2020年中考数学考前精练 十三 学生版
- 格式:pdf
- 大小:205.93 KB
- 文档页数:3
中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2021-2021年中考数学考前冲刺精编精练13一、选择题。
本大题一一共10小题,每一小题3分,一共30分.1.假如□+2=0,那么“□〞内应填的实数是A .-2B .-21 C .21D . 2 2.以下根本图形中,经过平移、旋转或者轴对称变换后,不能..A .B .D.3.以下统计量中,能反映一名同学在7~9年级学段的学习成绩稳定程度的是A .平均数B .中位数C .众数D .方差 4.以下关于12的说法中,错误的选项是......A .12是无理数B .3<12<4C.12是12的算术平方根 D .12不能再化简5.右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况〔图中阴影局部〕,其中正确的选项是A.B.C.D.6.右图是创星中学的平面示意图,其中宿舍楼暂未标注,宿舍楼在教学楼的北偏东约300的方向,与教学楼实际间隔约为200米,试借助刻度尺和量角器,测量图中四点位置,能比拟准确地表示该宿舍楼位置的是A.点A B.点B C.点C D.点D7.如图,小亮同学在晚上由路灯A走向路灯B,当他走到点P时,发现他的身影顶部正好接触路灯B的底部,这时他离路灯A 25米,离路灯B 5米,假如小亮的身高为1.6米,那么路灯高度为A .B . 8米C .9.6米D . 11.2米8.四张完全一样的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为A .41 B .21 C .43D .1 9.如图,点D 、E 、F 分别是△ABC 〔AB >AC 〕各边的中点,以下说法中,错误..的选项是....A . AD 平分∠BACB . EF=21BC C . EF 与AD 互相平分D . △DFE 是△ABC 的位似图形CABDEF PAB10.一名考生步行前往考场, 10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间是关系如下图〔假定总路程为1〕A . 20分钟B.22分钟C.24分钟D .26分钟答 案 卡〔满分是100分,时间是45分钟。
2020年北京十三中分校中考数学统练试卷(6月份)一、选择题(本大题共8小题,共16分)1.(2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108 2.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小3.(2分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.4.(2分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°5.(2分)将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.(2分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.7.(2分)下列关于函数=2﹣6+12的四个命题:①当=0时,y有最小值12;②为任意实数,=3+时的函数值大于=3﹣时的函数值;③若函数图象过点(,0)和(,0+1),其中>0,>0,则<;④若>3,且是整数,当≤≤+1时,的整数值有(2﹣4)个.其中真命题的序号是()A.①B.②C.③D.④8.(2分)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组二、填空题(本大题共8小题,共16分)9.(2分)如果分式的值是0,那么x的值是10.(2分)因式分解:﹣8ax2+16axy﹣8ay2=.11.(2分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.12.(2分)如图,袋子里装有4个球,大小形状完全一样,上面分别标有,0,﹣,,从中任意取2个球.则取到的2个球上的数字都是有理数的概率为:.13.(2分)如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.14.(2分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.15.(2分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本大题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.18.(5分)解方程:.19.(5分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.20.(5分)作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.21.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=(x≠0)的图象上.(1)求反比例函数y=(x≠0)的解析式和点B的坐标;(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.22.(5分)已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.23.(6分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC 分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.24.(6分)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54726291876988798062808493678787907168 91请根据所给信息,解答下列问题:(1)表1中c=;表2中的众数n=;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为人.25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm 6.9 5.3 4.0 3.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.(6分)已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.27.(7分)在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作C⊥A于N点,射线EN,AB交于P点.①依题意将图2补全;②在点M运动的过程中,猜想∠A E与∠AD满足的数量关系,并证明.28.(7分)如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.2020年北京十三中分校中考数学统练试卷(6月份)参考答案与试题解析一、选择题(本大题共8小题,共16分)1.(2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.2.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小【分析】根据不等式的性质即可求出答案.【解答】解:由于2>0,∴x+2>x,故选:C.3.(2分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看共有三层,底层左边是一个小正方形,中层是两个小正方形,上层右边是一个小正方形.故选:D.4.(2分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°【分析】如图,延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.5.(2分)将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位【分析】先利用顶点式得到两抛物线的顶点坐标,然后通过点的平移情况判断抛物线平移的情况.【解答】解:抛物线y=x2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(﹣3,0),∵点(0,0)向左平移3个单位可得到(﹣3,0),∴将抛物线y=x2向左平移3个单位得到抛物线y=(x+3)2.故选:A.6.(2分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=6,得出AE=CE=6,BC=BE+CE=10,由勾股定理求出AB的长,再由勾股定理求出AC即可.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.7.(2分)下列关于函数=2﹣6+12的四个命题:①当=0时,y有最小值12;②为任意实数,=3+时的函数值大于=3﹣时的函数值;③若函数图象过点(,0)和(,0+1),其中>0,>0,则<;④若>3,且是整数,当≤≤+1时,的整数值有(2﹣4)个.其中真命题的序号是()A.①B.②C.③D.④【分析】①由对称轴为x=3,可求y的最小值是3;②由x=3+n与x=3﹣n关于x=3对称,可得两点对应的函数值相等;③由图象上点与对称轴距离之间的关系,采用举反例的方法,判断a、b的关系;④求出x=n+1与x=n时对应的函数值的差即可判断函数值的整数点个数.【解答】解:①y=x2﹣6x+12=(x﹣3)2+3,∴当x=3时,y有最小值3,∴①不正确;②函数的对称轴为x=3,x=3+n与x=3﹣n关于x=3对称,∴x=3+n时的函数值等于x=3﹣n时的函数值,∴②不正确;③函数的对称轴为x=3,∵a>0,b>0,当0<b<3时,a>3时,只需点(a,y0)到x=3的距离小于点(b,y0+1)到x=3的距离,也可满足题意,此时a>b,∴③不正确;④当x=n+1时y=(n﹣2)2+3,当x=n时,y=(n﹣3)2+3,∴(n﹣2)2+3﹣[(n﹣3)2+3]=2n﹣5,∵n>3,且n是整数,∴n≤x≤n+1时,y的整数值有(2n﹣4)个,∴④正确;故选:C.8.(2分)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组【分析】结合图象,依次判断,利用排除法可求解.【解答】解:由图象可得:A组的客户的电动汽车的“实际平均续航里程”的最大值在350左右,B 组客户的电动汽车的“实际平均续航里程”的最大值在450左右,故A选项不合题意;由图象可得:A组客户的电动汽车的“实际平均续航里程”的数据波动比B组客户的电动汽车的“实际平均续航里程”的数据波动小,即A组客户的电动汽车的“实际平均续航里程”的方差比B组客户的电动汽车的“实际平均续航里程”的方差小,故B选项不合题意;由图象可得:这20位客户的电动汽车的“实际平均续航里程”的从大到小排序,第10位,第11位都在B组,故选项D不合题意;故选项C符合题意,故选:C.二、填空题(本大题共8小题,共16分)9.(2分)如果分式的值是0,那么x的值是0【分析】根据分式为0的条件得到方程,解方程得到答案.【解答】解:由题意得,x=0,故答案是:0.10.(2分)因式分解:﹣8ax2+16axy﹣8ay2=﹣8a(x﹣y)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣8a(x2﹣2xy+y2)=﹣8a(x﹣y)2.11.(2分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.【分析】根据AB是⊙O的直径,求出∠ACB=90°,根据勾股定理,求出AB的长,根据∠ADC=∠ABC,运用锐角三角函数的概念求出答案.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,BC=1,AC=3,由勾股定理得,AB=,∠ADC=∠ABC,∴sin∠ADC=sin∠ABC===,故答案为:.12.(2分)如图,袋子里装有4个球,大小形状完全一样,上面分别标有,0,﹣,,从中任意取2个球.则取到的2个球上的数字都是有理数的概率为:.【分析】根据题意画出树状图得出所有等可能的结果数和取到的2个球上的数字都是有理数的情况数,然后根据概率公式即可求得答案.【解答】解:根据题意画树状图如下:共有12种等可能的结果数,取到的2个球上的数字都是有理数的有2钟,则取到的2个球上的数字都是有理数的概率为=;故答案为:.13.(2分)如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为36米.【分析】因为其坡比为1:,则坡角为30度,然后运用正弦函数解答.【解答】解:因为坡度比为1:,即tanα=,∴α=30°.则其下降的高度=72×sin30°=36(米).14.(2分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.【分析】设乙厂每天生产该种口罩x万只,则甲厂每天生产该种口罩(x+5)万只,根据工作时间=工作总量÷工作效率结合甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,即可得出关于x的分式方程.【解答】解:设乙厂每天生产该种口罩x万只,则甲厂每天生产该种口罩(x+5)万只,依题意,得:,故答案为:.15.(2分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为﹣1.【分析】把A(0,﹣3),B(5,2)代入y=k1x+b,利用待定系数法即可求出直线l1的表达式,根据题意,把x=4代入k1x+b>k2x+2,求出k2的范围,进而求解即可.【解答】解:∵直线l1:y=k1x+b过A(0,﹣3),B(5,2),∴,解得∴直线l1的表达式为y=x﹣3,∵当x≥4时,不等式x﹣3>k2x+2恒成立,∴4﹣3>4k2+2,∴k2<﹣,∴取k2=﹣1满足题意,故答案为﹣1.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是甲和乙.【分析】根据矩形长为12宽为6,可得矩形的对角线长为6,由矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,可得该正方形的边长不小于6,进而可得正方形边长的最小整数n的值.【解答】解:∵矩形长为12宽为6,∴矩形的对角线长为:=6,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于6,∵13<6<15,∴该正方形边长的最小正数n为14.故甲和乙的思路正确,长方形对角线最长,只要对角线能通过就可以,n=14;故答案为:甲和乙.三、解答题(本大题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|的值是多少即可.【解答】解:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|=2﹣1﹣2×+2﹣=1﹣+2﹣=3﹣218.(5分)解方程:.【分析】观察可得最简公分母是2(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得,2x+2﹣(x﹣3)=6x,∴x+5=6x,解得,x=1经检验:x=1是原方程的解.19.(5分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.20.(5分)作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.【分析】以B为圆心,BC长为半径画弧交AD于E,连接BE,CE,则EC平分∠BED,再根据勾股定理进行计算,即可得到DE的长,进而得出tan∠BEC的值.【解答】解:如图所示,点E即为所求,由题可得,BE=BC=AD=10,∠A=90°,AB=6,∴Rt△ABE中,AE===8,∴DE=AD﹣AE=10﹣8=2,∴Rt△CDE中,tan∠DEC===3,∵CE平分∠BED,∴∠BEC=∠DEC,∴tan∠BEC=3.21.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=(x≠0)的图象上.(1)求反比例函数y=(x≠0)的解析式和点B的坐标;(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.【分析】(1)将点A(,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【解答】解:(1)∵点A(,1)在反比例函数y=的图象上,∴k=×1=.∵A(,1),∴OA=2,由OA⊥OB,AB⊥x轴,易证△OC∽△ABO,∴=,即=,∴AB=4,∴B(,﹣3);(2)∵OB==2,∴sin∠ABO==,∴∠ABO=30°.∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=2,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°.又BD﹣OC=2﹣=,BC﹣DE=4﹣1﹣2=1,∴E(﹣,﹣1),∵﹣×(﹣1)=,∴点E在该反比例函数的图象上.22.(5分)已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【分析】(1)根据平行线的判定定理得到AB∥EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到,求得AB=2,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,=AB•AC=2×4=8.∴S平行四边形ABCE23.(6分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC 分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.【分析】(1)根据圆周角定理得到∠ADB=90°,利用平行线的性质得到∠AFO=∠ADB =90°,然后根据垂径定理得到结论;(2)连接AC,如图,利用=得到∠CAD=∠ABC,再证明△ACE∽△BCA,利用相似比计算出AC=2,接着根据圆周角定理得到∠ACB=90°,然后利用勾股定理计算出AB,从而得到⊙O的半径;【解答】(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=.(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB===2,∴⊙O的半径为.24.(6分)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54726291876988798062808493678787907168 91请根据所给信息,解答下列问题:(1)表1中c=0.25;表2中的众数n=87;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是54度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是甲校的学生(填“甲”或“乙”),理由是该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为550人.【分析】(1)由表格中数据可知,90≤m<100的频数为2,频率d=2÷20=0.1,再根据频率之和为1,求出c即可;根据众数的意义可求出乙班的众数n,(2)扇形统计图中,70≤m<80这一组占整体的1﹣5%﹣20%﹣35%﹣25%=15%,因此所在扇形的圆心角度数为360°的15%;(3)根据中位数的意义,79分处在班级成绩的中位数以上,可得出答案;(4)样本估计总体,样本中优秀占(35%+20%),因此总体1000人的55%是优秀的.【解答】解:(1)d=2÷20=0.1,c=1﹣0.1﹣0.1﹣0.2﹣0.35=0.25,乙班成绩出现次数最多的数是87分,共出现3次,因此乙班的众数为87,故答案为:0.25,87;(2)360°×(1﹣5%﹣20%﹣35%﹣25%)=360°×15%=54°,故答案为:54;(3)甲,因为该学生的成绩是79分,略高于甲校的样本成绩数据的中位数77分,符合该生的成绩在甲校排名是前10名的要求;(4)1000×(35%+20%)=550(人),故答案为:550.25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm 6.9 5.3 4.0 3.3 3.5 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为 3.2 cm.【分析】根据题意作图测量即可.【解答】解:(1)60(2)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE =EF.即y=x所以,当(2)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.2.26.(6分)已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为y=﹣x2+2mx﹣1,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.【分析】(1)△=(﹣2m)2﹣4(2m2﹣1)=0,即可求解;(2)①翻折后的抛物线的解析式的顶点不变,开口相反,可得新函数的表达式,当x=0时,y=﹣1,即可求解;②当m>0时,如上图实线部分,新函数图象与线段AB只有一个公共点,则函数不过点B,即m>1;当m<0时,同理可得:m<﹣1,即可求解.【解答】解:(1)∵△=(﹣2m)2﹣4(2m2﹣1)=0,∴m=±1,即函数图象与x轴只有一个公共点时,m的值为±1;。
2020年中考数学考前精练三一、选择题1.四个数3,﹣2,0,﹣|﹣4|中,其中比零小的数的个数是( )A.1B.2C.3D.42.已知x2+kxy+64y2是一个完全平方式,则k的值是( )A.8B.±8C.16D.±163.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时4.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm5.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕C点顺时针方向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1) D.(7,0)6.二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣0.5,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.A.1个B.2个C.3个D.4个二、填空题7.在函数y=中,自变量x的取值范围是.8.因式分解:x2﹣36= .9.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S=6,则点D到AB的距离是△ADC________.10.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN= 时,△AMN与原三角形相似.11.在一次函数y=2x﹣2的图象上,和x轴的距离等于1的点的坐标是.三、解答题12.已知,求的值.13.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?14.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.15.如图,已知☉O的半径为1,DE是☉O的直径,过D作☉O的切线,C是AD的中点,AE交☉O于B 点,四边形BCOE是平行四边形.(1)求AD的长.(2)BC是☉O的切线吗?若是,给出证明;若不是,说明理由.参考答案1.B.2.D3.答案为B.4.D5.D6.答案为:C.7.答案为:x≥2.8.答案为:(x+6)(x﹣6).9.答案为:3;10.答案为:2或4.5.11.答案为:(1.5,1)(0.5,﹣1).12.解:.13.解:14.证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形.15.解:(1)连接BD,则∠DBE=90°.∵四边形BCOE是平行四边形,∴BC∥OE,BC=OE=1.在Rt△ABD中,C为AD的中点,∴BC=0.5AD=1.∴AD=2.(2)连接OB,由(1)得BC∥OD,且BC=OD.∴四边形BCDO是平行四边形.又∵AD是☉O的切线,∴OD⊥AD.∴四边形BCDO是矩形.∴OB⊥BC,∴BC是☉O的切线.。
知识点01:二次函数的图象特征及性质 【高频考点精讲】关系式 一般式y =ax 2+bx +c (a ≠0)顶点式k h x a y +-=2)((a ≠0)开口方向 当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。
顶点坐标(ab2-,a b ac 442-)(h ,k )对称轴直线x =ab2-直线x =h增减性a>0x<ab2-时,y随x增大而减小;x>ab2-时,y随x增大而增大。
x<h时,y随x增大而减小;x>h时,y随x增大而增大。
a<0x<ab2-时,y随x增大而增大;x>ab2-时,y随x增大而增大。
x<h时,y随x增大而增大;x>h时,y随x增大而减小。
最值a>0当x=ab2-时,abacy442-=最小值。
当x=h时,ky=最小值。
a<0当x=ab2-时,abacy442-=最大值。
当x=h时,ky=最大值。
知识点02:二次函数图象与系数的关系【高频考点精讲】1.a决定抛物线的开口方向及大小(1)a>0,抛物线开口向上;a<0,抛物线开口向下。
(2)|a|越大,抛物线的开口越小;|a|越小,抛物线的开口越大。
2.a、b共同决定抛物线对称轴的位置(1)当b=0时,对称轴x=ab2-=0,对称轴为y轴。
(2)当a、b同号时,对称轴x=ab2-<0,对称轴在y轴左侧。
(3)当a、b异号时,对称轴x=ab2->0,对称轴在y轴右侧。
3.c 决定抛物线与y 轴的交点位置 (1)当c =0时,抛物线过原点。
(2)当c >0时,抛物线与y 轴交于正半轴。
(3)当c <0时,抛物线与y 轴交于负半轴。
4.ac b 42-决定抛物线与x 轴的交点位置(1)当ac b 42-=0时,抛物线与x 轴有唯一交点。
(2)当ac b 42->0时,抛物线与x 轴有两个交点。
(3)当ac b 42-<0时,抛物线与x 轴没有交点。
5.特殊值(1)当x=1时,y=a+b+c ;当x=﹣1时,y=a-b+c ;当x=2时,y=4a+2b+c ;当x=﹣2时,y=4a-2b+c 。
2020年中考数学考前精练十二一、选择题1.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.0.21×10﹣5D.2.1×10﹣52.计算(2x-1)(5x+2)等于()A.10x 2-2B.10x 2-x-2C.10x 2+4x-2D.10x 2-5x-23.如图,在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=-12x-1上方的概率为()A.12B.13C.23D.14.在一次篮球联赛中,每个小组的各队都要与同组的其他队比赛两场,然后决定小组出线的球队.如果某一小组共有x 个队,该小组共赛了90场,那么列出正确的方程是()A. B.x(x﹣1)=90 C. D.x(x+1)=905.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E,∠ABC 的平分线交AD 于点F,若BF=12,AB=10,则AE 的长为()A.13B.14C.15D.166.如图,△ABC 为等边三角形,点P 从A 出发,沿A→B→C→A 作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是()二、填空题7.函数1y x =-的自变量x 取值范围是8.分解因式:x 2-6x 2y+9x 2y 2=.9.如图,点B、E、F、C 在同一直线上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要补充的一个条件是(写出一个即可).10.如图所示,在正方形ABCD 中,点E 是BC 边上一点,且BE:EC=2:1,AE 与BD 交于点F,则△AFD 与四边形DFEC 的面积之比是.11.如图,四边形OABC 是矩形,ADEF 是正方形,点A,D 在x 轴的正半轴,点C 在y 轴的正半轴上,点F 再AB 上,点B,E 在反比例函数y=的图象上,OA=2,OC=6,则正方形ADEF 的边长为______.三、解答题12.计算:()﹣1+﹣6tan60°+|2﹣4|13.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?14.如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?15.如图,已知AB为⊙O的直径,CD为⊙O的弦,与直径相交于点E,tan∠D=0.5.(1)求tan∠ABC;(2)若D为半圆中点,CE=4,DE=5,求BC及⊙O的半径.。
2020年浙江省杭州十三中教育集团中考数学模拟试卷(6月份)一.选择题:本大题10小题,每小题3分,共30分,每小题给出的四个选项中只有一个符合题目要求.1.(3分)若x与3互为相反数,则|x|+3等于()A.﹣3B.0C.3D.62.(3分)满足不等式﹣x>2的x取值可以是()A.1B.﹣1C.3D.﹣33.(3分)三张分别画有平行四边形、等边三角形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A.B.0C.D.14.(3分)若a=b+2,则下面式子一定成立的是()A.a﹣b+2=0B.3﹣a=b﹣1C.2a=2b+2D.﹣=1 5.(3分)在△ABC中,2(∠A+∠B)=3∠C,则∠C的补角等于()A.36°B.72°C.108°D.144°6.(3分)如图,平面直角坐标系中有P、Q两点,其坐标分别为P(4,a)、Q(b,6).根据图中P、Q两点的位置,判断点(9﹣2b,a﹣6)落在第()象限A.一B.二C.三D.四7.(3分)在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC 的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=8.(3分)如图,Rt△ABC中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y=﹣(x<0)的图象上,则下列等式成立的是()A.sin∠BAO=B.cos∠BAO=C.tan∠BAO=2D.sin∠ABO=9.(3分)下列关于函数y=x2﹣4x+6的四个命题:①当x=0时,y有最小值6;②若n>1,则x=2+n时的函数值大于x=n时的函数值;③若n>2且n是整数,当n<x<n+1时,y的整数函数值有(2n﹣4)个;④若函数图象过点(a,y0),(b,y0+1),则a<b,其中真命题的序号是()A.①②B.②③C.③④D.②④10.(3分)如图,在Rt△ABC中,∠ABC=90°,tan∠BAC=4,A(0,a),B(b,0),点C在第四象限,BC与y轴交于点D(0,c),若y轴平分∠BAC,则点C的坐标不能表示为()A.(4a+b,4b)B.(2a+2c,﹣8c﹣8a)C.(﹣b﹣4c,4b)D.(2a﹣2c,﹣8c﹣8a)二、填空题:本题有6个小题,每题4分,共24分11.(4分)因式分解:(x﹣2)2﹣16=.12.(4分)已知圆锥的底面半径为20,侧面积为600π,则这个圆锥的母线长为.13.(4分)已知一次函数y=kx+b的图象经过一,二,四象限,且当2≤x≤4时,4≤y≤6,则的值是.14.(4分)如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为.15.(4分)如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=6,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为.16.(4分)如图,在菱形ABCD中,边AB=5,E,F分别在BC和AD上,若DF=1,BE =3,且此时BF=DE,则BF的长为三、解答题本大有7个小题共66分,解答应写出文字说明正明过程或演算步骤.17.(6分)先化简再求值:,其中x=﹣1.18.(8分)某校九年級1班与2班各有8名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分):1班:90,92,92,92,95,96,97,98.2班:88,93,93,93,95,95,97,98.整理得到如下统计表:班级最高分平均分中位数众数1班9894a c2班98b9493根据以上信息,完成下列问题(1)填空:a=分;b=分;c=分;(2)已知2班8名同学成绩的方差为(分2),请计算1班8名同学成绩的方差,并判断哪个班参加同学的成绩更稳定.19.(8分)如图,AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF 于F,BE=DF.(1)求证:Rt△BCE≌Rt△DCF;(2)若BE=2,EC=4,求四边形ABCD的面积.20.(10分)我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1张两人学习桌,1张三人学习桌需380元;若购买3张两人学习桌,2张三人学习桌需940元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资余不超过4700元,购买两种学习桌共25张,以至少满足58名学生的需求,有几种购买方案?并求哪种购买方案费用最低?21.(10分)如图,已知半圆O的直径AB=4,C为⊙O上的点,∠ABC的平分线交⊙O于点D,过点D作DE⊥BC交BC的延长线于点E,延长ED交BA延长线于点F.(1)试判断EF与⊙O的位置关系,并说明理由;(2)若,求图中阴影部分的面积.22.(12分)已知二次函数y=x2﹣2(m+1)x+m2+2m﹣3其图象F与直线x=﹣3交于点G.(1)当二次函数图象F经过点C(﹣1,﹣4)时,求它的表达式;(2)设点G的纵坐标为y G,求y G最小值;此时二次函数图象F上有两点M(x1,y1)、N(x2,y2),若x1<x2≤﹣4,比较y1与y2的大小;(3)若点A(a,﹣),B(p,q)都在在抛物线F上,且满足|q+4|<,求p的取值范围(答案用含字母a,m的不等式表示)23.(12分)如图,点E、G是矩形ABCD边AB上的两点,F是边DC上的点,AB=8且CG=EF.(1)如图1,若BE=2,DF=1,此时点E在点G右侧,求EG的长;(2)在(1)的条件下,连结CE,若CE平分∠BCG,求BC的长;(3)如图2,若EB=1,DF=k,tan∠EFC=k,且满足AB≤DF+EB≤AB,求tan∠AFD的范围.。
山东济宁十三中2020届数学中考模拟试卷一、选择题1.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系p =at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为( )A .4.25分钟B .4.00分钟C .3.75分钟D .3.50分钟2.下列关于0的说法中,正确的个数是( )①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值. A.1B.2C.3D.43.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( ) A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4)4.已知⊙O 1的半径r 1=2,⊙O 2的半径r 2是方程321x x =-的根,当两圆相内切时,⊙O 1与⊙O 2的圆心距为( ) A .5B .4C .1或5D .15.如图,在△ABC 中,以边BC 为直径做半圆,交AB 于点D ,交AC 于点E ,连接DE ,若=2=2,则下外说法正确的是( )A.AB =AEB.AB =2AEC.3∠A =2∠CD.5∠A =3∠C6.如图,点E 、F 是正方形ABCD 的边BC 上的两点(不与B 、C 两点重合),过点B 作BG ⊥AE 于点G ,连接FG 、DF ,若AB =2,则DF+GF 的最小值为( )A. ﹣1B.C.3D.47.下列计算正确的是( ) A .34a a a -= B .236a a a ⋅= C .824a a a ÷=D .()326a a =8.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )A .105B .115C .120D .13591,0( )AB .﹣1C .0D 10.分解因式3a 2b ﹣6ab+3b 的结果是( ) A .3b (a 2﹣2a ) B .b (3a 2﹣6a+1) C .3(a 2b ﹣2ab )D .3b (a ﹣1)211.抛物线y =ax 2+bx+c (a≠0)的对称轴为直线x =﹣1,与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac ﹣b 2<0;②2a ﹣b =0;③a+b+c <0;④点M (x 1,y 1)、N (x 2,y 2)在抛物线上,若x 1<x 2,则y 1≤y 2,其中正确结论的个数是( )A .1个B .2个C .3个D .4个12.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.二、填空题13.如图,正方形ABCD 中,点E 、F 分别在线BC 、CD 上运动,且满足∠EAF =45°,AE 、AF 分别与BD 相交于点M 、N .下列说法中:①BE+DF =EF ;②点A 到线段EF 的距离一定等于正方形的边长;③若tan ∠BAE =12,则tan ∠DAF =13;④若BE =2,DF =3,则S △AEF =18.其中结论正确的是__(将正确的序号写在横线上)14.从1,2,3,4四个数中任取一个数作为AC 的长度,又从4,5中任取一个数作为BC 的长度,6AB =,则AB AC BC 、、能构成三角形的概率是_____.15___________. 16.计算:(-1)0=________.17.上海合作组织青岛峰会期间,为推进“一带一路”建设,中国决定在上海合作组织银行联合体框架内,设立300亿元人民币等值专项贷款.将300亿元用科学记数法表示为___________________元. 18.如图,在V ABC 中,MNBC ,分别交AB AC 、于点M N 、,若1AM =,52MB = ,3BC = ,则MN 的长为___.三、解答题19.已知二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点. (1)求k 的取值范围; (2)方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2,且方程x 12+x 22+15=6x 1x 2,求k 的值,并写出y =x 2﹣(k+1)x+14k 2+1的代数解析式. 20.有甲、乙两个不透明的盒子,甲盒中装有编号为1,2,3三个球,乙盒中装有编号为4,5,6三个球,每个盒子中的球除编号外其它完全相同,将盒子中的球摇均后,从每个盒子中随机各取一个球. (1)从甲盒中取出的球号数是3的概率是 ;(2)请用列表法或画树状图法,求从两个盒子中取出的球号数都是偶数的概率.21.某商品现在的售价为每件30元,每星期可卖出160件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出2件.已知商品的进价为每件10元.(1)在顾客得到实惠的情况下,如何定价商家才能获得4200元的利润? (2)如何定价才能使利润最大?22.“足球运球”被列入中招体育必考项目.为此某学校举行“足球运球”达标测试,将成绩10分、9分、8分、7分,对应定为A ,B ,C ,D 四个等级.某班根据测试成绩绘制如下统计图,请回答下列问题:(1)该班级的总人数为,m=.(2)补全条形统计图.(3)该班“足球运球”测试的平均成绩是多少?(4)现准备从等级为A的4个人(2男2女)中随机抽取两个人去参加比赛,请用列表或画树状图的方法,求出恰好抽到一男一女的概率.23.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n为正整数)的式子表示上述的规律,并证明.24.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若A级由2个男生参加自主考试,B级由1个女生参加自主考试,刚好有一男一女考取名校,请用树状图或列表法求他们的概率.25.丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A 、B 两班学生测试成绩在80≤x<90这一组的数据如下: A 班:80 80 82 83 85 85 86 87 87 87 88 89 89B 班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A 、B 两班学生测试成绩的平均数、中位数、方差如下:(1)补全数学成绩频数分布直方图; (2)写出表中m 、n 的值;(3)请你对比分析A 、B 两班学生的数学学习情况(至少从两个不同的角度分析). 【参考答案】*** 一、选择题13.①②③. 14.58. 15.3 16.1 17.10310⨯ 18.67三、解答题 19.(1)32k ≥;(2)k 的值是4,y =x 2﹣5x+5. 【解析】 【分析】(1)根据题意可以得到关于k 的不等式,从而可以得到k 的取值范围;(2)根据题意和根据系数的关系,可以求得k 的值,进而可以写出y =x 2﹣(k+1)x+14k 2+1的代数解析式. 【详解】解:(1)∵二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点, ∴△=221[(k 1)]41k 14⎛⎫-+-⨯⨯+ ⎪⎝⎭≥0, 解得32k ≥, 所以,k 的取值范围是32k ≥; (2)∵方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2, ∴x 1+x 2=k+1,x 1x 2=14k 2+1, ∵x 12+x 22+15=6x 1x 2,∴(x 1+x 2)2﹣2x 1x 2+15=6x 1x 2, ∴(k+1)2﹣2(14k 2+1)+15=6×(14k 2+1), 解得,k =4或k =﹣2(舍去), ∴y =x 2﹣5x+5,所以,k 的值是4,y =x 2﹣(k+1)x+14k 2+1的代数解析式是y =x 2﹣5x+5. 【点睛】本题考查二次函数图象与系数的关系、根的判别式、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.20.(1)从甲盒中取出的球号数是3的概率是13;(2)从两个盒子中取出的球号数都是偶数的概率为29. 【解析】 【分析】(1)直接利用概率公式计算得出答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与从两个盒子中取出的球号数都是偶数的情况,再利用概率公式求解即可求得答案. 【详解】(1)从甲盒中取出的球号数是3的概率是:13; 故答案为:13; (2)画树状图得:∵共有9种等可能的结果,两个盒子中都取出偶数的有2种情况,∴从两个盒子中取出的球号数都是偶数的概率为:29.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(1)在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)售价为60元时利润最大为5000元.【解析】【分析】1)设商品的定价为x元,根据“获得总利润=(实际售价-进价)×销售量”列出关于x的方程,解之可得;(2)依据以上所得相等关系列出总利润w关于x的函数解析式,再将其配方成顶点式,利用二次函数的性质,结合x为整数可得答案.【详解】(1)设商品的涨价x元,由题意得:(30+x-10)(160-2x)=4200,整理得:x2-60x+500=0,解得:x=10或50,故为尽可能让利于顾客并使每周利润为4200元,取x的值为10,所以,在顾客得到实惠的情况下,售价为40元时商家才能获得4200元的利润;(2)由题意得:y=(30+x-10)(160-2x)=-2x2+120x+3200,=-2(x-30)2+5000∵-2<0,∴当x=30时,y取得最大值,此时y=5000(元),即当售价为60元时,会获得每周销售最大利润,每周最大销售利润为5000元.【点睛】该题主要考查了二次函数的性质及其应用问题;解题的关键是深入把握题意,准确找出命题中隐含的数量关系,正确列出函数关系式来分析、解答.22.(1)40、30;(2)见解析;(3)该班“足球运球”测试的平均成绩是8.4分;(4)23.【解析】【分析】(1)根据A的人数除以占的百分比求出调查学生的人数,根据各等级百分比之和为1可得m的值;(2)求出C等级的人数,补全条形统计图即可;(3)根据加权平均数的计算公式计算可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】解:(1)该班级的总人数为4÷10%=40人,m=100﹣(10+40+20)=30,故答案为:40、30;(2)C等级的人数为40﹣(4+16+8)=12,补全统计图如下:(3)该班“足球运球”测试的平均成绩是1049168127840⨯+⨯+⨯+⨯=8.4(分),(4)设男同学标记为A、B;女学生标记为1、2,可能出现的所有结果列表如下:则P(一男一女)=82 123=.【点睛】此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.23.(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【解析】【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n﹣1)(n+1)+1=n2的规律,并熟练加以运用.24.(1)50,24;(2)补图见解析;(3)72;(4)23.【解析】【分析】(1)根据B级学生的数量除以B级学生的百分数,即可求得统计总数,再根据A级学生的数量除以总数,即可计算出α.(2)根据总数等于A级、B级、C级和D级的和即可计算出C级的人数,补充条形图即可.(3)根据(2)可计算出C级百分比,再根据圆周角的性质可得C级所对应的的圆心角. (4)根据树状图计算即可.【详解】解:(1)在这次调查中,一共抽取的学生数是:24÷48%=50(人),α=1250×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为1050×360°=72°;故答案为:72;(4)画树状图如图所示,由上图可知共有6种结果,且每一种结果可能性都相同,其中抽到一男一女的有4种结果,刚好有一男一女的概率P(一男一女)=46=23.【点睛】根据统计知识计算即可,关键在于总数的计算,这类题目是考试的重点,也是热点,必须熟练掌握. 25.(1)见解析;(2)m=81,n=85;(3)略.【解析】【分析】(1)先求出B班人数,根据两班人数相同可求出A班70≤x<80组的人数,补全统计图即可;(2)根据中位数的定义求解即可;(3)可以从中位数和方差的角度分析,合理即可.【详解】解:(1)A、B两班学生人数=5+2+3+22+8=40人,A班70≤x<80组的人数=40-1-7-13-9=10人,A、B两班学生数学成绩频数分布直方图如下:(2)根据中位数的定义可得:m=80822+=81,n=85852+=85;(3)从中位数的角度看,B班学生的数学成绩比A班学生的数学成绩好;从方差的角度看,A班学生的数学成绩比B班学生的数学成绩稳定.【点睛】本题考查了条形统计图、求中位数以及利用平均数、中位数、方差作决策等知识,能够从统计图中获取有用信息是解题关键.。
2020年北京十三中分校中考数学统练试卷(6月份)一、选择题(本大题共8小题,共16分)1.(2分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1082.(2分)关于代数式x+2的值,下列说法一定正确的是()A.比2大B.比2小C.比x大D.比x小3.(2分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.4.(2分)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°5.(2分)将抛物线y=x2平移得到抛物线y=(x+3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位6.(2分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.7.(2分)下列关于函数y=y2﹣6y+12的四个命题:①当y=0时,y有最小值12;②y为任意实数,y=3+y时的函数值大于y=3﹣y时的函数值;③若函数图象过点(y,y0)和(y,y0+1),其中y>0,y>0,则y<y;④若y>3,且y是整数,当y≤y≤y+1时,y的整数值有(2y﹣4)个.其中真命题的序号是()A.①B.②C.③D.④8.(2分)“实际平均续航里程”是指电动汽车的行驶总里程与充电次数的比值,是反映电动汽车性能的重要指标.某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,按年龄不超过40岁和年龄在40岁以上将客户分为A,B两组,从A,B组各抽取10位客户的电动汽车的“实际平均续航里程”数据整理成图,其中“⊙”表示A组的客户,“*”表示B组的客户.下列推断不正确的是()A.A组客户的电动汽车的“实际平均续航里程”的最大值低于B组B.A组客户的电动汽车的“实际平均续航里程”的方差低于B组C.A组客户的电动汽车的“实际平均续航里程”的平均值低于B组D.这20位客户的电动汽车的“实际平均续航里程”的中位数落在B组二、填空题(本大题共8小题,共16分)9.(2分)如果分式的值是0,那么x的值是10.(2分)因式分解:﹣8ax2+16axy﹣8ay2=.11.(2分)如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.12.(2分)如图,袋子里装有4个球,大小形状完全一样,上面分别标有,0,﹣y,,从中任意取2个球.则取到的2个球上的数字都是有理数的概率为:.13.(2分)如图,一人乘雪橇沿坡比1:的斜坡笔直滑下72米,那么他下降的高度为米.14.(2分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控.甲、乙两个工厂生产同一种防护口罩,甲厂每天比乙厂多生产口罩5万只,甲厂生产该种口罩40万只所用时间与乙厂生产该种口罩15万只所用时间相同,若设甲厂每天生产口罩x万只,根据题意可列出方程:.15.(2分)在平面直角坐标系xOy中,直线l1:y=k1x+b过A(0,﹣3),B(5,2),直线l2:y=k2x+2.当x≥4时,不等式k1x+b>k2x+2恒成立,写出一个满足题意的k2的值为.16.(2分)对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本大题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.(5分)计算:()﹣1﹣(2﹣)0﹣2sin60°+|﹣2|.18.(5分)解方程:.19.(5分)关于x的一元二次方程y2﹣3y+y=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(y﹣1)y2+y+y﹣3=0与方程y2﹣3y+y=0有一个相同的根,求此时m的值.20.(5分)作图题:如图在矩形ABCD中,已知AD=10,AB=6,用直尺和圆规在AD上找一点E(保留作图痕迹),使EC平分∠BED,并求出tan∠BEC的值.21.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=(x≠0)的图象上.(1)求反比例函数y=(x≠0)的解析式和点B的坐标;(2)若将△BOA绕点B按逆时针方向旋转60°得到△BDE(点O与点D是对应点),补全图形,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.22.(5分)已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.23.(6分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC 分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径.24.(6分)“垃圾分类就是新时尚”.树立正确的垃圾分类观念,促进青少年养成良好的文明习惯,对于增强公共意识,提升文明素质具有重要意义.为了调查学生对垃圾分类知识的了解情况,从甲、乙两校各随机抽取20名学生进行了相关知识测试,获得了他们的成绩(百分制,单位:分),并对数据(成绩)进行了整理、描述和分析,下面给出了部分信息.a.甲、乙两校学生样本成绩频数分布表及扇形统计图如图:甲校学生样本成绩频数分布表(表1)成绩m(分)频数频率50≤m<60a0.1060≤m<70b c70≤m<8040.2080≤m<9070.3590≤m≤1002d合计20 1.0b.甲、乙两校学生样本成绩的平均分、中位数、众数、方差如表所示:(表2)学校平均分中位数众数方差甲76.77789150.2乙78.180n135.3其中,乙校20名学生样本成绩的数据如下:54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91请根据所给信息,解答下列问题:(1)表1中c=;表2中的众数n=;(2)乙校学生样本成绩扇形统计图中,70≤m<80这一组成绩所在扇形的圆心角度数是度;(3)在此次测试中,某学生的成绩是79分,在他所属学校排在前10名,由表中数据可知该学生是校的学生(填“甲”或“乙”),理由是;(4)若乙校1000名学生都参加此次测试,成绩80分及以上为优秀,请估计乙校成绩优秀的学生约为人.25.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图1摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE ⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm 6.9 5.3 4.0 3.3 4.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.26.(6分)已知二次函数y=x2﹣2mx+2m2﹣1(m为常数).(1)若该函数图象与x轴只有一个公共点,求m的值.(2)将该函数图象沿过其顶点且平行于x轴的直线翻折,得到新函数图象.①则新函数的表达式为,并证明新函数图象始终经过一个定点;②已知点A(﹣2,﹣1)、B(2,﹣1),若新函数图象与线段AB只有一个公共点,请直接写出m的取值范围.27.(7分)在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;(2)若M为线段BD上的动点(点M与点D不重合),过点C作C y⊥A y于N点,射线EN,AB交于P点.①依题意将图2补全;②在点M运动的过程中,猜想∠A y E与∠y AD满足的数量关系,并证明.28.(7分)如果的两个端点M,N分别在∠AOB的两边上(不与点O重合),并且除端点外的所有点都在∠AOB的内部,则称是∠AOB的“连角弧”.(1)图1中,∠AOB是直角,是以O为圆心,半径为1的“连角弧”.①图中MN的长是,并在图中再作一条以M,N为端点、长度相同的“连角弧”;②以M,N为端点,弧长最长的“连角弧”的长度是.(2)如图2,在平面直角坐标系xOy中,点M(1,),点N(t,0)在x轴正半轴上,若是半圆,也是∠AOB的“连角弧”求t的取值范围.(3)如图3,已知点M,N分别在射线OA,OB上,ON=4,是∠AOB的“连角弧”,且所在圆的半径为1,直接写出∠AOB的取值范围.。