平方根是_________;
12. 直角三角形两直角边分别为a 、b ,斜边为c ,已知:a =6,b =8,则c =____ ___; 13. 在Rt △ABC 中,已知两边长为3、4,则第三边的长为 ; 14.一个正数的平方根是2a -1与-a+2,则a =_________; 15.
的相反数是 ;--2的绝对值是 ;-0.5的倒数是
;
16. 三角形的三个内角之比为:1:2:3,则此三角形是___ 17.若14+a 有意义,则a 的取值范围是 ; 18.若|x -2|+3-y =0,则x ²y =_____
19. 等腰△ABC ,其中AB =AC=17cm ,BC =16cm ,则三角形的面积为___ ____. 20. 已知643+a +|b 3-27|=0,则(a -b )b 的立方根是___ ____. 三、解答题1(本大题共3小题,共30分) 21.求下列个数的平方根及算术平方根:
(1)900 ; (2)1;
B
A
Q
M
P
第3页,共6页 第4页,共6页
D
A
B
C
(3)4964
; (4)10-4
22. 求下列各数的立方根:
(1)-27 ; (2)
8
125
;
(3)0.216; (4)-5
23. 求下列各式的值:
(1) (2)
四、解答题2(本大题共5小题,共25分)
24. 求下列各式中的x .
(1)125x 3=8 (2)(-2+x )2=9
25.通过估计,比较大小.
(1)24与5.1 (2)5
13-与51
26. 在四边形ABCD 中,∠BAD =∠DBC =90°,若AD =4cm ,AB =3cm ,BC =12求CD 的长度.
第5页,共6页 第6页,共6页
班级 : 姓名 考号:_____________________
密 封 线 内 不 得 答 题
D
B
A
五、解答题3(本大题共2小题,共12分) 27. 已知:如图,等边△ABC 的边长是6cm 。
⑴求等边△ABC 的高. ⑵求S △ABC .
28. 如图,一只蚂蚁从点A 沿圆柱表面爬到点B ,如果圆柱的高为8cm ,圆柱的
底面半径为
6
cm ,那么蚂蚁爬行的最短的路线长是多少?
六.探究题(本大题共2小题,29题6分,30题7分) 29. 请选择一个图形来证明勾股定理。
30.如图,已知长方形ABCD 中AB =8 cm ,BC =10 cm ,在边CD 上取一点E ,将△ADE 折
叠使点D 恰好落在BC 边上的点F ,求CE 的长.
A
B。